Explore Science

Total Page:16

File Type:pdf, Size:1020Kb

Explore Science SMALL SATELLITE MISSIONS FOR PLANETARY SCIENCE Carolyn R. Mercer, Ph.D. Program Executive, Small Innovative Missions for Planetary Exploration (SIMPLEx) AIAA Small Spacecraft Missions Conference August 4, 2019 Logan, Utah Apollo 15 Particles and Fields Subsatellite (PFS-1) • 35 kg spacecraft flown with Apollo 15 in 1971 • Orbited the Moon for 6 months • Science mission: • Measured the strength and direction of interplanetary and terrestrial magnetic fields • Detected variations in the lunar gravity field • Measured proton and electron flux 2 NASA SCIENCE AN INTEGRATED PROGRAM Helio- Earth physics Science Planetary Astrophysics Science Joint Agency Satellite Division 4 Small Spacecraft for Planetary Science Astrobiology Science and Technology Instrument Development (ASTID) 2008 • O/OREOS (2010 launch) Small Innovative Missions for Planetary Exploration (SIMPLEx-1) 2014 • LunaH-Map, Q-PACE Directed and Partnered Secondary Payloads • MarCO (2018 launch) • LICIA Cube (2021) – potential ASI contribution Planetary Science Deep Space SmallSat Studies (PSDS3) 2017 • 19 Studies – Presented March 2018 at LPSC Small Innovative Missions for Planetary Exploration (SIMPLEx-2) 2018 • Janus, Escapade, Lunar Trailblazer • Next proposals due no earlier than June 2020 5 Planetary Science Deep Space SmallSat Studies Solicitation requested: • Concepts for planetary science missions • 180 kg total spacecraft mass limit • $100M cost cap • No constraints on rides, infrastructure, etc. Solicitation sought answers to: • Can deep space missions be credibly done using small spacecraft? • What science might be accomplished? • What technology development is needed? • What are credible mission costs? Note: This solicitation is closed and not expected to be repeated 6 Planetary Science Deep Space SmallSat Studies 19 Studies Funded Maryland of • Study destinations were to Mars, Venus, the Moon, Park the Outer Planets, and small Solar System bodies Hewagama Tilak University College PrOVE Conclusions: • Excellent planetary science can credibly be done using small spacecraft • Critical enabling technology includes high delta-V propulsion, high bandwidth communications, low- Petro volume power systems, radiation-tolerant flight Space Flight Center computers, and aerocapture • Small spacecraft can carry large price tags. Several Noah Edward Noah Edward NASA Goddard concepts had difficulty staying within the $100M cap MiLuV https://www.hou.usra.edu/meetings/smallsat2018/smallsat_program.pdf 7 Planetary Science Icy Worlds and Outer Planets Deep Space Robert Ebert, JUpiter MagnetosPheric boundary SmallSat Studies ExploreR (JUMPER) Kunio Sayanagi, SNAP: Small Next-generation Atmospheric Probe Mars Robert Lillis, Mars Ion and Sputtering Escape Network Small Bodies (MISEN) Beau Bierhaus, Ross (formerly CAESAR) Anthony Colaprete, Aeolus - to study the thermal and wind environment of Mars Jeffrey Plescia, APEX: Asteroid Probe Experiment Luca Montabone, Mars Aerosol Tracker (MAT) Tilak Hewagama, Primitive Object Volatile Explorer (PrOVE) Michael Collier, PRISM: Phobos Regolith Ion Sample Mission The Moon David Minton, Chariot to the Moons of Mars Suzanne Romaine, CubeSat X-ray Telescope (CubeX) Venus Charles Hibbitts, Lunar Water Assessment, Valeria Cottini, CUVE - Cubesat UV Experiment Transportation, and Resource Mission (WATER) Christophe Sotin, Cupid's Arrow Noah Petro, Mini Lunar Volatiles (MiLUV) Mission Attila Komjathy, Venus Airglow Monitoring Orbiter for Timothy Stubbs, Bi-sat Observations of the Lunar Seismicity (VAMOS) Atmosphere above Swirls (BOLAS) Tibor Kremic, Seismic and Atmospheric Exploration of Venus David Draper, Irregular Mare Patch Exploration Lander (SAEVe) (IMPEL) 8 Planetary Science Icy Worlds and Outer Planets Deep Space Robert Ebert, JUpiter MagnetosPheric boundary SmallSat Studies ExploreR (JUMPER) Kunio Sayanagi, SNAP: Small