Blueprint Genetics Hyperphenylalaninemia Panel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide for Hyperphenylalaninemia
TM Guide For Hyperphenylalaninemia Laurie Bernstein, MS, RD, FADA Cindy Freehauf, RN, CGC Laurie Bernstein, MS, RD, FADA Fellow of the American Dietetic Association Assistant Professor- Department of Pediatrics Director, IMD Nutrition The Children's Hospital, Aurora CO Cindy Freehauf, RN, CGC Assistant Professor- Department of Pediatrics Clinical Coordinator, IMD Clinic The Children's Hospital, Aurora CO A special thank you to: Kathleen M. Martin, BS, BA for her enthusiasm for learning and excellent graphic skills. Intern, IMD Clinic The Children's Hospital, Aurora CO Second Edition Review Committee: Casey Burns, RD Janet A. Thomas, MD Metabolic Nutritionist Associate Professor, Pediatrics The Children's Hospital, Aurora CO Director, IMD Clinic The Children's Hospital, Aurora CO Sommer Myers, RD Metabolic Nutritionist Erica L. Wright, MS, CGC The Children's Hospital, Aurora CO Certified Genetic Counselor The Children's Hospital, Aurora CO Shannon L. Scrivner, MS, CGC Certified Genetic Counselor The Children's Hospital, Aurora CO Acknowledgments: Educational grant provided by Nutricia North America The Genetic Counseling Graduate Students of The University of Colorado at Denver and Health Sciences Center. TCH logo is a Licensed Trademark, all rights reserved. The Inherited Metabolic Clinic at The Children’s Hospital in Aurora, CO serves the Rocky Mountain Plains Region and at least 130 individuals with hyperphenylalaninemia (PKU). Children and families require a great deal of complex information, most often new and alien to their experience, in order to establish and maintain consistent and effective treatment. Our experience with the process of sharing such information with families motivated us develop this anticipatory guidance book with teaching aids. -
PDF Document Created by Pdffiller
Patient: 1234567843314948-COtGx0053 CLIA ID#: 11D2066426 Larry Hung, MD, Laboratory Director GxTM Carrier Screen Testing Report Patient Information Provider Information Specimen Patient Name Haley Papevies Provider Harbin Clinic Women's Accession ID 1234567843314948 Center Cartersville Date of Birth Apr 16, 1998 Sample ID COtGx0053XX Provider ID 1124488556 Age 19 Specimen Type Saliva Physician Vicki Yates Sex female Collection Date Jul 20, 2017 Ethnicity Report Date Aug 5, 2017 Test Ordered CF Patient Results: Negative - No Pathogenic or Likely-Pathogenic Variant(s) Detected Additional Comments This report is based on the analysis of CFTR gene included in the Carrier Screen. No known pathogenic or likely pathogenic variant(s) detected in the coding sequences of CFTR gene. Followup Recommendations Follow up with physicians for updated carrier screen information. The sequencing for CFTR gene was carried out with the other genes included in the Carrier Screen Testing (listed below). The analysis of the other genes in the Carrier Screen could be ordered through your physicians. Genes Tested Targeted regions for “Carrier Screen Testing” includes the exonic regions of the following genes: ABCC8, ABCD1, ABCD4, ACAD8, ACADM, ACADS, ACADSB, ACADVL, ACAT1, ACSF3, ACTA2, ACTC1, ADA, ADAMTS2, AGXT, AHCY, APC, APOB, ARG1, ASL, ASPA, ASS1, ATP7B, AUH, BCKDHA, BBS2, BCKDHB, BLM, BTD, CBS, COL3A1, COL4A3, CD320, CFTR, CLRN1, CPT1A, CPT2, CYP1B1, CYP21A2, DBT, DHCR7, DHDDS, DLD, DMD, DNAJC19, DSC2, DSG2, DSP, DUOX2, ETFA, ETFB, ETFDH, FAH, FANCC, FBN1, -
Supplement 1 Overview of Dystonia Genes
