A Phylogenetic Study of Vulnerable Batoid Species from the North Atlantic

Total Page:16

File Type:pdf, Size:1020Kb

A Phylogenetic Study of Vulnerable Batoid Species from the North Atlantic A Phylogenetic Study of Vulnerable Batoid Species from the North Atlantic Submitted by Maisie Bache-Jeffreys to the University of Exeter as a thesis for the degree of Masters by Research in Biological Sciences, September 2019. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ............................................................................................. 1 Contents Contents of Figures ........................................................................................................................ 3 Contents of Tables ......................................................................................................................... 6 Abstract ........................................................................................................................................... 8 Chapter 1: General Introduction .................................................................................................. 10 1.1 Elasmobranchs: what are they and why are they at risk? ............................................... 10 1.2 Taxonomic confusion ........................................................................................................ 12 1.3 Genetic markers in elasmobranch phylogenomics ......................................................................... 19 1.4 Aims of this thesis: answering phylogenetic questions in North Atlantic batoids ....................... 26 1.5 References ............................................................................................................................................ 29 Chapter 2: Resolving the spatial distributions of Dipturus intermedius and Dipturus batis - the two novel taxa formerly known as the common skate. ........................................................ 58 2.1 Abstract .................................................................................................................................................. 58 2.2 Introduction ........................................................................................................................................... 60 2.3 Materials and methods ........................................................................................................................ 62 2.4 Results ................................................................................................................................................... 67 2.5 Discussion ............................................................................................................................................. 73 2.6 Acknowledgements .............................................................................................................................. 77 2.7 References ............................................................................................................................................ 78 2.8 Supplementary materials: Resolving the spatial distributions of Dipturus intermedius and Dipturus batis - the two novel taxa formerly known as the common skate. ....................................... 87 Chapter 3: NextRAD and mitochondrial DNA sequencing reveal hidden diversity within vulnerable species of batoid fish. .............................................................................................. 103 3.1 Abstract ................................................................................................................................................ 103 3.2 Introduction ......................................................................................................................................... 104 3.3 Methods ............................................................................................................................................... 107 3.4 Results ................................................................................................................................................. 112 3.5 Discussion ........................................................................................................................................... 121 3.6 References .......................................................................................................................................... 139 3.7 Supplementary materials: NextRAD and mitochondrial DNA sequencing reveal hidden diversity within vulnerable species of batoid fish. ................................................................................ 164 Chapter 4: General discussion .................................................................................................. 174 4.1 Conclusions and future directions ................................................................................................... 174 4.2 Conclusion………………………….………………………………………………………………181 4.3 References .......................................................................................................................................... 182 2 Contents of Figures Chapter 1 Figure 1. A simplified diagram of the taxonomic structure of Chondrichthyans and the Batoidea. .. 13 Figure 2. Two examples of morphological conservatism in batoid species. The reef manta, Manta alfredi (A; Marshall et al., 2018a) and the oceanic manta, Manta birostris (B; Marshall et al., 2018a) exhibit striking levels of morphological conservatism, despite being distinct species. The same is true for the blonde ray, Raja brachyura (C; Ellis et al., 2009) and the spotted ray, Raja montagui (D; Ellis et al., 2007)........................................................................................................................................16 Figure 3. Number of ray species described each decade from Linnaeus in 1758 until 2016 (Last et al., 2016)......................................................................................................................................... 