Programme Book
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Daguerreian Annual 1990-2015: a Complete Index of Subjects
Daguerreian Annual 1990–2015: A Complete Index of Subjects & Daguerreotypes Illustrated Subject / Year:Page Version 75 Mark S. Johnson Editor of The Daguerreian Annual, 1997–2015 © 2018 Mark S. Johnson Mark Johnson’s contact: [email protected] This index is a work in progress, and I’m certain there are errors. Updated versions will be released so user feedback is encouraged. If you would like to suggest possible additions or corrections, send the text in the body of an email, formatted as “Subject / year:page” To Use A) Using Adobe Reader, this PDF can be quickly scrolled alphabetically by sliding the small box in the window’s vertical scroll bar. - or - B) PDF’s can also be word-searched, as shown in Figure 1. Many index citations contain keywords so trying a word search will often find other instances. Then, clicking these icons Figure 1 Type the word(s) to will take you to another in- be searched in this Adobe Reader Window stance of that word, either box. before or after. If you do not own the Daguerreian Annual this index refers you to, we may be able to help. Contact us at: [email protected] A Acuna, Patricia 2013: 281 1996: 183 Adams, Soloman; microscopic a’Beckett, Mr. Justice (judge) Adam, Hans Christian d’types 1995: 176 1995: 194 2002/2003: 287 [J. A. Whipple] Abbot, Charles G.; Sec. of Smithso- Adams & Co. Express Banking; 2015: 259 [ltr. in Boston Daily nian Institution deposit slip w/ d’type engraving Evening Transcript, 1/7/1847] 2015: 149–151 [letters re Fitz] 2014: 50–51 Adams, Zabdiel Boylston Abbott, J. -
New Major and Trace Element Data from Acapulcoite-Lodranite Clan
52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 1307.pdf New Major and Trace Element Data from Acapulcoite-Lodranite Clan Meteorites: Evidence for Melt-Rock Reaction Events and Early Collisional Fragmentation of the Parent Body Michael P. Lucas1, Nick Dygert1, Nathaniel R. Miller2, and Harry Y. McSween1, 1Department of Earth & Planetary Sciences, University of Tennessee, Knoxville, [email protected], 2Department of Geological Sciences, Univer- sity of Texas at Austin. Introduction: New major and trace element data illumi- patterns exhibit negative Eu anomalies. REE patterns are nate the magmatic and thermal evolution of the acapul- generally consistent among the three groups, however coite-lodranite parent body (ALPB). We observe major comparison of calculated equilibrium melts for acapulco- and trace element disequilibrium in the acapulcoite and ite and transitional cpx and opx demonstrates disequilib- transitional groups that provide evidence for melt infil- rium partitioning in those samples, especially for light- tration and melt-rock reaction processes. In lodranites, REEs in cpx. In contrast, lodranites are in apparent trace which represent sources of the infiltrating melts, we ob- element equilibrium (Fig 1b). They are depleted in serve rapid cooling from high temperatures (hereafter REE+Y relative to acapulcoite-transitional samples in temps), consistent with collisional fragmentation of the cpx (Fig. 1a), and display consistent REE abundances parent body during differentiation. except NWA 5488, which -
Hf–W Thermochronometry: II. Accretion and Thermal History of the Acapulcoite–Lodranite Parent Body
Earth and Planetary Science Letters 284 (2009) 168–178 Contents lists available at ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Hf–W thermochronometry: II. Accretion and thermal history of the acapulcoite–lodranite parent body Mathieu Touboul a,⁎, Thorsten Kleine a, Bernard Bourdon a, James A. Van Orman b, Colin Maden a, Jutta Zipfel c a Institute of Isotope Geochemistry and Mineral Resources, ETH Zurich, Clausiusstrasse 25, 8092 Zurich, Switzerland b Department of Geological Sciences, Case Western Reserve University, Cleveland, OH, USA c Forschungsinstitut und Naturmuseum Senckenberg, Frankfurt am Main, Germany article info abstract Article history: Acapulcoites and lodranites are highly metamorphosed to partially molten meteorites with mineral and bulk Received 11 November 2008 compositions similar to those of ordinary chondrites. These properties place the acapulcoites and lodranites Received in revised form 8 April 2009 between the unmelted chondrites and the differentiated meteorites and as such acapulcoites–lodranites are Accepted 9 April 2009 of special interest for understanding the initial stages of asteroid differentiation as well as the role of 26Al Available online 3 June 2009 heating in the thermal history of asteroids. To constrain the accretion timescale and thermal history of the Editor: R.W. Carlson acapulcoite–lodranite parent body, and to compare these results to the thermal histories of other meteorite parent bodies, the Hf–W system was applied to several acapulcoites and lodranites. Acapulcoites Dhofar 125 Keywords: – Δ chronology and NWA 2775 and lodranite NWA 2627 have indistinguishable Hf W ages of tCAI =5.2±0.9 Ma and Δ isochron tCAI =5.7±1.0 Ma, corresponding to absolute ages of 4563.1±0.8 Ma and 4562.6±0.9 Ma. -