Next-generation Atmospheric Probe Mars Robert Lillis, Mars Ion and Sputtering Escape Network Small Bodies (MISEN) Beau Bierhaus, Ross (formerly CAESAR) Anthony Colaprete, Aeolus - to study the thermal and wind environment of Mars Jeffrey Plescia, APEX: Asteroid Probe Experiment Luca Montabone, Mars Aerosol Tracker (MAT) Tilak Hewagama, Primitive Object Volatile Explorer (PrOVE) Michael Collier, PRISM: Phobos Regolith Ion Sample Mission The Moon David Minton, Chariot to the Moons of Mars Suzanne Romaine, CubeSat X-ray Telescope (CubeX) Venus Charles Hibbitts, Lunar Water Assessment, Valeria Cottini, CUVE - Cubesat UV Experiment Transportation, and Resource Mission (WATER) Christophe Sotin, Cupid's Arrow Noah Petro, Mini Lunar Volatiles (MiLUV) Mission Attila Komjathy, Venus Airglow Monitoring Orbiter for Timothy Stubbs, Bi-sat Observations of the Lunar Seismicity (VAMOS) Atmosphere above Swirls (BOLAS) Tibor Kremic, Seismic and Atmospheric Exploration of Venus David Draper, Irregular Mare Patch Exploration Lander (SAEVe) (IMPEL) Low Delta-V missions: NEO fly-by, and/or rideshare direct to destination High Delta-V missions: use electric propulsion 9 Small Innovative Missions for Planetary Exploration (SIMPLEx) Solicitation Requirements • Missions to conduct planetary science • 180 kg total spacecraft mass limit • $15M - $55M cost cap • Must ride as a secondary payload on a specific launch opportunity Schedule • First proposals were due July 2018 • First selections were made June 2019 • Next proposals will be due no earlier than June 2020 Up to 50% of the total mission cost may be from non-U.S. contributions 10 Small Innovative Missions for Planetary Exploration (SIMPLEx) ESCAPADE Escape, Plasma and Acceleration Dynamics Explorers 11 Small Spacecraft Selection for Planetary Science: Notional Schedule Launch minus 4-5 years Solicit small spacecraft for • Select and award ~1 year Phase A/B specific launch design studies opportunities • Expected product is PDR-level design • Launch trajectory is known Launch minus 3-4 years Phase A/B design studies • Launch Vehicle procurement includes and Technology readiness ESPA ring and/or CubeSat dispenser demonstration options based on selections Launch minus 2-3 years Select secondary mission • Selection determined in coordination in accordance with with launch vehicle selection expected launch capacity • Provided for Phase C design/build: More Procure Launch Vehicle for detailed Launch Vehicle trajectory, Primary and Secondary environments, and interfaces 12 with us 13.
Recommended publications
  • Small Spacecraft Programs
    Planetary Science Deep Space SmallSat Studies Small Spacecraft Programs Carolyn Mercer Program Officer, PSDS3 Program Executive, SIMPLEx NASA Glenn Research Center Briefing to the Mars Exploration Program Analysis Group (MEPAG) April 4, 2018 Crystal City, VA NOTE ADDED BY JPL WEBMASTER: This content has not been approved or adopted by NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the 1 California Institute of Technology. SMD CubeSat/SmallSat Approach Planetary Science Deep Space SmallSat Studies National Academies Report (2016) concluded that CubeSats have proven their ability to produce high- value science: • Useful as targeted investigations to augment the capabilities of larger missions • Useful to make highly-specific measurements • Constellations of 10-100 CubeSat/SmallSat spacecraft have the potential to enable transformational science SMD is developing a directorate-wide approach to: • Identify high-priority science objectives in each discipline that can be addressed with CubeSats/SmallSats • Manage program with appropriate cost and risk • Establish a multi-discipline approach and collaboration that helps science teams learn from experiences and grow capability, while avoiding unnecessary duplication • Leverage and partner with a growing commercial sector to collaboratively drive instrument and sensor innovation 2 PLANETARY SCIENCE DEEP SPACE SMALLSAT
