Jupiter Magnetospheric Orbiter Trajectory Design: Reaching High Inclination in the Jovian System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mission to Jupiter
This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines. -
JUICE Red Book
ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat. -
Current Status of the EJSM Jupiter Europa Orbiter Flagship Mission Design
Current Status of the EJSM Jupiter Europa Orbiter Flagship Mission Design Presentation to the International workshop: “Europa lander: science goals and experiments” 2/09 Presented by: Karla B. Clark EJSM–JEO Study Manager Jet Propulsion Laboratory California Institute of Technology Jupiter Europa Orbiter The NASA Element of the Europa Jupiter System Mission EJSM Baseline Mission Overview • NASA & ESA share mission leadership • Two independently launched and operated flight systems with complementary payloads – Jupiter Europa Orbiter (JEO): NASA-led mission element – Jupiter Ganymede Orbiter (JGO): ESA-led mission element • Mission Timeline – Nominal Launch: 2020 – Jovian system tour phase: 2–3 years – Moon orbital phase: 6–12 months – End of Prime Missions: 2029 • ~10–11 Instruments on each flight system, including Radio Science 2/8/08 Predecisional, For Planning Purposes Only 2 JGO Baseline Mission Overview • ESA-led portion of EJSM • Objectives: Jupiter System, Callisto, Ganymede • Launch vehicle: Arianne 5 • Power source: Solar Arrays • Mission timeline: – Launch: 2020 • Uses 6-year Venus-Earth-Earth gravity assist trajectory – Jovian system tour phase: ~28 months Wide Angle and Medium Resolution Camera • Multiple satellite flybys V/NIR Imaging Spectrometer – 9 Ganymede – 21 Callisto (19 close flybys) EUV/FUV Imaging Spectrometer – Ganymede orbital phase: 260 days Ka-band transponder – End of prime mission: 2029 Ultra Stable Oscillator – Spacecraft final disposition: Ganymede surface impact Magnetometer • Radiation: ~85 krad behind -
LISA, the Gravitational Wave Observatory
The ESA Science Programme Cosmic Vision 2015 – 25 Christian Erd Planetary Exploration Studies, Advanced Studies & Technology Preparations Division 04-10-2010 1 ESAESA spacespace sciencescience timelinetimeline JWSTJWST BepiColomboBepiColombo GaiaGaia LISALISA PathfinderPathfinder Proba-2Proba-2 PlanckPlanck HerschelHerschel CoRoTCoRoT HinodeHinode AkariAkari VenusVenus ExpressExpress SuzakuSuzaku RosettaRosetta DoubleDouble StarStar MarsMars ExpressExpress INTEGRALINTEGRAL ClusterCluster XMM-NewtonXMM-Newton CassiniCassini-H-Huygensuygens SOHOSOHO ImplementationImplementation HubbleHubble OperationalOperational 19901990 19941994 19981998 20022002 20062006 20102010 20142014 20182018 20222022 XMM-Newton • X-ray observatory, launched in Dec 1999 • Fully operational (lost 3 out of 44 X-ray CCD early in mission) • No significant loss of performances expected before 2018 • Ranked #1 at last extension review in 2008 (with HST & SOHO) • 320 refereed articles per year, with 38% in the top 10% most cited • Observing time over- subscribed by factor ~8 • 2,400 registered users • Largest X-ray catalogue (263,000 sources) • Best sensitivity in 0.2-12 keV range • Long uninterrupted obs. • Follow-up of SZ clusters 04-10-2010 3 INTEGRAL • γ-ray observatory, launched in Oct 2002 • Imager + Spectrograph (E/ΔE = 500) + X- ray monitor + Optical camera • Coded mask telescope → 12' resolution • 72 hours elliptical orbit → low background • P/L ~ nominal (lost 4 out 19 SPI detectors) • No serious degradation before 2016 • ~ 90 refereed articles per year • Obs -
Ganymede Science Questions and Future Exploration
Planetary Science Decadal Survey Community White Paper Ganymede science questions and future exploration Geoffrey C. Collins, Wheaton College, Norton, Massachusetts [email protected] Claudia J. Alexander, Jet Propulsion Laboratory Edward B. Bierhaus, Lockheed Martin Michael T. Bland, Washington University in St. Louis Veronica J. Bray, University of Arizona John F. Cooper, NASA Goddard Space Flight Center Frank Crary, Southwest Research Institute Andrew J. Dombard, University of Illinois at Chicago Olivier Grasset, University of Nantes Gary B. Hansen, University of Washington Charles A. Hibbitts, Johns Hopkins University Applied Physics Laboratory Terry A. Hurford, NASA Goddard Space Flight Center Hauke Hussmann, DLR, Berlin Krishan