L RES~ARCH Coljncll ·
NA~IOf\i'At ACADEMIES OF SCIENCE AND ENGiNEERING 7 ·.· ·.·. : NATIONAL RES~ARCH ColJNCll · of the UNITED STATES OF AMERICA UNITED• STATES NATIONAL COMMITTEEI . International Union of Radio Sden<:e Nationa.1 Radio Science Meeting 13-15 January 1982 · f l··.. ·· Sponsored by USNC/URSI in cooperation with r Institute of Electrical and Electronics Engineers University of· Colorado Boulder, Colorado U.S.A. ~· 1' National Radio Science Meeting 13-15 January 19 82 Condensed Technical Program TUESDAY, 12 JANUARY 0900 CCIR U.S. Study Group 5 OT 8-8 CCIR U.S. Study ,Gr.oup 6 Radio Building 2000-2400 USNC/URSI Meeting Broker Inn WEDNESDAY, 13 JANUARY 0900-1200 A-1 Time Domai~ 1-ieasurements CRl-42 B-1 Scattering CR2-28 B-2 Electromagnetic Theory CR2-28 C-1 Topics in Information Theory CR0-30 F-1 Propagation Theory and Models CR2-26 J-1 Millimeter-Wave Astronomy UMC Ballroom 1330-1700 A-2 Microwave/Millimeter Wave Measurements CRl-42 B-3 Antenna Theory and Practice CR2-28 B-4 Inverse Scattering CR2-6 C-2 Digital HF: Equaltz ation and Reiated CR0-30 Techniques E-1 EM Noise in the Sea CRl-40 F-2 Ground-Based Remote Sensing CR2-26 H-1 VLF-ELF Wave Injection Into the CRl-46 Magnetosphere J-2 Very Long Baseline Interferometry UMC 157 1700 Commission A Business Meeting CRl-42 Commission C Business Meeting CR0-30 Commission E Business Meeting CRl-40 Commission F Business Meeting CR2-26 Commission H Business Meeting CRl-46 1800-2000 Reception Engineering Center 2000-2200 IEEE Wave Propagation Standards Committee CRl-46 TH.URSDAY, 14 JANUARY 0830-1200 A-3 -
USGS Open-File Report 2005-1190, Table 1
TABLE 1 GEOLOGIC FIELD-TRAINING OF NASA ASTRONAUTS BETWEEN JANUARY 1963 AND NOVEMBER 1972 The following is a year-by-year listing of the astronaut geologic field training trips planned and led by personnel from the U.S. Geological Survey’s Branches of Astrogeology and Surface Planetary Exploration, in collaboration with the Geology Group at the Manned Spacecraft Center, Houston, Texas at the request of NASA between January 1963 and November 1972. Regional geologic experts from the U.S. Geological Survey and other governmental organizations and universities s also played vital roles in these exercises. [The early training (between 1963 and 1967) involved a rather large contingent of astronauts from NASA groups 1, 2, and 3. For another listing of the astronaut geologic training trips and exercises, including all attending and the general purposed of the exercise, the reader is referred to the following website containing a contribution by William Phinney (Phinney, book submitted to NASA/JSC; also http://www.hq.nasa.gov/office/pao/History/alsj/ap-geotrips.pdf).] 1963 16-18 January 1963: Meteor Crater and San Francisco Volcanic Field near Flagstaff, Arizona (9 astronauts). Among the nine astronaut trainees in Flagstaff for that initial astronaut geologic training exercise was Neil Armstrong--who would become the first man to step foot on the Moon during the historic Apollo 11 mission in July 1969! The other astronauts present included Frank Borman (Apollo 8), Charles "Pete" Conrad (Apollo 12), James Lovell (Apollo 8 and the near-tragic Apollo 13), James McDivitt, Elliot See (killed later in a plane crash), Thomas Stafford (Apollo 10), Edward White (later killed in the tragic Apollo 1 fire at Cape Canaveral), and John Young (Apollo 16). -
Small Spacecraft Programs
Planetary Science Deep Space SmallSat Studies Small Spacecraft Programs Carolyn Mercer Program Officer, PSDS3 Program Executive, SIMPLEx NASA Glenn Research Center Briefing to the Mars Exploration Program Analysis Group (MEPAG) April 4, 2018 Crystal City, VA NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the 1 California Institute of Technology. SMD CubeSat/SmallSat Approach Planetary Science Deep Space SmallSat Studies National Academies Report (2016) concluded that CubeSats have proven their ability to produce high- value science: • Useful as targeted investigations to augment the capabilities of larger missions • Useful to make highly-specific measurements • Constellations of 10-100 CubeSat/SmallSat spacecraft have the potential to enable transformational science SMD is developing a directorate-wide approach to: • Identify high-priority science objectives in each discipline that can be addressed with CubeSats/SmallSats • Manage program with appropriate cost and risk • Establish a multi-discipline approach and collaboration that helps science teams learn from experiences and grow capability, while avoiding unnecessary duplication • Leverage and partner with a growing commercial sector to collaboratively drive instrument and sensor innovation 2 PLANETARY SCIENCE DEEP SPACE SMALLSAT -