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Sistema De Evaluación De Aprendizajes Para Alumnos En Situación De Extraedad
    Estrategia Integral para la Mejora del Logro Educativo Alianza por la Calidad de la Educación Sistema de evaluación de aprendizajes para alumnos en situación de extraedad Colección Hacia el Logro Educativo Programa para el Fortalecimiento del Logro Educativo Sistema de evaluación de aprendizajes para alumnos en situación de extraedad Colección Hacia el Logro Educativo Sistema de evaluación de aprendizajes para alumnos en situación de extraedad,es una publicación de la Dirección General de Desarrollo de la Gestión e Innovación Educativa de la Subsecretaría de Educación Básica, realizada a través del Proyecto para Atender a la Población en Situación de Extraedad, por encargo a la Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura (OEI) y con la colaboración del Centro de Estudios Educativos (CEE). Alonso Lujambio Secretario de Educación Pública José Fernando González Sánchez Subsecretario de Educación Básica Coordinación general Alma Rosa Cuervo González Juan Martín Martínez Becerra Cuidado de la edición Director General de Desarrollo de la Gestión Esteban Manteca Aguirre e Innovación Educativa Jorge Humberto Miranda Vázquez Tonatiuh Arroyo Cerezo Ernesto Adolfo Ponce Rodríguez Coordinador General de Innovación Colaboradores de la Ofi cina de la Organización de Estados Iberoamericanos para la Educación, la Ciencia y la Cultura y autores de esta obra Lilia Dalila López Salmorán Coordinadora Nacional para el Fortalecimiento Coordinación del Logro Educativo Carlos Niembro Acosta Colaboradores Teresa Zamudio Gisela Santiago Benítez Maura Pompa Mancilla D.R. © Secretaría de Educación Pública, 2011 Diana Gómez Mayén Argentina 28 Col. Centro Histórico C.P. 06020, México, D.F. ISBN: 978-607-8017-53-9 Diseño y formación Constantine Editores, S.
    [Show full text]
  • The Rings and Inner Moons of Uranus and Neptune: Recent Advances and Open Questions
    Workshop on the Study of the Ice Giant Planets (2014) 2031.pdf THE RINGS AND INNER MOONS OF URANUS AND NEPTUNE: RECENT ADVANCES AND OPEN QUESTIONS. Mark R. Showalter1, 1SETI Institute (189 Bernardo Avenue, Mountain View, CA 94043, mshowal- [email protected]! ). The legacy of the Voyager mission still dominates patterns or “modes” seem to require ongoing perturba- our knowledge of the Uranus and Neptune ring-moon tions. It has long been hypothesized that numerous systems. That legacy includes the first clear images of small, unseen ring-moons are responsible, just as the nine narrow, dense Uranian rings and of the ring- Ophelia and Cordelia “shepherd” ring ε. However, arcs of Neptune. Voyager’s cameras also first revealed none of the missing moons were seen by Voyager, sug- eleven small, inner moons at Uranus and six at Nep- gesting that they must be quite small. Furthermore, the tune. The interplay between these rings and moons absence of moons in most of the gaps of Saturn’s rings, continues to raise fundamental dynamical questions; after a decade-long search by Cassini’s cameras, sug- each moon and each ring contributes a piece of the gests that confinement mechanisms other than shep- story of how these systems formed and evolved. herding might be viable. However, the details of these Nevertheless, Earth-based observations have pro- processes are unknown. vided and continue to provide invaluable new insights The outermost µ ring of Uranus shares its orbit into the behavior of these systems. Our most detailed with the tiny moon Mab. Keck and Hubble images knowledge of the rings’ geometry has come from spanning the visual and near-infrared reveal that this Earth-based stellar occultations; one fortuitous stellar ring is distinctly blue, unlike any other ring in the solar alignment revealed the moon Larissa well before Voy- system except one—Saturn’s E ring.