K. Khurana, University of California, Los Angeles Michelle R. Kirchoff, Southwest Research Institute Jean-Pierre Lebreton, European Space Agency Melissa A. McGrath, NASA Marshall Space Flight Center William B. McKinnon, Washington University in St. Louis Jeffrey M. Moore, NASA Ames Research Center Robert T. Pappalardo, Jet Propulsion Laboratory G. Wesley Patterson, Johns Hopkins University Applied Physics Laboratory Louise M. Prockter, Johns Hopkins University Applied Physics Laboratory Kurt Retherford, Southwest Research Institute James H. Roberts, Johns Hopkins University Applied Physics Laboratory Paul M. Schenk, Lunar and Planetary Institute David A. Senske, Jet Propulsion Laboratory Adam P. Showman, University of Arizona Katrin Stephan, DLR, Berlin Federico Tosi, Istituto Nazionale di Astrofisica, Rome Roland J. Wagner, DLR, Berlin Introduction Ganymede is a planet-sized (larger than Mercury) moon of Jupiter with unique characteristics, such as being the largest satellite in the solar system, the most centrally condensed solid body in the solar system, and the only solid body in the outer solar system known to posses an internally generated magnetic field. -
Outer Planets Flagship Mission Results
Outer Planets Flagship Mission Results Curt Niebur OPF Program Scientist NASA Headquarters OPAG Meeting March 9, 2008 Study Background and Purpose • NASA and ESA are using a multistep downselection process to carefully select their next “flagship” missions – Multiple studies in this process intended to inform decisionmakers on science value, implementation risk/issues, cost and cost risk, and technology needs • Step 1 (2007): NASA and ESA operated independently of one another – PSD conducted detailed studies for several flagship missions (Europa, Titan, Enceladus, and Jovian System Observer) • AA Stern selected two of these concepts (Europa and Titan) for further study/evaluation in 2008 – ESA solicited Cosmic Vision Class L proposals • ESA selected Laplace and Tandem proposals (as well as IXO and LISA) • Step 2 (2008): NASA and ESA began a closer collaboration – Europa and Laplace concepts combined into Europa Jupiter System Mission – Titan and Tandem concepts combined into Titan Saturn System Mission • Step 3 (2009): Single concept moves forward for further work – NASA will focus on risk mitigation – ESA will conduct industry studies of 3 Class L concepts (OP, IXO, an LISA) for downselect beyond 2010 2 Organization and Implementation • Two concepts downselected for further joint NASA-ESA study in 2008 – Europa Jupiter System Mission (EJSM) consisting of a Jupiter Europa Orbiter (JEO, contributed by NASA) and a Jupiter Ganymede Orbiter (JGO, contributed by ESA) – Titan Saturn System Mission (TSSM) consisting of a Saturn Titan Orbiter -
Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites
Trans. JSASS Aerospace Tech. Japan Vol. 8, No. ists27, pp. Tk_35-Tk_38, 2010 Topics Exploration of the Jovian System by EJSM (Europa Jupiter System Mission): Origin of Jupiter and Evolution of Satellites 1) 2) 2) 2) 3) By Sho SASAKI , Masaki FUJIMOTO , Takeshi TAKASHIMA , Hajime YANO , Yasumasa KASABA , 4) 4) 2) 2) Yukihiro TAKAHASHI , Jun KIMURA , Tatsuaki OKADA , Yasuhiro KAWAKATSU , 2) 2) 2) 2) 2) Yuichi TSUDA , Jun-ichiro KAWAGUCHI , Ryu FUNASE , Osamu MORI , Mutsuko MORIMOTO , 5) 6) 7) Masahiro IKOMA , Takeshi NAGANUMA , Atsushi YAMAJI , 8) 9) Hauke HUSSMANN , Kei KURITA and JUPITER WORKING GROUP 1)National Astronomical Observatory of Japan, Oshu, Japan 2)The Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan 3)Tohoku University, Sendai, Japan 4)Hokkaido University, Sapporo, Japan 5)Tokyo Institute of Technology, Tokyo, Japan 6)Hiroshima University, Higashi-Hiroshima, Japan 7)Kyoto University, Kyoto, Japan 8)German Aerospace Center, Berlin, Germany 9)Earthquake Research Institute, The University of Tokyo, Tokyo, Japan (Received July 16th, 2009) EJSM (Europa Jupiter System Mission) is a planned Jovian system mission with three spacecraft aiming at coordinated observations of the Jovian satellites especially Europa and the magnetosphere, atmosphere and interior of Jupiter. It was formerly called "Laplace" mission. In October 2007, it was selected as one of future ESA scientific missions Cosmic Vision (2015-2025). From the beginning, Japanese group is participating in the discussion process of the mission. JAXA will take a role on the magnetosphere spinner JMO (Jupiter Magnetosphere Orbiter). On the other hand, ESA will take charge of JGO (Jupiter Ganymede Orbiter) and NASA will be responsible for JEO (Jupiter Europa Orbiter). -