18 Figure 4. Mitogenome map of the Kwangtung skate, Dipturus kwangtungensis. The innermost circle represents GC% per every 5bp of the mitogenome; the darker the line, the higher the GC%. (Jeong et al., 2015) ..................................................................................................................................... 22 Chapter 2 Figure 1. (A) Map detailing the range of the ‘common skate’ in 2002 (adapted from Dulvy et al., 2002); (B) The geographical locations of all blue skate (Dipturus batis) specimens used in phylogenetic analysis, including ones representing CR sequences downloaded from Genbank; (C). The geographical locations of all flapper skate (Dipturus intermedius) specimens used in phylogenetic analysis, including ones representing CR sequences downloaded from Genbank. * indicates that the flapper skate specimen from Portugal did not have exact latitude and longitude 3 information available, and so the proximate location has been indicated. Because this is the only specimen that represents a COI sequence, it was not included in the CR haplotype network. The size of a point is proportional to the number of individuals it represents………………………...…….66 Figure 2. PhyML tree built from COI data (A); Mr Bayes tree built from COI data (B). Numbers above branches represent bootstrap support values. Blue numbers below branches correspond to accession numbers and location infomration in Appendix two and four, supplementary materials. .................. 68 Figure 3. PhyML tree built from CR data (A); Mr Bayes tree built from CR data (B). Numbers above branches represent bootstrap support values. Blue numbers below branches correspond to accession numbers and location infomration in Appendix two and three, supplementary materials.69 Figure 4. Control region (CR) haplotype network of D. intermedius and D. batis samples collected from across the North Atlantic and downloaded from Genbank………………………………..………71 Appendix 1. Image of the flapper skate (Dipturus intermedius) specimen 'AZP90' from the Azores………………………………………………………………………………………………………...88 Chapter 3 Figure 1. Map detailing locations specimens sampled in the current study. * indicates the exact latitude and longitude of the sample was unknown, in this instance the point shows an approximate location. All points represent one specimen……………………………………………………………..109 Figure 2. (A) RAxML tree built from concatenated (CR and COI) mtDNA data (ms4); (B) RAxML tree built from nextRAD-seq data. Numbers below branches represent bootstrap support values. Scale bars refer to the number of substitutions per site .......................................................................... 119 Figure 3. SVDquartet tree built from nextRAD-seq data (ms4 dataset). Support from 1000 bootstrap replicates are shown for branches with support >50%. Branch lengths do not reflect divergence…………………………………………………………………………………………………..120 4 Figure 4. Figure detailing conlusions drawn from the present study for key species. Appendix 1. Workflow of NextRAD Nextera-tagmented reductively-amplified DNA) sequencing. A small amount of DNA (~10 ng) is mixed with two engineered transposomes of Nextera reagents which tag as well as add short adaptors to genomic DNA. Sequencing primers Read one (R1, light blue bars) and Read two (R2,
Recommended publications
  • Fish Characteristics
    FISH CHARACTERISTICS There are approximately 25,000 different species of fish. A fish is an animal with a backbone (a vertebrate) that is adapted to live in water. Fishes use gills to breathe, and most fishes have scales covering their skin. Scales serve as a form of protection. Fishes are also cold-blooded, which means that their body temperature is regulated by the temperature of the surrounding water. Bony fishes inhabit almost every body of water, from tropical, polar, and temperate seas, to freshwater and brackish environments. Scientists discover about 200-300 new fish species every year. Believe it or not, there are more fishes on our planet than birds or mammals. Dorsal (back) fin Do you enjoy gymnastics? Have you ever watched a gymnast on the balance beam? They need to stay Caudal (tail) fin nice and steady, placing one foot Pectoral (side) fin gently over the next, to stay steady Have you ever helped your Have you ever pretended and straight. The dorsal fin helps a mom or dad check the oil in the you were a race car driver, fish to swim steady and provides family car? You need to check zooming down the track? balance in the water. the engine because the engine You speed through the helps the car to move fast - it straight-a-way and then turn gives the car speed and power! the steering wheel quickly In most fish, the caudal fin when you reach the curve to provides the speed and power go left or right. The pectoral for swimming, just like a car fin is just like a steering engine.
    [Show full text]
  • Age, Growth, and Sexual Maturity of the Deepsea Skate, Bathyraja
    AGE, GROWTH, AND SEXUAL MATURITY OF THE DEEPSEA SKATE, BATHYRAJA ABYSSICOLA A Thesis Presented to the Faculty of Alaska Pacific University In Partial Fulfillment of the Requirements For the Degree of Master of Science in Environmental Science by Cameron Murray Provost April 2016 Pro Q u est Nu m b er: 10104548 All rig hts reserv e d INF O RM ATI O N T O ALL USERS Th e q u a lity of this re pro d u ctio n is d e p e n d e nt u p o n th e q u a lity of th e c o p y su b mitt e d. In th e unlik e ly e v e nt th a t th e a uth or did n ot se n d a c o m ple t e m a nuscript a n d th ere are missin g p a g es, th ese will b e n ot e d. Also, if m a t eria l h a d to b e re m o v e d, a n ot e will in dic a t e th e d e le tio n. Pro Q u est 10104548 Pu blish e d b y Pro Q u est LL C (2016). C o p yrig ht of th e Dissert a tio n is h e ld b y th e A uth or. All rig hts reserv e d. This w ork is prot e ct e d a g a inst un a uth orize d c o p yin g un d er Title 17, Unit e d St a t es C o d e Microform Editio n © Pro Q u est LL C .