    [Show full text]
  • Why Sex? Now Shown That in Water Fleas, Recombination Does Lead to Fewer Deleterious Mutations
    PERSPECTIVES EVOLUTION It is assumed that most organisms have sex because the resulting genetic recombination allows Darwinian selection to work better. It is Why Sex? now shown that in water fleas, recombination does lead to fewer deleterious mutations. Rasmus Nielsen hy sex? This has been one of the most sexual reproduction. Additionally, fundamental questions in evolution- the best explanations regarding dele- Wary biology. In many species, males terious mutations rely on strong do not provide parental care to the offspring. assumptions regarding the distribu- Clearly, the rate of reproduction could be tion of selective effects (3), and there increased if all individuals were born as females may be other factors favoring and reproduced asexually without the need to sex, such as increased resistance to mate with a male (parthenogenetic reproduc- pathogens (4). An observed genomic tion). Parthenogenetically reproducing females correlation between the rate of recom- arising in a sexual population should have a bination and variability within species twofold fitness advantage because they, on aver- (5) suggests that there is an interaction age, leave twice as many gene copies in the next between selection and recombination, generation. Nonetheless, sexual reproduction is but a direct difference between sexual ubiquitous in higher organisms. Why do all these and asexual populations has been hard species bother to have males, if males are associ- to establish. ated with a reduction in fitness? The main solu- However, the new study by Paland tion that population geneticists have proposed to and Lynch (1) provides direct empir- this conundrum is that sexual reproduction ical support for an excess accumula- allows genetic recombination, and that genetic tion of mutations in asexually repro- recombination is advantageous because it allows ducing populations compared to natural Darwinian selection to work more effi- sexual populations.
    [Show full text]
  • Formation of Regular Satellites from Ancient Massive Rings in the Solar
    REPORT model is needed, to explain at least the origin of the giant planets’ innermost satellites. Here, we consider a disk of solid material Formation of Regular Satellites around a planet, similar to Saturn’srings,where- in planetary tides prevent aggregation within the Roche radius rR (7) [supplementary text 1 (SM 1)]. from Ancient Massive Rings It is known that such a tidal disk will spread (8). Thus, the normalized disk lifetime can be de- in the Solar System. fined by tdisk = Mdisk/FTR,whereF is the mass flow through rR, TR is the orbital period at rR, 1 2,3 2 A. Crida * and S. Charnoz and Mdisk = pSrR is the disk’smass(S being the surface density). Using a prescription for the vis- When a planetary tidal disk—like Saturn’s rings—spreads beyond the Roche radius (inside cosity based on self-gravity and mutual colli- which planetary tides prevent aggregation), satellites form and migrate away. Here, we show sions (9), one finds that most regular satellites in the solar system probably formed in this way. According to our 2 (1) analytical model, when the spreading is slow, a retinue of satellites appear with masses increasing tdisk = 0.0425/D with distance to the Roche radius, in excellent agreement with Saturn’s, Uranus’, and Neptune’s satellite systems. This suggests that Uranus and Neptune used to have massive rings that where D = Mdisk/Mp and Mp is the planet’s disappeared to give birth to most of their regular satellites. When the spreading is fast, only mass (SM 2.2.1).
    [Show full text]
  • Navy Space and Astronautics Orientation. INSTITUTION Bureau of Naval Personnel, Washington, D
    DOCUMENT RESUME ED 070 566 SE 013 889 AUTHOR Herron, R. G. TITLE Navy Space and Astronautics Orientation. INSTITUTION Bureau of Naval Personnel, Washington, D. C.; Naval Personnel Program Support Activity, Washington, D. C. REPORT NO NAVPERS- 10488 PUB DATE 67 NOTE 235p. '2 EDRS PRICE MF-$0.65 HC-$9.87 DESCRIPTORS Aerospace Education; AerospaceTechnology; *Instructional Materials; Military Science; *Military Training; Navigatioti; *Post Secondary Education; *Space Sciences; *Supplementary Textbooks; Textbooks ABSTRACT Fundamental concepts of the spatial environment, technologies, and applications are presented in this manual prepared for senior officers and key civilian employees. Following basic information on the atmosphere, solar system, and intergalactic space, a detailed review is included of astrodynamics, rocket propulsion, bioastronautics, auxiliary spacecraft survival systems, and atmospheric entry.Subsequentlythere is an analysis of naval space facilities, and satellite applications, especially those of naval interests, are discussed with a background of launch techniques, spatial data gathering, communications programs ,of)servation techniques, measurements by geodetic and navigation systems. Included is a description of space defense and future developments of both national and international space programs. Moreover, commercial systems are mentioned, such as the 85-pound Early Bird (Intelsat I) Intelsat II series, global Intelsat III series, and Soviet-made elMolnlyan satellites. The total of 29 men and one woman orbiting the earth In-1961-67 are tabulated in terms of their names, flight series, launching dates, orbit designations, or biting periods,. stand-up periods, and extra vehicular activity records. Besides numerous illustrations, a list ofsignificantspace launches and a glossary of special terms are included in the manual appendices along with two tables of frequencybanddesignation.
