Exposure Assessment: Potential for the Presence of Phthalates in Specified Materials at Concentrations Above 0.1 Percent”

Total Page:16

File Type:pdf, Size:1020Kb

Exposure Assessment: Potential for the Presence of Phthalates in Specified Materials at Concentrations Above 0.1 Percent” CPSC Staff Statement on the Toxicology Excellence for Risk Assessment Report, “Exposure Assessment: Potential for the Presence of Phthalates in Specified Materials at Concentrations Above 0.1 Percent” August 2016 The report, Exposure Assessment: Potential for the Presence of Phthalates in Specified Materials at Concentrations Above 0.1 Percent, presents the findings of research conducted by the Toxicology Excellence for Risk Assessment Center at the University of Cincinnati (TERA Center), under a contract with the U.S. Consumer Product Safety Commission (CPSC). The TERA Center performed this research to summarize available information on the production and use of specified plastics, regarding the possibility that these plastics contain certain phthalates at concentrations greater than 0.1 percent (1,000 ppm). The 10 specified phthalates are: • Di-(2-ethylhexyl) phthalate (DEHP); • Dibutyl phthalate (DBP); • Benzyl butyl phthalate (BBP); • Diisononyl phthalate (DINP); • Diisodecyl phthalate (DIDP); • Di-n-octyl phthalate (DnOP); • Diisobutyl phthalate (DIBP); • Di-n-pentyl phthalate (DPENP); • Di-n-hexyl phthalate (DHEP); and • Dicyclohexyl phthalate (DCHP). The specified plastics researched are: • Acrylic resins: Polymethylmethacrylate (PMMA) and Polyacrylonitrile (PAN); • Butadiene-ethylene resins (BER); • Ethylene-butene copolymers (EBC); • Ethylene copolymers: Ethylene vinyl acetate (EVA) and Ethylene vinyl alcohol (EVOH); • Ethylene-propylene monomer (EPM) and Ethylene-propylene-diene monomer (EPDM); • Ionomers (Surlyn®); • Polycarbonate (PC); • Polystyrene (crystal and general-purpose [GPS]), medium-impact (MIPS), and super-high-impact (SHIPS) grades; Styrene-butadiene copolymers (SBC); • Silicone rubber (SR); • Styrene-acrylonitrile copolymers (SAN); and • Styrene-butadiene-styrene rubber (SBS) and styrene-butadiene rubber (SBR). This research was completed in support of CPSC’s work on third party testing burden reduction consistent with assuring compliance. CPSC staff will consider this information in evaluating whether staff could make a recommendation for a Commission determination that one or more of the specified plastics does not contain any of the 10 specified phthalates in concentrations above 0.1 percent; and thus, may not require third party testing to assure compliance with section 108 of the Consumer Product Safety Improvement Act of 2008. This report will be posted on CPSC’s website to keep stakeholders informed of the progress of technical research related to the agency’s regulatory activities. Exposure Assessment: Potential for the Presence of Phthalates in Specified Materials at Concentrations Above 0.1 Percent Task Order 16 Contract Number CPSC-D-12-0001 August 8, 2016 Final Report Prepared by: Toxicology Excellence for Risk Assessment (TERA) University of Cincinnati Contact: Patricia McGinnis [email protected] Bernard Gadagbui [email protected] Jeanelle Martinez [email protected] Jacqueline Patterson [email protected] Melissa Vincent [email protected] Alison Pecquet [email protected] Ann Parker [email protected] Chijioke Onyema [email protected] External Review: Stephen Thiel [email protected] Table of Contents 1 Introduction ........................................................................................................................... 14 1.1 References ..................................................................................................................... 16 2 Literature Review Strategy ................................................................................................... 17 2.1 Tier 1. Universe of Literature ....................................................................................... 18 2.2 Tier 2. Authoritative Secondary Sources (Websites) .................................................... 20 2.3 Tier 3. Literature Searching .......................................................................................... 23 2.4 Tier 4. Gap Searching ................................................................................................... 25 3 Acrylic Resin [Polymethylmethacrylate (PMMA) and Polyacrylonitrile (PAN)] CASRNs: 9011-14-7; 9008-29-1; 25014-41-9 .............................................................................................. 