Supplement 1 Overview of genes that may cause dystonia in children and adolescents Gene (OMIM) Disease name/phenotype Mode of inheritance 1: (Formerly called) Primary dystonias (DYTs): TOR1A (605204) DYT1: Early-onset generalized AD primary torsion dystonia (PTD) TUBB4A (602662) DYT4: Whispering dystonia AD GCH1 (600225) DYT5: GTP-cyclohydrolase 1 AD deficiency THAP1 (609520) DYT6: Adolescent onset torsion AD dystonia, mixed type PNKD/MR1 (609023) DYT8: Paroxysmal non- AD kinesigenic dyskinesia SLC2A1 (138140) DYT9/18: Paroxysmal choreoathetosis with episodic AD ataxia and spasticity/GLUT1 deficiency syndrome-1 PRRT2 (614386) DYT10: Paroxysmal kinesigenic AD dyskinesia SGCE (604149) DYT11: Myoclonus-dystonia AD ATP1A3 (182350) DYT12: Rapid-onset dystonia AD parkinsonism PRKRA (603424) DYT16: Young-onset dystonia AR parkinsonism ANO3 (610110) DYT24: Primary focal dystonia AD GNAL (139312) DYT25: Primary torsion dystonia AD 2: Inborn errors of metabolism: GCDH (608801) Glutaric aciduria type 1 AR PCCA (232000) Propionic aciduria AR PCCB (232050) Propionic aciduria AR MUT (609058) Methylmalonic aciduria AR MMAA (607481) Cobalamin A deficiency AR MMAB (607568) Cobalamin B deficiency AR MMACHC (609831) Cobalamin C deficiency AR C2orf25 (611935) Cobalamin D deficiency AR MTRR (602568) Cobalamin E deficiency AR LMBRD1 (612625) Cobalamin F deficiency AR MTR (156570) Cobalamin G deficiency AR CBS (613381) Homocysteinuria AR PCBD (126090) Hyperphelaninemia variant D AR TH (191290) Tyrosine hydroxylase deficiency AR SPR (182125) Sepiaterine reductase -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen, -
Malignant Hyperphenylalaninemia Tetrahydrobiopterin (BH4) Phenylalanine
Pediat. Res. 13: 1 150-1 155 (1979) Dihydropterine reductase (DHPR) phenylketonuria malignant hyperphenylalaninemia tetrahydrobiopterin (BH4) phenylalanine Malignant Hyperphenylalaninemia-Clinical Features, Biochemical Findings, and Experience with Administration of Biopterins D. M. DANKS, P. SCHLESINGER, F. FIRGAIRA, R. G. H. COTTON. B. M. WATSON, H. REMBOLD. AND G. HENNINGS Genetics Research Unit, Royal Children S Hospital Research Foundation, and Department of Paediatrics, Universi1.y of Melbourne, Parkville, Australia (D. M. D., P. S., F. F.. R. G. H. C., B. M. W.) and Max Planck Institutfur Biochemie. Germany (H. R., G. H.) Summary has been attributed to defective production of neurotransmitters derived from hydroxylation of tyrosine and of tryptophan (3, 4). Four cases of malignant hyperphenylalaninemia (MHPA) are The results of treatment with L-dopa and 5-hydroxytryptophan described. Pretreatment serum phenylalanine levels were 1.5, 3.0, support this contention (2, 3. 7). 2.4, and 0.9 mmoles/l. Dihydropteridine reductase (DHPR) defi- Four patients with MHPA seen in Melbourne since 1963 are ciency was proven in one patient by assays on cultured fibroblastic presented. One patient has been shown to have DHPR deficiency cells and was presumed in her sibling and in another deceased and her sister is presumed to have died of this defect. Both parents patient whose parents' fibroblastic cells show approximately 50% of another baby had DHPR levels in the heterozygote range of normal enzyme activity. DHPR and phenylalanine hydroxylase suggesting DHPR deficiency as the cause of her death. The 4th deficiency were excluded by assays on liver obtained at autopsy in baby had neither PH or DHPR deficiency and defective BH4 the 4th patient. -
Identification of Ataxia-Associated Mtdna Mutations (M.4052T>C And