    [Show full text]
  • Sharks in Crisis: a Call to Action for the Mediterranean
    REPORT 2019 SHARKS IN CRISIS: A CALL TO ACTION FOR THE MEDITERRANEAN WWF Sharks in the Mediterranean 2019 | 1 fp SECTION 1 ACKNOWLEDGEMENTS Written and edited by WWF Mediterranean Marine Initiative / Evan Jeffries (www.swim2birds.co.uk), based on data contained in: Bartolí, A., Polti, S., Niedermüller, S.K. & García, R. 2018. Sharks in the Mediterranean: A review of the literature on the current state of scientific knowledge, conservation measures and management policies and instruments. Design by Catherine Perry (www.swim2birds.co.uk) Front cover photo: Blue shark (Prionace glauca) © Joost van Uffelen / WWF References and sources are available online at www.wwfmmi.org Published in July 2019 by WWF – World Wide Fund For Nature Any reproduction in full or in part must mention the title and credit the WWF Mediterranean Marine Initiative as the copyright owner. © Text 2019 WWF. All rights reserved. Our thanks go to the following people for their invaluable comments and contributions to this report: Fabrizio Serena, Monica Barone, Adi Barash (M.E.C.O.), Ioannis Giovos (iSea), Pamela Mason (SharkLab Malta), Ali Hood (Sharktrust), Matthieu Lapinksi (AILERONS association), Sandrine Polti, Alex Bartoli, Raul Garcia, Alessandro Buzzi, Giulia Prato, Jose Luis Garcia Varas, Ayse Oruc, Danijel Kanski, Antigoni Foutsi, Théa Jacob, Sofiane Mahjoub, Sarah Fagnani, Heike Zidowitz, Philipp Kanstinger, Andy Cornish and Marco Costantini. Special acknowledgements go to WWF-Spain for funding this report. KEY CONTACTS Giuseppe Di Carlo Director WWF Mediterranean Marine Initiative Email: [email protected] Simone Niedermueller Mediterranean Shark expert Email: [email protected] Stefania Campogianni Communications manager WWF Mediterranean Marine Initiative Email: [email protected] WWF is one of the world’s largest and most respected independent conservation organizations, with more than 5 million supporters and a global network active in over 100 countries.
    [Show full text]
  • Feeding Activities of Two Euryhaline Small-Sized Fish in a Western Baltic Brackish Fjord
    HELGOL.~NDER MEERESUNTERSUCHUNGEN Helgolander Meeresunters. 45,287-300 (1991) Feeding activities of two euryhaline small-sized fish in a western Baltic brackish fjord Birgit Antholz, Wolfgang Meyer-Antholz & C. Dieter Zander Zoologisches Institut und Zoologisches Museum der Universit~t Hamburg; Martin-Luther-King-Platz 3, D-W-2000 Hamburg 13, Federal Repubfic of Germany ABSTRACT: The daily food intake and feeding activities of the common goby Pomatoschistus microps (Kroyer) and the nine-spined stickleback Pungitius pungitius (L.) were investigated in the brackish Schlei fjord. At the investigation site of Olpenitz, salinities varied between 11 and 15 %o, and water temperatures between 5 and 18 ~ during the period of in-situ experiments in 1981 and 1982. Common gobies sometimes attained a density of more than 100 individuals per square metre, nine-spined sticklebacks as much as 18 individuals per square meter. Their food changed depend- ing on the supply of plankton or benthos. Regarding numbers, their food consisted mainly of harpacticoids, in springtimes of calanoids; with regard to weight, amphipods, polychaetes or chironomid larvae often prevailed. The total food ingestion, measured by means of its relation to fish weights (fullness index), was highest in spring and summer: 2.3 % in P. microps and 2.6 % in P. pungitius. Low fullness indices of 0.8 % in P. microps and 0.3 % in P. pungitius were found during times of low water temperatures. 24-h field investigations revealed that the adult P. microps presented clear diurnal rhythms with highest fullness indices after dawn and a further maximum at dusk. Only young gobies ingested some benthos at night.