The Futurist Moment : Avant-Garde, Avant Guerre, and the Language of Rupture
MARJORIE PERLOFF Avant-Garde, Avant Guerre, and the Language of Rupture THE UNIVERSITY OF CHICAGO PRESS CHICAGO AND LONDON FUTURIST Marjorie Perloff is professor of English and comparative literature at Stanford University. She is the author of many articles and books, including The Dance of the Intellect: Studies in the Poetry of the Pound Tradition and The Poetics of Indeterminacy: Rimbaud to Cage. Published with the assistance of the J. Paul Getty Trust Permission to quote from the following sources is gratefully acknowledged: Ezra Pound, Personae. Copyright 1926 by Ezra Pound. Used by permission of New Directions Publishing Corp. Ezra Pound, Collected Early Poems. Copyright 1976 by the Trustees of the Ezra Pound Literary Property Trust. All rights reserved. Used by permission of New Directions Publishing Corp. Ezra Pound, The Cantos of Ezra Pound. Copyright 1934, 1948, 1956 by Ezra Pound. Used by permission of New Directions Publishing Corp. Blaise Cendrars, Selected Writings. Copyright 1962, 1966 by Walter Albert. Used by permission of New Directions Publishing Corp. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 1986 by The University of Chicago All rights reserved. Published 1986 Printed in the United States of America 95 94 93 92 91 90 89 88 87 86 54321 Library of Congress Cataloging-in-Publication Data Perloff, Marjorie. The futurist moment. Bibliography: p. Includes index. 1. Futurism. 2. Arts, Modern—20th century. I. Title. NX600.F8P46 1986 700'. 94 86-3147 ISBN 0-226-65731-0 For DAVID ANTIN CONTENTS List of Illustrations ix Abbreviations xiii Preface xvii 1. -
Ahuna Mons on Ceres 29 July 2019
Image: Ahuna Mons on Ceres 29 July 2019 More recently, a study of Dawn data led by ESA research fellow Ottaviano Ruesch and Antonio Genova (Sapienza Università di Roma), published in Nature Geoscience in June, suggests that a briny, muddy 'slurry' exists below Ceres' surface, surging upwards towards and through the crust to create Ahuna Mons. Another recent study, led by Javier Ruiz of Universidad Complutense de Madrid and published in Nature Astronomy in July, also indicates that the dwarf planet has a surprisingly dynamic geology. Ceres was also the focus of an earlier study by Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA ESA's Herschel space observatory, which detected water vapour around the dwarf planet. Published in Nature in 2014, the result provided a strong indication that Ceres has ice on or near its surface. This image, based on observations from NASA's Dawn confirmed Ceres' icy crust via direct Dawn spacecraft, shows the largest mountain on observation in 2016, however, the contribution of the dwarf planet Ceres. the ice deposits to Ceres' exosphere turned out to be much lower than that inferred from the Herschel Dawn was the first mission to orbit an object in the observations. asteroid belt between Mars and Jupiter, and spent time at both large asteroid Vesta and dwarf planet The perspective view depicted in this image uses Ceres. Ceres is one of just five recognised dwarf enhanced-color combined images taken using blue planets in the Solar System (Pluto being another). (440 nm), green (750 nm), and infrared (960 nm) Dawn entered orbit around this rocky world on 6 filters, with a resolution of 35 m/pixel. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
Asteroid Family Ages. 2015. Icarus 257, 275-289