28 3.1 Raw Materials Used in Production of Acrylic Resin.................................................... 28 3.1.1 Raw Materials Used in Making PMMA and PAN ................................................... 28 3.2 Manufacturing Processes used Worldwide to Produce Acrylic Resin .......................... 30 3.2.1 PMMA ...................................................................................................................... 30 3.2.2 Polyacrylonitrile (PAN) ............................................................................................ 31 3.2.3 Processing ................................................................................................................. 32 3.3 Applications for Acrylic Resin in Consumer Products ................................................. 33 3.3.1 Toys and Child Care Articles .................................................................................... 33 3.4 Potential Use of Recycled Materials Containing Phthalate in Production of Acrylic Resin 34 3.5 Potential Phthalate Contamination/Migration............................................................... 36 3.6 References ..................................................................................................................... 36 2 4 Butadiene – Ethylene Resins (EBR) CASRN: 25068-01-3 ................................................ 38 4.1 Raw Materials Used in Production of EBRs................................................................. 38 4.1.1 Raw Materials Used in Making EBR........................................................................ 38 4.2 Manufacturing Processes used Worldwide to Produce EBR ........................................ 38 4.2.1 Processing ................................................................................................................. 39 4.3 Applications for EBR in Consumer Products ............................................................... 39 4.3.1 Toys and Child Care Articles .................................................................................... 39 4.4 Potential Use of Recycled Materials Containing Phthalate in Production of EBR ...... 40 4.5 Potential Phthalate Contamination/Migration............................................................... 40 4.6 References ..................................................................................................................... 40 5 Ethylene-butene (EB) Copolymers CASRN: 25087-34-7, 9019-29-8 ............................... 42 5.1 Raw Materials Used in Production of EB Copolymers ................................................ 42 5.1.1 Raw Materials in Making EB Copolymers ............................................................... 42 5.2 Manufacturing Processes used Worldwide to Produce EB Copolymers ...................... 42 5.2.1 Processing ................................................................................................................. 43 5.3 Applications for EB Copolymers in Consumer Products ............................................. 43 5.4 Potential Use of Recycled Materials Containing Phthalate in Production of EB Copolymers ............................................................................................................................... 43 5.5 Potential Phthalate Contamination/Migration............................................................... 43 5.6 References ..................................................................................................................... 43 6 Ethylene Copolymers [Ethylene Vinyl Acetate (EVA) CASRN 24937-78-8 and Ethylene Vinyl Alcohol (EVOH) CASRN 25067-34-9] ............................................................................ 45 3 6.1 Raw Materials Used in Production of Ethylene Copolymers ....................................... 45 6.1.1 Raw Materials Used in Making EVA and EVOH Copolymers ................................ 45 6.2 Manufacturing Processes used Worldwide to Produce Ethylene Copolymers (EVA and EVOH) ...................................................................................................................................... 46 6.2.1 EVA Copolymers ...................................................................................................... 46 6.2.2 EVOH Copolymer .................................................................................................... 