Mission Juno: Extended & Expanded 29 11 42
“Since its first orbit in 2016, Juno has delivered one revelation after another about the inner workings of this massive gas giant. With the extended mission, we will answer fundamental questions that arose during Juno’s prime mission while reaching beyond the planet to explore Mission Juno: Extended & Expanded Jupiter’s ring system and largest satellites.” by the numbers —SwRI’s Scott Bolton, Juno principal investigator “The Juno team will start tackling a breadth of science historically required of flagships. This represents an efficient and innovative advance for NASA’s solar system exploration strategy.” — Lori Glaze, Planetary Science Division Director, NASA HQ primary mission Investigate Jupiter’s origins, interior, atmosphere extended mission and magnetosphere Investigation of Jupiter’s northern hemisphere and polar cyclones, dilute core, magnetic LAUNCH: August 5, 2011 ARRIVAL: July 2016 features being sheared by Jupiter’s zonal jets; flybys of Io, Europa and Ganymede; observation PRIMARY MISSION ENDS: July 2021 of the distant boundaries of the magnetosphere; and the first exploration of Jupiter’s rings MISSION STARTS: August 2021 MISSION ENDS: September 2025 34 Science Orbits 42 Additional Orbits Flybys over the Great Blue 6 Spot, a Magnetic Enigma SPACECRAFT ST Detailed Exploration of 19 Atmospheric 1 Jupiter’s Faint Rings Occultations ST Spacecraft Equipped 1 with a Radiation Vault MOON FLYBYS Titanium Mapping of 400 ST POUND Electronics Vault 1 Europa’s Ice Shell Thickness 3 EUROPA FLYBYS 29 Science Sensors on 11 Instruments Measurement ST of Space Search for 1 GANYMEDE FLYBYS ST Weathering 2 IO FLYBYS 1 Io’s Global on an Icy Solar Panels Spanning 66 11 Magma Ocean 3 FEET Moon 18 SPRING 2021 IMAGES COURTESY NASA/JPL/DLR/JPL-CALTECH D024769. -
From the Moon to the Moons: Encedalus, Ganymede and Europa
Journal of Cosmology, 2010, Vol 5, pages xxx In PRESS Cosmology, January 13, 2010 From the Moon to the Moons: Encedalus, Ganymede and Europa. The Search for Life and Reliable Biomarkers J. Chela-Flores, Ph.D., The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste, Italia, and Instituto de Estudios Avanzados, IDEA, Caracas 1015A, República Bolivariana de Venezuela Abstract The recent renewal of interest in exploring the Moon has led to further novel possibilities for the exploration of the Solar System. It is in the outer Solar System where the biggest challenges await our efforts, both in the development of instrumentation and in the clarification of the biosignatures that should be clear indications of life, as opposed to non-life signals. We argue that in the present-day larger scope of cosmology we can undertake one of the most important missions of the space sciences within our own solar system, namely the search for and discovery of a second genesis. This may be accomplished by landing on Europa's surface. We conclude that the implementation of penetrators in future exploration of the outer solar system is worthy of all the financial and technical support that will be needed, both at the national, as well as at the international level. Keywords: Astrobiology, instrumentation, exploration of the solar system, Europa, Enceladus, Biosignatures 1. Introduction It seems appropriate for a journal devoted to cosmology to encompass the field of astrobiology and to move beyond the "anthropic principle" of quantum physics, the standard astroparticle physics and astrophysics that dominate the field of classical cosmology. -
Title: Exploration of Europa Cynthia B