Icarus 257 (2015) 275–289 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Asteroid family ages ⇑ Federica Spoto a,c, , Andrea Milani a, Zoran Knezˇevic´ b a Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy b Astronomical Observatory, Volgina 7, 11060 Belgrade 38, Serbia c SpaceDyS srl, Via Mario Giuntini 63, 56023 Navacchio di Cascina, Italy article info abstract Article history: A new family classification, based on a catalog of proper elements with 384,000 numbered asteroids Received 6 December 2014 and on new methods is available. For the 45 dynamical families with >250 members identified in this Revised 27 April 2015 classification, we present an attempt to obtain statistically significant ages: we succeeded in computing Accepted 30 April 2015 ages for 37 collisional families. Available online 14 May 2015 We used a rigorous method, including a least squares fit of the two sides of a V-shape plot in the proper semimajor axis, inverse diameter plane to determine the corresponding slopes, an advanced error model Keywords: for the uncertainties of asteroid diameters, an iterative outlier rejection scheme and quality control. The Asteroids best available Yarkovsky measurement was used to estimate a calibration of the Yarkovsky effect for each Asteroids, dynamics Impact processes family. The results are presented separately for the families originated in fragmentation or cratering events, for the young, compact families and for the truncated, one-sided families. For all the computed ages the corresponding uncertainties are provided, and the results are discussed and compared with the literature. The ages of several families have been estimated for the first time, in other cases the accu- racy has been improved. -
Exep Science Plan Appendix (SPA) (This Document)
ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 1 of 61 Created By: David A. Breda Date Program TDEM System Engineer Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Nick Siegler Date Program Chief Technologist Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology Concurred By: Dr. Gary Blackwood Date Program Manager Exoplanet Exploration Program NASA/Jet Propulsion Laboratory California Institute of Technology EXOPDr.LANET Douglas Hudgins E XPLORATION PROGRAMDate Program Scientist Exoplanet Exploration Program ScienceScience Plan Mission DirectorateAppendix NASA Headquarters Karl Stapelfeldt, Program Chief Scientist Eric Mamajek, Deputy Program Chief Scientist Exoplanet Exploration Program JPL CL#19-0790 JPL Document No: 1735632 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 2 of 61 Approved by: Dr. Gary Blackwood Date Program Manager, Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory Dr. Douglas Hudgins Date Program Scientist Exoplanet Exploration Program Science Mission Directorate NASA Headquarters Created by: Dr. Karl Stapelfeldt Chief Program Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology Dr. Eric Mamajek Deputy Program Chief Scientist Exoplanet Exploration Program Office NASA/Jet Propulsion Laboratory California Institute of Technology This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. © 2018 California Institute of Technology. Government sponsorship acknowledged. Exoplanet Exploration Program JPL CL#19-0790 ExEP Science Plan, Rev A JPL D: 1735632 Release Date: February 15, 2019 Page 3 of 61 Table of Contents 1. -
New Studies Provide Unexpected Insights Into Dwarf Planet Ceres 1 September 2016
New studies provide unexpected insights into dwarf planet Ceres 1 September 2016 Mons. The dome-shaped mountain has an elliptical base and a concave top, as well as other properties that indicate cryovolcanism. The authors applied models to determine the age of Ahuna Mons, finding it to have formed after the craters surrounding it, which suggests that it came into existence relatively recently. There is no evidence for compressional tectonism, nor for erosional features, the authors say; it appears that extrusion is a main driver behind the formation of Ahuna Mons. Although the exact material driving the cryovolcano cannot be determined without further data, the authors propose that chlorine salts, which have been previously detected in a different region of Ceres, could have been present with water ice below Ceres' surface and driven the chemical activity that formed Ahuna Mons. In a second study, Jean-Philippe Combe et al. A high resolution Dawn framing camera image of Ahuna describe the detection of water ice - exposed on the Mons. Image width is 30 km. Credit: NASA/JPL- surface of Ceres. The dwarf planet was known to Caltech/UCLA/MPS/DLR/IDA contain water ice, but water ice is also expected to be unstable on its surface, so scientists were unsure whether it could be detected there. They used the Visible and InfraRed (VIR) mapping Six studies published today in Science highlight spectrometer onboard the Dawn spacecraft to new and unexpected insights into Ceres, a dwarf analyze a highly reflective zone in a young crater planet and the largest object in the asteroid belt called Oxo, on five occasions during 2015.