47 6.2.3 Processing ................................................................................................................. 47 6.2.4 Additives – EVA copolymer ..................................................................................... 48 6.2.5 Additives – EVOH copolymer .................................................................................. 48 6.3 Applications for Ethylene Copolymers in Consumer Products .................................... 49 6.3.1 Toys and Child Care Articles .................................................................................... 49 6.4 Potential Use of Recycled Materials Containing Phthalate in Production of Ethylene Copolymers ............................................................................................................................... 49 6.5 Potential
Recommended publications
  • Greenchem Industries Chemical and Solvent Product List A-Z
    GreenChem Industries Chemical And Solvent Product List A-Z 1,4-Butanediol (BDO) Formic Acid, 80%, 85%, 90%, 95% N-Butanol 2-Ethylhexanol (2-EH) Gamma Butyrolactone (GBL) N-Butyl Acetate (BUTAC) 2-Ethylhexyl Acrylate (2-EHA) Glacial Acetic Acid (GAA) N-Heptane 911P Glutaraldehyde 50% N-Methyl Pyrrolidone (NMP) Acetic Acid Glycerin USP K & Tech Grade N-Propanol Acetone Glycol Ether DB N-Propyl Acetate Acetonitrile Glycol Ether DE Neopentyl Glycol (NPG) Adipic Acid Glycol Ether DM Nitromethane Alpha-Methylstyrene (AMS) Glycol Ether DPM Nonyl Phenol Asphalt Cutback Glycol Ether DPM Acetate (DPM Acetate) NP-9, NP-10, NP-12 Benzoic Acid Glycol Ether DPnB Odorless Mineral Spirits (OMS) Benzyl Alcohol USP & TECH Glycol Ether DPnP Oxalic Acid 99.6% Benzyl Chloride Glycol Ether EB P-Chlorbenzotrifluoride (PCBTF) Boric Acid Glycol Ether EEP Perchloroethylene (PERC) Butyl Acrylate Glycol Ether EM Phenol 85%, 90%, 99% Caustic Potash 90% Glycol Ether EP Phthalic Anhydride Glycol Ether EPH Polyethylene Glycol (PEG) Caustic Soda Flakes & Beads Glycol Ether PM Propylene Carbonate (PC) Citric Acid, USP Kosher Glycol Ether PMA Propylene Glycol USP (PG USP K) Cyclohexane Glycol Ether PnB Propylene Glycol Industrial (PGI) Cyclohexylamine Glycol Ether PnP Sebacic Acid Cylcohexanone Glycol Ether TPM Secondary Butanol (SBA) D-Limonene Glycolic Acid 70% Sodium Laurel Sulfate (SLES) 28%, 60%, 70% DB Acetate GreenCool (Inhibited Glycols) Solv 100 Diacetone Alcohol (DAA) Hexane Solv 150 Dibasic Ester (DBE) Hexylene Glycol (HG) Solv 200 Dibutyl Phthalate (DBP) Hydrochloric
    [Show full text]
  • The Use of PEEK in Digital Prosthodontics: a Narrative Review Ioannis Papathanasiou1, Phophi Kamposiora1*, George Papavasiliou1 and Marco Ferrari2
    Papathanasiou et al. BMC Oral Health (2020) 20:217 https://doi.org/10.1186/s12903-020-01202-7 REVIEW Open Access The use of PEEK in digital prosthodontics: A narrative review Ioannis Papathanasiou1, Phophi Kamposiora1*, George Papavasiliou1 and Marco Ferrari2 Abstract Background: Advanced computer-aided design and computer-aided manufacturing (CAD-CAM) technology led to the introduction of an increasing number of machinable materials suitable for dental prostheses. One of these materials is polyetheretherketone (PEEK), a high performance polymer recently used in dentistry with favorable physical, mechanical and chemical properties. The purpose of this study was to review the current published literature on the use of PEEK for the fabrication of dental prostheses with CAD-CAM techniques. Methods: Electronic database searches were performed using the terms “PEEK”, “CAD-CAM”, “dental”, “dentistry” to identify studies related to the use of PEEK for the fabrication of CAD-CAM prostheses. The search period spanned from January 1990 through February 2020. Both in vivo and in vitro studies in English were eligible. Review articles and the references of the included publications were searched to identify relevant articles. Results: A great number of in vitro studies are available in the current literature pointing out the noticeable properties of PEEK. The use of PEEK has been recommended for a wide range of CAD-CAM fabricated fixed and removable dental prostheses. PEEK was additionally recommended for occlusal splints, intra-radicular posts, implant abutments, customized healing abutments and provisional restorations. However, only a few clinical studies were identified. Conclusions: PEEK could be considered as a viable alternative for CAD-CAM fixed and removable dental prostheses to well-established dental materials.