tapraid5/za3-mus/za3-mus/za300909/za32342d09g knepper1 Sϭ7 7/20/09 11:41 Art: 08-0574 ABSTRACT: The potential pathogenicity of two homoplasmic mtDNA point mu- tations, 9035TϾC and 4452TϾC, found in a family afflicted with maternally trans- mitted cognitive developmental delay, learning disability, and progressive ataxia was evaluated using transmitochondrial cybrids. We confirmed that the 4452TϾC transition in tRNAMet represented a polymorphism; however, 9035TϾC conversion in the ATP6 gene was responsible for a defective F0-ATPase. Accordingly, mutant cybrids had a reduced oligomycin-sensitive ATP hydrolyzing activity. They had less than half of the steady-state content of ATP and nearly an 8-fold higher basal level of reactive oxygen species (ROS). Mutant cybrids were unable to cope with addi- tional insults, i.e., glucose deprivation or tertiary-butyl hydroperoxide, and they succumbed to either apoptotic or necrotic cell death. Both of these outcomes were prevented by the antioxidants CoQ10 and vitamin E, suggesting that the abnormally high levels of ROS were the triggers of cell death. In conclusion, the principal metabolic defects, i.e., energy deficiency and ROS burden, resulted from the 9035TϾC mutation and could be responsible for the development of clinical symp- toms in this family. Furthermore, antioxidant therapy might prove helpful in the management of this disease. Muscle Nerve 39: 000–000, 2009 IDENTIFICATION OF ATAXIA-ASSOCIATED mtDNA MUTATIONS (m.4052T>C and m.9035T>C) AND EVALUATION OF THEIR PATHOGENICITY IN TRANSMITOCHONDRIAL CYBRIDS MARIANNA SIKORSKA, PhD,1 JAGDEEP K. SANDHU, PhD,1 DAVID K. SIMON, MD, PhD,2 VIMUKTHI PATHIRAJA, MD,2 CAROLINE SODJA, MSc,1 YAN LI, MD,1 MARIA RIBECCO-LUTKIEWICZ, PhD,1 PATRICIA LANTHIER, BSc,1 HENRYK BOROWY-BOROWSKI, PhD,1 ADRIAN UPTON, MD, PhD,3 SANDEEP RAHA, PhD,4 STEFAN M. -
Oral Presentations
Journal of Inherited Metabolic Disease (2018) 41 (Suppl 1):S37–S219 https://doi.org/10.1007/s10545-018-0233-9 ABSTRACTS Oral Presentations PARALLEL SESSION 1A: Clycosylation and cardohydrate disorders O-002 Link between glycemia and hyperlipidemia in Glycogen Storage O-001 Disease type Ia Hoogerland J A1, Hijmans B S1, Peeks F1, Kooijman S3, 4, Bos T2, Fertility in classical galactosaemia, N-glycan, hormonal and inflam- Bleeker A1, Van Dijk T H2, Wolters H1, Havinga R1,PronkACM3, 4, matory gene expression interactions Rensen P C N3, 4,MithieuxG5, 6, Rajas F5, 6, Kuipers F1, 2,DerksTGJ1, Reijngoud D1,OosterveerMH1 Colhoun H O1,Rubio-GozalboME2,BoschAM3, Knerr I4,DawsonC5, Brady J J6,GalliganM8,StepienKM9, O'Flaherty R O7,MossC10, 1Dep Pediatrics, CLDM, Univ of Groningen, Groningen, Barker P11, Fitzgibbon M C6, Doran P8,TreacyEP1, 4, 9 Netherlands, 2Lab Med, CLDM, Univ of Groningen, Groningen, Netherlands, 3Dep of Med, Div of Endocrinology, LUMC, Leiden, 1Dept Paediatrics, Trinity College Dublin, Dublin, Ireland, 2Dept Paeds and Netherlands, 4Einthoven Lab Exp Vasc Med, LUMC, Leiden, Clin Genetics, UMC, Maastricht, Netherlands, 3Dept Paediatrics, AMC, Netherlands, 5Institut Nat Sante et Recherche Med, Lyon, Amsterdam, Netherlands, 4NCIMD, TSCUH, Dublin, Ireland, 5Dept France, 6Univ Lyon 1, Villeurbanne, France Endocrinology, NHS Foundation Trust, Birmingham, United Kingdom, 6Dept Clin Biochem, MMUH, Dublin, Ireland, 7NIBRT Glycoscience, Background: Glycogen Storage Disease type Ia (GSD Ia) is an NIBRT, Dublin, Ireland, 8UCDCRC,UCD,Dublin,Ireland,9NCIMD, inborn error of glucose metabolism characterized by fasting hypo- MMUH, Dublin, Ireland, 10Conway Institute, UCD, Dublin, Ireland, glycemia, hyperlipidemia and fatty liver disease. We have previ- 11CBAL, NHS Foundation, Cambridge, United Kingdom ously reported considerable heterogeneity in circulating triglycer- ide levels between individual GSD Ia patients, a phenomenon that Background: Classical Galactosaemia (CG) is caused by deficiency of is poorly understood. -