    [Show full text]
  • Recurrent Convergent Evolution at Amino Acid Residue 261 in Fish Rhodopsin
    Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin Jason Hilla, Erik D. Enbodya, Mats E. Petterssona, C. Grace Sprehna, Dorte Bekkevoldb, Arild Folkvordc,d, Linda Laikree, Gunnar Kleinauf, Patrick Scheererf, and Leif Anderssona,g,h,1 aDepartment of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden; bNational Institute of Aquatic Resources, Technical University of Denmark, 8600 Silkeborg, Denmark; cDepartment of Biological Sciences, University of Bergen, 5020 Bergen, Norway; dInstitute of Marine Research, 5018 Bergen, Norway; eDepartment of Zoology, Division of Population Genetics, Stockholm University, SE-106 91 Stockholm, Sweden; fGroup Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany; gDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; and hDepartment of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843 Contributed by Leif Andersson, July 26, 2019 (sent for review May 14, 2019; reviewed by Michel Georges and Philip W. Hedrick) The evolutionary process that occurs when a species colonizes a Results new environment provides an opportunity to explore the mecha- Characterization of the Selective Sweep at the Rhodopsin Locus. The nisms underlying genetic adaptation, which is essential knowledge colonization of herring into the Baltic Sea must have happened for understanding evolution and the maintenance of biodiversity. within the last 10,000 y because this area was entirely covered Atlantic herring has an estimated total breeding stock of about 12 with ice during the last glaciation.
    [Show full text]
  • Barndoor Skate, Dipturus Laevis, Life History and Habitat Characteristics
    NOAA Technical Memorandum NMFS-NE-173 Essential Fish Habitat Source Document: Barndoor Skate, Dipturus laevis, Life History and Habitat Characteristics U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts March 2003 Recent Issues in This Series: 155. Food of Northwest Atlantic Fishes and Two Common Species of Squid. By Ray E. Bowman, Charles E. Stillwell, William L. Michaels, and Marvin D. Grosslein. January 2000. xiv + 138 p., 1 fig., 7 tables, 2 app. NTIS Access. No. PB2000-106735. 156. Proceedings of the Summer Flounder Aging Workshop, 1-2 February 1999, Woods Hole, Massachusetts. By George R. Bolz, James Patrick Monaghan, Jr., Kathy L. Lang, Randall W. Gregory, and Jay M. Burnett. May 2000. v + 15 p., 5 figs., 5 tables. NTIS Access. No. PB2000-107403. 157. Contaminant Levels in Muscle of Four Species of Recreational Fish from the New York Bight Apex. By Ashok D. Deshpande, Andrew F.J. Draxler, Vincent S. Zdanowicz, Mary E. Schrock, Anthony J. Paulson, Thomas W. Finneran, Beth L. Sharack, Kathy Corbo, Linda Arlen, Elizabeth A. Leimburg, Bruce W. Dockum, Robert A. Pikanowski, Brian May, and Lisa B. Rosman. June 2000. xxii + 99 p., 6 figs., 80 tables, 3 app., glossary. NTIS Access. No. PB2001-107346. 158. A Framework for Monitoring and Assessing Socioeconomics and Governance of Large Marine Ecosystems. By Jon G. Sutinen, editor, with contributors (listed alphabetically) Patricia Clay, Christopher L. Dyer, Steven F. Edwards, John Gates, Tom A. Grigalunas, Timothy Hennessey, Lawrence Juda, Andrew W. Kitts, Philip N.
    [Show full text]
  • Spatial and Temporal Distribution of the Demersal Fish Fauna in a Baltic Archipelago As Estimated by SCUBA Census
    MARINE ECOLOGY - PROGRESS SERIES Vol. 23: 3143, 1985 Published April 25 Mar. Ecol. hog. Ser. 1 l Spatial and temporal distribution of the demersal fish fauna in a Baltic archipelago as estimated by SCUBA census B.-0. Jansson, G. Aneer & S. Nellbring Asko Laboratory, Institute of Marine Ecology, University of Stockholm, S-106 91 Stockholm, Sweden ABSTRACT: A quantitative investigation of the demersal fish fauna of a 160 km2 archipelago area in the northern Baltic proper was carried out by SCUBA census technique. Thirty-four stations covering seaweed areas, shallow soft bottoms with seagrass and pond weeds, and deeper, naked soft bottoms down to a depth of 21 m were visited at all seasons. The results are compared with those obtained by traditional gill-net fishing. The dominating species are the gobiids (particularly Pornatoschistus rninutus) which make up 75 % of the total fish fauna but only 8.4 % of the total biomass. Zoarces viviparus, Cottus gobio and Platichtys flesus are common elements, with P. flesus constituting more than half of the biomass. Low abundance of all species except Z. viviparus is found in March-April, gobies having a maximum in September-October and P. flesus in November. Spatially, P. rninutus shows the widest vertical range being about equally distributed between surface and 20 m depth. C. gobio aggregates in the upper 10 m. The Mytilus bottoms and the deeper soft bottoms are the most populated areas. The former is characterized by Gobius niger, Z. viviparus and Pholis gunnellus which use the shelter offered by the numerous boulders and stones. The latter is totally dominated by P.