    [Show full text]
  • Measuring Athletic Mental Energy (AME): Instrument Development and Validation
    ORIGINAL RESEARCH published: 06 December 2018 doi: 10.3389/fpsyg.2018.02363 Measuring Athletic Mental Energy (AME): Instrument Development and Validation Frank J. H. Lu 1, Diane L. Gill 2, Cynthia M. C. Yang 3, Po-Fu Lee 1, Yi-Hsiang Chiu 1, Ya-Wen Hsu 4 and Garry Kuan 5* 1 Department of Physical Education, Chinese Culture University, Taipei, Taiwan, 2 Department of Kinesiology, University of North Carolina, Greensboro, NC, United States, 3 Graduate Institute of Physical Education, National Taiwan Sport University, Taoyuan, Taiwan, 4 Department of Physical Education, Health and Recreation, National Chia-Yi University, Chia-Yi, Taiwan, 5 Exercise and Sports Science, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia Although considerable research indicates that mental energy is an important factor in many domains, including athletic performance (Cook and Davis, 2006), athletic mental energy (AME) has never been conceptualized and measured. Therefore, the aim of this study was to conceptualize and develop a reliable and valid instrument to assess AME. In Edited by: Costantino Balestra, Study 1, a focus group interview established the initial framework of AME. Study 2 used Haute École Bruxelles-Brabant a survey to collect athletes’ experiences of AME and develop a scale draft titled “Athletic (HE2B), Belgium Mental Energy Scale (AMES).” In Study 3, we examined the psychometric properties and Reviewed by: the underlying structure of AMES via item analysis, internal consistency, and exploratory Diogo Monteiro, Escola Superior de Desporto de Rio factor analysis (EFA). In Study 4, we used confirmatory factor analysis (CFA) to examine Maior, Instituto Politécnico Santarém, AMES’s factorial validity; and examined concurrent and discriminant validity by examining Portugal Luis Cid, correlations with athletes’ life stress, positive state of mind, and burnout.
    [Show full text]
  • Business Guidance on Phthalates
    Business guidance on phthalates How to limit phthalates of concern in articles? November 2013 Danish branch of EPBA, Brussels This guidance has been prepared on the initiative of the Danish EPA and organisations, DI (the Confederation of Danish Industry), the Danish Chamber of Commerce, DI ITEK (the Danish ICT and electronics federation for it, telecommunications, electronics and communication enterprises), BFE (the Danish Consumer Electronics Association), Batteriforeningen (the Danish branch of the European battery association EPBA), ITB (the Danish IT Industry Association) and FEHA (the Danish Association for Suppliers of Electrical Domestic Appliances) in a collaboration between the Danish EPA and representatives from the organisations. The guidance applies to companies marketing articles to either private or industrial users in Denmark. The target group is buyers in Danish companies that import or act as commercial agents, intermediaries or retailers, as well as foreign companies that export to Denmark. 2 Content How to limit phthalates of concern in articles? ................................................................... 4 Key to identification of articles with phthalates .................................................................. 8 Facts on phthalates ............................................................................................................................. 10 What should you ask your supplier? .......................................................................................... 11 What are the
    [Show full text]
  • A Simple, Fast, and Reliable LC-MS/MS Method for Determination and Quantification of Phthalates in Distilled Beverages
    A Simple, Fast, and Reliable LC-MS/MS Method for Determination and Quantification of Phthalates in Distilled Beverages Dimple Shah and Jennifer Burgess Waters Corporation, Milford, MA, USA APPLICATION BENEFITS INTRODUCTION ■■ Separation and detection of 7 phthalates Phthalates, esters of phthalic acid, are often used as plasticizers for polymers such in 11 minutes. as polyvinylchloride. They are widely applicable in various products including personal care goods, cosmetics, paints, printing inks, detergents, coatings, ■■ Simple, quick “dilute and shoot” sample preparation method for routine applications and food packaging. These phthalates have been found to leach readily into the where high sample throughput is required. environment and food as they are not chemically bound to plastics. As such they are known to be ubiquitously present in our environment. ■■ Elimination of major phthalate contamination using the ACQUITY UPLC® Isolator Column. Phthalates have been reported to show a variety of toxic effects related to reproduction in animal studies, which has resulted in these compounds being ■■ Selective mass spectra obtained for all seven considered as endocrine disruptors. Screening food and beverages for phthalates phthalates with dominant precursor ion. contamination is required by many legislative bodies, although regulations vary ■■ Low limits of quantification achieved using from country to country in regards to acceptable daily tolerances and specific Waters® ACQUITY UPLC H-Class System migration limits. and Xevo® TQD. Traditionally, phthalates have been analyzed by gas chromatography-mass ■■ Single and robust method for a variety spectrometry (GC-MS), where derivatization and/or extraction and sample of distilled beverages. preparation is often required to improve chromatographic separation.1 The ■■ Maintain consumer confidence and resulting GC-EI-MS spectra can lack selectivity, where the base ion, used for ensure compliance in market.