    [Show full text]
  • LUNAR T-Rex): IDENTIFYING RESOURCES on the MOON USING TETHERED SMALLSATS
    Developing a New Space Economy (2019) 5049.pdf LUNAR TETHERED RESOURCE EXPLORER (LUNAR T-REx): IDENTIFYING RESOURCES ON THE MOON USING TETHERED SMALLSATS. T. J. Stubbs1, M. E. Purucker1, J. D. Hudeck2, R. P. Hoyt3, B. K. Malphrus4, M. A. Mesarch1, M. Bakhtiari-nejad1, G. E. Cruz-Ortiz1, E. T. Stoneking1, T. E. Johnson2, D. J. Chai1, D. C. Folta1, and R. R. Vondrak1, 1NASA Goddard Space Flight Center, 2NASA Wallops Flight Facility, 3Tethers Unlimited, Inc., 4Morehead State University. Point of contact: [email protected] Introduction: On Earth, economically viable mineralization associated With large impact craters can often be identified by its magnetic signatures [1,2]. The magnetic field from these features decays With the inverse of distance, such that identification requires low altitude measurements. On the Moon, many of the large Nectarian-aged impact features have prominent magnetic features associated With their central peak regions [3]. It is possible that the signatures of economic mineralization could be iden- tified at the Moon With low altitude (<20 km) in situ magnetic field measurements. Tethered Architecture: However, low altitude lunar orbits (<50 km) tend to be unstable, such that without regular orbit maintenance maneuvers they last only a feW Weeks before impacting the Moon [4]. A mission surveying lunar magnetic fields Would require at least a feW months, if not more than a year. The Figure 1: A tethered lunar CubeSat mission. fuel mass burden for maintaining a low altitude orbit swirls. BOLAS consisted of tWo EPSA-class Small- is prohibitive, especially for SmallSats. Sats connected by a 25 km tether With the formation The Lunar Tethered Resource Explorer (Lunar T- center-of-mass in a “frozen” orbit, Which Was stable REx) team is studying the possibility of using tWo for at least a year and had a 30° inclination.
    [Show full text]
  • Disertaciones Astronómicas Boletín Número 47 De Efemérides Astronómicas 2 De Septiembre De 2020
    Disertaciones astronómicas Boletín Número 47 de efemérides astronómicas 2 de septiembre de 2020 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. Meteoros y sus diferentes manifestaciones. Imagen 1: Las diferencias entre meteoroide, meteoro y meteorito. Imagen https://www.researchgate.net/ Los ‘bólidos’ son meteoros que parecen más brillantes de lo normal. Una gran mayoría del material que orbita en el espacio exterior son pequeños trozos de piedra, hielo o metal de tamaño submilimétrico, o una combinación de estos materiales. Estos se conocen como micrometeoroides o simplemente polvo espacial. Estos diminutos fragmentos no pueden producir suficiente luz para ser vistos cuando se encuentran con la atmósfera y, sin embargo, contribuyen con muchas toneladas de material al peso de la Tierra cada año. A medida que el tamaño de estos objetos se acerca a un milímetro, comienzan a producir suficiente luz para ser vistos al entrar a la atmósfera superior como meteoros ordinarios. Debido a la velocidad a la que golpean la atmósfera de la Tierra, los fragmentos de más de 1 milímetro tienen la capacidad de producir un destello brillante cuando atraviesan los cielos. Estos meteoritos brillantes son lo que llamamos bolas de fuego y, a menudo, infunden temor y asombro a quienes los presencian. Las bolas de fuego ocurren todos los días en toda la Tierra. Sin embargo, para el individuo, son un espectáculo raro que se presencia muy pocas veces en la vida. Debe recordarse que las bolas de fuego también ocurren durante el día o en una noche nublada. También ocurren sobre el océano o sobre porciones de tierra deshabitadas.