Title: Exploration of Europa Cynthia B. Phillips1, D. L. Blaney2, R. T. Pappalardo2, H. Hussman3, G. Collins4, R. M. Mastrapa1, J. F. Cooper5, R. Greeley6, J. B. Dalton2, T. A. Hurford5, E. B. Bierhaus7, F. Nimmo8, D. A. Williams6, D. A. Senske2, W. B. McKinnon9 1SETI Institute, 2NASA JPL/Caltech, 3DLR Institute of Planetary Research, Berlin, 4Wheaton College, 5NASA Goddard, 6Arizona State University, 7Lockheed Martin Corporation, 8 Univ. Calif. Santa Cruz, 9Washington University in St. Louis Corresponding Author: Cynthia B. Phillips Carl Sagan Center for the Study of Life in the Universe SETI Institute 515 N. Whisman Rd. Mountain View, CA 94043 [email protected] 650-810-0230 1. Introduction Data from the Galileo spacecraft revealed that Europa's icy surface likely hides a global subsurface ocean with a volume nearly three times that of Earth's oceans. The existence of liquid water in the outer solar system was once thought a remote possibility, but the combination of geological, gravitational, and magnetic field observations and theory make it appear likely that liquid water exists beneath Europa's icy surface. It is now recognized that oceans may exist within many large icy moons and potentially even within icy dwarf planets, but Europa's inferred thin ice shell, potentially active surface- ocean and ocean-silicate mantle exchange, and chemical resources from surface irradiation elevate its priority for astrobiological exploration. A Europa mission is the first step in understanding the potential for icy satellites as abodes for life. Many unanswered questions remain following the Galileo mission. How thick is the ice shell? Is Europa currently geologically active? How does the ocean interact with the ice shell and with the underlying rocky layer? What is the composition of Europa’s surface and ocean? Are there organic or inorganic biosignatures? These questions can only be answered by a new mission to Europa and the Jupiter system. -
Securing Japan an Assessment of Japan´S Strategy for Space
Full Report Securing Japan An assessment of Japan´s strategy for space Report: Title: “ESPI Report 74 - Securing Japan - Full Report” Published: July 2020 ISSN: 2218-0931 (print) • 2076-6688 (online) Editor and publisher: European Space Policy Institute (ESPI) Schwarzenbergplatz 6 • 1030 Vienna • Austria Phone: +43 1 718 11 18 -0 E-Mail: [email protected] Website: www.espi.or.at Rights reserved - No part of this report may be reproduced or transmitted in any form or for any purpose without permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “ESPI Report 74 - Securing Japan - Full Report, July 2020. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, incidental or consequential, resulting from the information contained in this publication. Design: copylot.at Cover page picture credit: European Space Agency (ESA) TABLE OF CONTENT 1 INTRODUCTION ............................................................................................................................. 1 1.1 Background and rationales ............................................................................................................. 1 1.2 Objectives of the Study ................................................................................................................... 2 1.3 Methodology -
In Situ Exploration of the Giant Planets Olivier Mousis, David H
In situ Exploration of the Giant Planets Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, Stas Barabash, Michel Blanc, T. Cavalié, Athena Coustenis, Magali Deleuil, et al. To cite this version: Olivier Mousis, David H. Atkinson, Richard Ambrosi, Sushil Atreya, Don Banfield, et al.. In situ Exploration of the Giant Planets. 2019. hal-02282409 HAL Id: hal-02282409 https://hal.archives-ouvertes.fr/hal-02282409 Submitted on 2 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. In Situ Exploration of the Giant Planets A White Paper Submitted to ESA’s Voyage 2050 Call arXiv:1908.00917v1 [astro-ph.EP] 31 Jul 2019 Olivier Mousis Contact Person: Aix Marseille Université, CNRS, LAM, Marseille, France ([email protected]) July 31, 2019 WHITE PAPER RESPONSE TO ESA CALL FOR VOYAGE 2050 SCIENCE THEME In Situ Exploration of the Giant Planets Abstract Remote sensing observations suffer significant limitations when used to study the bulk atmospheric composition of the giant planets of our solar system. This impacts our knowledge of the formation of these planets and the physics of their atmospheres. A remarkable example of the superiority of in situ probe measurements was illustrated by the exploration of Jupiter, where key measurements such as the determination of the noble gases’ abundances and the precise measurement of the helium mixing ratio were only made available through in situ measurements by the Galileo probe.