    [Show full text]
  • Powder Coatings
    Emmanouil Spyrou Powder Coatings Chemistry and Technology 3rd Revised Edition Emmanouil Spyrou: Powder Coatings: Chemistry and Technology © Copyright 2012 by Vincentz Network, Hanover, Germany ISBN: 978-3-86630-884-8 Spyrou_Powder Coatings.indb 1 14.09.2012 10:17:21 Cover: Evonik Industries AG, Marl/Germany Bibliographische Information der Deutschen Bibliothek Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliographie; detaillierte bibliographische Daten sind im Internet über http://dnb.ddb.de abrufbar. Emmanouil Spyrou, 3rd Revised Edition Based on Pieter G. de Lange’s, 2nd Edition, Vincentz Network, 2004, and Tosko A. Misev’s, 1st Edition, John Wiley and Sons, 1991 Powder Coatings: Chemistry and Technology Hanover: Vincentz Network, 2012 EUROPEAN COATINGS TecH FILES ISBN 3-86630-884-1 ISBN 978-3-86630-884-8 © 2012 Vincentz Network GmbH & Co. KG, Hanover Vincentz Network, P.O. Box 6247, 30062 Hanover, Germany This work is copyrighted, including the individual contributions and figures. Any usage outside the strict limits of copyright law without the consent of the publisher is prohibited and punishable by law. This especially pertains to reproduction, translation, microfilming and the storage and processing in electronic systems. The information on formulations is based on testing performed to the best of our knowledge. The appearance of commercial names, product designations and trade names in this book should not be taken as an indication that these can be used at will by anybody. They are often registered names which can only be used under certain conditions. Please ask for our book catalogue Vincentz Network, Plathnerstr. 4c, 30175 Hanover, Germany T +49 511 9910-033, F +49 511 9910-029 [email protected], www.european-coatings.com Layout: Vincentz Network, Hanover, Germany Printed by: Quensen Druck + Verlag GmbH & Co.
    [Show full text]
  • Phthalate Testing ‐ Frequently Asked Questions Updated February, 2009
    Phthalate Testing ‐ Frequently Asked Questions Updated February, 2009 Q. Which specific phthalates is the Consumer Products Safety Information Act (CPSIA) concerned about? A. The six phthalate plasticizers of interest are: Diisononyl phthalate (DINP), Di‐2‐ ethylhexylphthalate (DEHP, sometimes called DOP), di‐n‐octyl phthalate (DnOP), Di‐isodecyl phthalate (DIDP), butylbenzyl phthalate (BBP), and dibutyl phthalate (DBP). Q. What can Polymer Diagnostics Inc. (PDI) test? A. PDI can test raw materials, compounds and finished goods. Q. How does PDI perform the testing? A. Samples are initially extracted (or diluted), and then analyzed by Gas Chromatography‐Mass Spectrometry [GC‐MS]. Depending on the results, additional analyses may be done to verify results and insure accuracy. This helps reduce the potential for false positives. Q. What about false positives? A. Although GC‐MS can reduce the likelihood of mis‐identification, the complexity of many formulations cannot rule this out. Further refinements of the analysis conditions or use of other separation techniques helps to enhance the reliability of the results. In those cases where the interference cannot be eliminated, results will clearly state this fact. Q. What is the current standard for testing for phthalates? A. Some literature has cited ASTM 3421‐75 as applicable for this testing. This method has been discontinued by ASTM, and has not been replaced. The regulatory body responsible for the CPSIA is currently working on recommending an improved method, but this is still in the planning stage. Q. What are the current issues, if any, with the test methods? A. Any method recommended should use current analytical methodologies.