    [Show full text]
  • Updates on Cupid's Arrow, a Small Satellite Concept To
    51st Lunar and Planetary Science Conference (2020) 2801.pdf UPDATES ON CUPID’S ARROW, A SMALL SATELLITE CONCEPT TO MEASURE NOBLE GASES IN VENUS’ ATMOSPHERE . C. Sotin1, G. Avice2, J. Baker1, A. Borner3, J. Feldman4, M.A. Gallis5, S. Madzunkov1, D. Nikolic1, J. Rabinovitch1. 1Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA, 2Institut de Physique du Globe de Paris, Paris, France, 3STC at NASA Ames Research Center, Moffett Field, CA, USA, 4NASA Ames Research Center, Moffett Field, CA, USA, 5Sandia National Labora- tories, Albuquerque, NM, USA. Introduction: Getting reliable measurements of ble gases concentrations and their isotope ratios below noble gases in Venus’ atmosphere with a Small Satel- the homopause. Cupid’s Arrow is an atmospheric lite mission concept is very challenging. However, if skimmer that would collect four atmospheric samples feasible it could change how we make this fundamental at high velocity and would have plenty of time (several geochemical measurement in planetary atmospheres hours to several days) to measure the abundances of and other gaseous environments (e.g., plumes emanat- noble gases and their isotopes once outside Venus at- ing from icy moons or dwarf planets) across the solar mosphere. It would then transmit the results to Earth. system. Venus poses the most urgent and nearby target The measurements would be made by a miniaturized for such measurements in order to fill in a key piece of quadrupole ion trap mass spectrometer (mQITMS) that the puzzle of Venus’ origin, evolution, and divergence has been developed at JPL. from Earth’s geological history.
    [Show full text]
  • A Roman Mythological Mystery: the Stories Behind the Naming of Our Planets
    1 Maddi Meyer Mr. Sitzmann World Civilizations 14 April 2017 A Roman Mythological Mystery: The Stories Behind the Naming of our Planets Have you ever wondered how the planets got their names? By comparing the characteristics and stories of gods with that of planets, the mystery behind the names of the planets will be unveiled. The mystery behind the naming of the planet Jupiter is quite simple: ancient Romans observed that Jupiter was the biggest planet and therefore was named after their god, Jupiter, because he is the king of all gods. Jupiter is also the god of lightning, storms, and the sky. On the massive planet of Jupiter, there is a gigantic hurricane storm that has lasted for at least 300 years. Also called the Great Red Spot, it appears red because of certain chemicals like sulfur and phosphorous in anomia crystals contained in Jupiter’s clouds. At the largest recorded diameter of the spot, it was three times Earth’s diameter. With Jupiter, the god, being a commander of storms and lightning, it is even more fitting that the planet with a giant storm on it should be named for the one who controls them. 1Others speculate that ancient Romans used to believe that when the red spot was visible, it meant that Jupiter was at battle with the god of war, Mars. The 1 Yost, George. "Roman Mythology." Interview by author. April 11, 2017. 2 gargantuan planet has a grand total of 63 moons, all of which are named for the god Jupiter’s past lovers and friends.
    [Show full text]
  • Technology Development for Planetary Science Missions
    Technology Development for Planetary Science Missions James Green NASA, Planetary Science Division July 13, 2017 NAS Planetary Decadal Mid-Term 1 Outline • PSD Response to Technology Development in the Planetary Decadal • Specific Topics to be Addressed as Requested: – Electric Power – Electric Propulsion forecasted ISP Improvement timeline versus mission needs – Planetary Relay Optical Comm Concepts and Implementation timeline • Detector/Instrumentation Development • Planetary Data System 1/29/16 2 Visions and Voyages “The committee unequivocally recommends that a substantial program of planetary exploration technology development should be reconstituted and carefully protected against all incursions that would deplete its resources. This program should be consistently funded at approximately 6 to 8 percent of the total NASA Planetary Science Division budget.” “The committee recommends that the Planetary Science Division’s technology program should accept the responsibility, and assign the required funds, to continue the development of the most important technology items through TRL 6.” Technology Investment Categories Spacecraft: Broad and Mission-Specific Instruments: Broad and Mission-Specific Mission Support: o Tools(technology analysis, mission analysis, technology development) o Facilities (necessary for technology development) o Processes (necessary for technology utilization) Management: o Studies o Planning, Documentation and Communication 4 PSD Technology Funding by Category FY16 Total = $243M (All) (Technologies only =
    [Show full text]