Tetrahydrobiopterin Loading Test in Hyperphenylalaninemia
003 1-399819113005-0435$03.00/0 PEDIATRIC RESEARCH Vol. 30, No. 5, 1991 Copyright 0 199 1 International Pediatric Research Foundation, Inc. Pr~ntc.d in U.S. A Tetrahydrobiopterin Loading Test in Hyperphenylalaninemia ALBERT0 PONZONE, ORNELLA GUARDAMAGNA, SILVIO FERRARIS, GIOVANNI B. FERRERO, IRMA DIANZANI, AND RICHARD G. H. COTTON InstiflifeofPediatric Clinic(A.P., O.G., S.F., G.B.F., I.D.], University of Torino, 10126 Torino, Italy and Olive Miller Laboratory [R.G.H.C.],Murdoch Institute, Royal Children's Hospital, Vicroria,Australia 3052 ABSTRACT. Some cases of primary hyperphenylalanine- PKU to describe some cases clinically unresponsive to a Phe- mia are not caused by the lack of phenylalanine hydroxyl- restricted diet and later shown to be due to BH4 deficiency ase, but by the lack of its cofactor tetrahydrobiopterin. ( 1-4). These patients are not clinically responsive to a phenylal- By analyzing all the essential components of the complex anine-restricted diet, but need specific substitution therapy. hydroxylation system of aromatic amino acids, it became appar- Thus, it became necessary to examine all newborns ent that a defect in the BH4 recycling enzyme DHPR (EC screened as positive with the Guthrie test for tetrahydro- 1.66.99.7) and two defects in BH4 synthetic pathway enzymes, biopterin deficiency. Methods based on urinary pterin or guanosine triphosphate cyclohydrolase I (EC 3.5.4.16) and 6- on specific enzyme activity measurements are limited in PPH4S, may lead to cofactor deficiency resulting in HPA and in their availability, and the simplest method, based on the impaired production of dopamine and serotonin (5-7). -
Different Strategies in the Treatment of Dihydropteridine Reductase Deficiency
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 1996 Different Strategies In the Treatment of Dihydropteridine Reductase Deficiency Spada, M ; Blau, N ; Meli, C ; Ferrero, G B ; de Sanctis, L ; Ferraris, S ; Ponzone, A DOI: https://doi.org/10.1515/pteridines.1996.7.3.107 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-155067 Journal Article Published Version Originally published at: Spada, M; Blau, N; Meli, C; Ferrero, G B; de Sanctis, L; Ferraris, S; Ponzone, A (1996). Different Strategies In the Treatment of Dihydropteridine Reductase Deficiency. Pteridines, 7(3):107-109. DOI: https://doi.org/10.1515/pteridines.1996.7.3.107 Spada et al.: Treatment of DHPR deficiency Pteridines Vol. 7, 1996, pp. 107 - 109 Different Strategies In the Treatment of Dihydropteridine Reductase Deficiency 2 l M . Spada', N. Blau , C. Meli\ G . B. rerrero', L. de Sanctis\ S. Ferraris and A. Ponzone'· 4§ IDipartimento di Scienze Pediatriche e dell'Adolcscenza, Universita'degli Studi di Torino, Italy 2Division of Clinical Chemistry, University Children's Hospital, Zurich, Switzerland 3 C linica Pediatrica, Universita'di Catania, Italy 4Facolta'di Magistero, Universita'di Messina, Italy (Received July IS, 1996) Introduction mal serum Phe levels. Despite substantial amounts of peripherally ad- Inherited deficiency of dihydropteridine reduc- ministered BH4 can be found in cerebrospinal tase (DHPR, EC 1.66.99.7) impairs the re- fluid (CSr), only some patients respond at the generation of tetrahydrobiopterin (BH 4), the es- central level to BH4 monotherapy (3,4). -