    [Show full text]
  • 162 Part 175—Indirect Food Addi
    § 174.6 21 CFR Ch. I (4–1–19 Edition) (c) The existence in this subchapter B Subpart B—Substances for Use Only as of a regulation prescribing safe condi- Components of Adhesives tions for the use of a substance as an Sec. article or component of articles that 175.105 Adhesives. contact food shall not be construed as 175.125 Pressure-sensitive adhesives. implying that such substance may be safely used as a direct additive in food. Subpart C—Substances for Use as (d) Substances that under conditions Components of Coatings of good manufacturing practice may be 175.210 Acrylate ester copolymer coating. safely used as components of articles 175.230 Hot-melt strippable food coatings. that contact food include the fol- 175.250 Paraffin (synthetic). lowing, subject to any prescribed limi- 175.260 Partial phosphoric acid esters of pol- yester resins. tations: 175.270 Poly(vinyl fluoride) resins. (1) Substances generally recognized 175.300 Resinous and polymeric coatings. as safe in or on food. 175.320 Resinous and polymeric coatings for (2) Substances generally recognized polyolefin films. as safe for their intended use in food 175.350 Vinyl acetate/crotonic acid copoly- mer. packaging. 175.360 Vinylidene chloride copolymer coat- (3) Substances used in accordance ings for nylon film. with a prior sanction or approval. 175.365 Vinylidene chloride copolymer coat- (4) Substances permitted for use by ings for polycarbonate film. 175.380 Xylene-formaldehyde resins con- regulations in this part and parts 175, densed with 4,4′-isopropylidenediphenol- 176, 177, 178 and § 179.45 of this chapter.
    [Show full text]
  • Diisononyl Phthalate (DINP) C26H42O4
    CAS 28553-12-0 Diisononyl Phthalate (DINP) C26H42O4 Summary of Health Effects In a study that looked at the effects on male Diisononyl phthalate (DINP) can lead to growth rats of perinatal exposure to several phthalates, of tumors in the liver, spleen and kidneys of DINP was one of three phthalates that altered animals and can affect how unborn babies sexual differentiation.4 Several animal studies develop. It may also cause cancer in humans. have demonstrated that DINP exposure increased the incidence of liver, spleen and 1 How is DINP used? kidney tumors. DINP is primarily used as a plasticizer or softener in polyvinyl chloride (PVC) products, DINP induces antiandrogenic affects in animals, and therefore can contribute to the cumulative including vinyl flooring, wire and cable risk from exposure to other antiandrogenic insulation, coated fabrics, gloves, toys, garden phthalates.5 hoses, artificial leather and footwear.1 DINP is also used in other products such as rubber, inks, pigments and paints.1 Exposure: How can a person come in contact with it? Toxicity: What are its health effects? A person can come in contact with DINP by The National Toxicology Program determined breathing in contaminated air, swallowing dust, through animal testing that DINP is a eating contaminated food, or from skin contact 6 developmental toxicant based on fetuses with consumer products. growing additional ribs at the high dose tested.2 The National Health and Nutrition Examination DINP is listed as a carcinogen on California’s Survey (NHANES) 2005-2006 results showed Proposition 65 list.3 that mono-(carboxyoctyl) phthalate, a metabolite (breakdown product) of DINP, is present in urine samples of 95.2% of the sampled U.S.
    [Show full text]
  • Book of Abstracts the 25Th EASM Conference 5–8 September 2017 Bern and Magglingen, Switzerland Challenges and Developments of Sport Organisations Book of Abstracts
    © Bern Tourism The 25th Conference Challenges and Developments 5-8 September 2017 Bern and Magglingen, Switzerland of Sport Organisations Book of Abstracts The 25th EASM Conference 5–8 September 2017 Bern and Magglingen, Switzerland Challenges and Developments of Sport Organisations Book of Abstracts Edited by Tim Ströbel (University of Bern), Tim Breitbarth (Bournemouth University), Hippolyt Kempf (Swiss Federal Institute of Sport Magglingen SFISM), Claas Christian Germelmann (University of Bayreuth) and Siegfried Nagel (University of Bern) under collaboration of Rahel Spring (University of Bern), Mirjam Niederberger (University of Bern), Janita Suomalainen (University of Bern) and Grazia Lang (University of Bern) Bern, August 2017 Layout: Franziska Hofer (Swiss Federal Institute of Sport Magglingen SFISM) Typesetting: Rahel Spring (University of Bern) ISBN: 978-3-906813-44-8; University of Bern, Bern Open Publishing. DOI: Cite as: Ströbel, Tim; Breitbarth, Tim; Kempf, Hippolyt; Germelmann, Claas Christian; Nagel, Siegfried (eds.) (2017). The 25th EASM Conference, 5-8 September 2017, Bern and Magglingen, Switzer- land, Challenges and Developments of Sport Organisations, Book of Abstracts. Bern: University of Bern, Bern Open Publishing [e-print]. © Institute of Sport Science, University of Bern This is an open access book licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows anyone to download, share, reuse, reprint, adapt, distrib- ute, and/or copy the work providing the original authors
    [Show full text]
  • Progress and Opportunities for Self-Immolative Polymers" (2019)
    Western University Scholarship@Western Chemistry Publications Chemistry Department 2019 Triggering depolymerization: Progress and opportunities for self- immolative polymers Rebecca Yardley Western University Amir Rabiee Kenaree Western University Elizabeth Gillies Western University, [email protected] Follow this and additional works at: https://ir.lib.uwo.ca/chempub Part of the Chemistry Commons Citation of this paper: Yardley, Rebecca; Rabiee Kenaree, Amir; and Gillies, Elizabeth, "Triggering depolymerization: Progress and opportunities for self-immolative polymers" (2019). Chemistry Publications. 127. https://ir.lib.uwo.ca/chempub/127 Triggering depolymerization: Progress and opportunities for self- immolative polymers Rebecca E. Yardley,† Amir Rabiee Kenaree,† and Elizabeth R. Gillies*†‡ † Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond St., London, Ontario, Canada N6A 5B7. ‡ Department of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario, Canada N6A 5B9. *Author to whom correspondence should be addressed: [email protected] Table of contents graphic Abstract Polymers that depolymerize end-to-end upon cleavage of their backbones or end-caps, often referred to as “self-immolative” polymers (SIPs), have garnered significant interest in recent years. 1 They can be distinguished from other degradable and stimuli-responsive polymers by their ability to provide amplified responses to stimuli, as a single bond cleavage event is translated into the release of many small molecules through a cascade of reactions. Here, the synthesis and properties of the major classes of SIPs including poly(benzyl carbamate)s, poly(benzyl carbonate)s, polyphthalaldehydes, polyglyoxylates, polyglyoxylamides, poly(olefin sulfone)s, and poly(benzyl ether)s are presented.
    [Show full text]
  • The Transversal Strength Comparison Between Polyethylene and Glass Fiber As an Acrylic Resin Denture Plate Repair Material
    Majalah Kedokteran Gigi Indonesia Vol 5 No 1 – April 2019 ISSN 2460-0164 (print), ISSN 2442-2576 (online) Aditama,Available et al: The online transversal at https://jurnal.ugm.ac.id/mkgi strength comparison … DOI: http://doi.org/10.22146/majkedgiind.17497 RESEARCH ARTICLE The transversal strength comparison between polyethylene and glass fiber as an acrylic resin denture plate repair material Pramudya Aditama*, Sabdayana**, Erwan Sugiatno* *Department of Prosthodontics, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia **Dentistry Study Program, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia *Jl Denta No 1, Sekip Utara, Yogyakarta, Indonesia; e-mail: [email protected] Submitted: 29th December 2016; Revised: 10th February 2017; Accepted: 25th March 2018 ABSTRACT Acrylic resin is the most commonly used denture base material. However, it has a shortage of being easily broken. One way to resolve this problem is by adding polyethylene (PE) or glass fibers. The purpose of this research is to compare the transversal strength of PE and glass fibers from denture plate acrylic resin repair material. The experiment involved 32 plates of heat cure acrylic with the dimensions of 65 mm x 10 mm x 2.5 mm. The speciments were prepared to create a 3 mm gap and 45° bevel. Subjects were divided into 2 groups, each group containing 16 plates. Group I was reinforced with PE fiber and Group II was reinforced with glass fiber. All plates were soaked in distillation water for one day at 37 °C. Plates were tested for transverse strength with universal testing machine and all data were analyzed with independent t-tes at 95% confidence level.
    [Show full text]