Massive Parallel Sequencing As a New Diagnostic Approach For
Chaiyasap et al. BMC Medical Genetics (2017) 18:102 DOI 10.1186/s12881-017-0464-x RESEARCH ARTICLE Open Access Massive parallel sequencing as a new diagnostic approach for phenylketonuria and tetrahydrobiopterin-deficiency in Thailand Pongsathorn Chaiyasap1, Chupong Ittiwut1,2, Chalurmpon Srichomthong1,2, Apiruk Sangsin3, Kanya Suphapeetiporn1,2,4* and Vorasuk Shotelersuk1,2 Abstract Background: Hyperphenylalaninemia (HPA) can be classified into phenylketonuria (PKU) which is caused by mutations in the phenylalanine hydroxylase (PAH) gene, and BH4 deficiency caused by alterations in genes involved in tetrahydrobiopterin (BH4) biosynthesis pathway. Dietary restriction of phenylalanine is considered to be the main treatment of PKU to prevent irreversible intellectual disability. However, the same dietary intervention in BH4 deficiency patients is not as effective, as BH4 is also a cofactor in many neurotransmitter syntheses. Method: We utilized next generation sequencing (NGS) technique to investigate four unrelated Thai patients with hyperphenylalaninemia. Result: We successfully identified all eight mutant alleles in PKU or BH4-deficiency associated genes including three novel mutations, one in PAH and two in PTS, thus giving a definite diagnosis to these patients. Appropriate management can then be provided. Conclusion: This study identified three novel mutations in either the PAH or PTS gene and supported the use of NGS as an alternative molecular genetic approach for definite diagnosis of hyperphenylalaninemia, thus leading to proper management of these patients in Thailand. Keywords: Next generation sequencing, Exome, Hyperphenylalaninemia, Phenylketonuria, Tetrahydrobiopterin deficiency, Newborn screening Background 120 μmol/l (2 mg/dl), the individual is considered to be Phenylketonuria (PKU) is an autosomal recessive metabolic hyperphenylalaninemia (HPA) and needs further diagnosis disorder, characterized by progressive intellectual disability, [4]. -
Human/Mouse/Rat QDPR Antibody Antigen Affinity-Purified Polyclonal Sheep Igg Catalog Number: AF8038
Human/Mouse/Rat QDPR Antibody Antigen Affinity-purified Polyclonal Sheep IgG Catalog Number: AF8038 DESCRIPTION Species Reactivity Human/Mouse/Rat Specificity Detects human, mouse, and rat QDPR in Western blots. Source Polyclonal Sheep IgG Purification Antigen Affinitypurified Immunogen E. coliderived recombinant human QDPR Ala2Phe244 Accession # P09417 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 1 µg/mL See Below DATA Western Blot Detection of Human, Mouse, and Rat QDPR by Western Blot. Western blot shows lysates of human liver tissue, rat liver tissue, and mouse liver tissue. PVDF membrane was probed with 1 µg/mL of Sheep AntiHuman/Mouse QDPR Antigen Affinity purified Polyclonal Antibody (Catalog # AF8038) followed by HRPconjugated Anti Sheep IgG Secondary Antibody (Catalog # HAF016). A specific band was detected for QDPR at approximately 25 kDa (as indicated). This experiment was conducted under reducing conditions and using Immunoblot Buffer Group 1. PREPARATION AND STORAGE Reconstitution Sterile PBS to a final concentration of 0.2 mg/mL. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (SP) is shipped with polar packs. Upon receipt, store it immediately at 20 to 70 °C Stability & Storage Use a manual defrost freezer and avoid repeated freezethaw cycles.