    [Show full text]
  • Skates and Rays Diversity, Exploration and Conservation – Case-Study of the Thornback Ray, Raja Clavata
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Doutoramento em Ciências do Mar 2010 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SKATES AND RAYS DIVERSITY, EXPLORATION AND CONSERVATION – CASE-STUDY OF THE THORNBACK RAY, RAJA CLAVATA Bárbara Marques Serra Pereira Tese orientada por Professor Auxiliar com Agregação Leonel Serrano Gordo e Investigadora Auxiliar Ivone Figueiredo Doutoramento em Ciências do Mar 2010 The research reported in this thesis was carried out at the Instituto de Investigação das Pescas e do Mar (IPIMAR - INRB), Unidade de Recursos Marinhos e Sustentabilidade. This research was funded by Fundação para a Ciência e a Tecnologia (FCT) through a PhD grant (SFRH/BD/23777/2005) and the research project EU Data Collection/DCR (PNAB). Skates and rays diversity, exploration and conservation | Table of Contents Table of Contents List of Figures ............................................................................................................................. i List of Tables ............................................................................................................................. v List of Abbreviations ............................................................................................................. viii Agradecimentos ........................................................................................................................
    [Show full text]
  • Pteromálidos De La Comunidad De Madrid: Faunística Y Catálogo (Hymenoptera, Chalcidoidea, Pteromalidae) (*)
    Graellsia, 55: 9-147 (1999) PTEROMÁLIDOS DE LA COMUNIDAD DE MADRID: FAUNÍSTICA Y CATÁLOGO (HYMENOPTERA, CHALCIDOIDEA, PTEROMALIDAE) (*) A. M. Garrido Torres (**) y J. L. Nieves-Aldrey (**) RESUMEN Se presenta la compilación de los resultados faunísticos de distintos trabajos de contri- bución al conocimiento de la familia Pteromalidae (Hym., Chalcidoidea) desarrollados por los autores, a lo largo de más de diez años, en la Comunidad Autónoma de Madrid. Se listan los 350 taxa de nivel específico encontrados en la CAM correspondientes a 9166 ejemplares de pteromálidos estudiados, un 97% de los cuales representan materiales colectados por los autores en distintos programas de muestreo. Se efectuaron tres programas principales de muestreo: con red de barrido entomólogico en 59 localidades de la CAM representativas de distintas comunidades vegetales; programa intensivo de muestreo con trampas Malaise en dos localidades de el Monte de El Pardo y sierra de Guadarrama y muestreo para el estudio de la comunidad parasitoide de pteromálidos asociada a agallas de cinípidos (Hym., Cynipidae). Se elabora el catálogo de las especies de la comunidad de Madrid. Frente a las 13 especies en 12 géneros previamente citadas, se catalogan 268 especies, incluidas en 92 géneros de 11 subfamilias. Un total de 30 géneros y 155 especies representan la primera cita para la fauna de la Península Ibérica, actualizándose el catálogo íbero-balear de los Pteromalidae a 324 especies frente a las 169 que incluía hasta ahora. Para cada especie del catálogo se presentan unos breves comentarios sobre su distribu- ción conocida, citas en la CM y en la P.I. y datos de su biología, bien propios o recabados de la bibliografía.
    [Show full text]
  • Spatial Ecology and Fisheries Interactions of Rajidae in the Uk
    UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences SPATIAL ECOLOGY AND FISHERIES INTERACTIONS OF RAJIDAE IN THE UK Samantha Jane Simpson Thesis for the degree of DOCTOR OF PHILOSOPHY APRIL 2018 UNIVERSITY OF SOUTHAMPTON 1 2 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Doctor of Philosophy FINE-SCALE SPATIAL ECOLOGY AND FISHERIES INTERACTIONS OF RAJIDAE IN UK WATERS by Samantha Jane Simpson The spatial occurrence of a species is a fundamental part of its ecology, playing a role in shaping the evolution of its life history, driving population level processes and species interactions. Within this spatial occurrence, species may show a tendency to occupy areas with particular abiotic or biotic factors, known as a habitat association. In addition some species have the capacity to select preferred habitat at a particular time and, when species are sympatric, resource partitioning can allow their coexistence and reduce competition among them. The Rajidae (skate) are cryptic benthic mesopredators, which bury in the sediment for extended periods of time with some species inhabiting turbid coastal waters in higher latitudes. Consequently, identifying skate fine-scale spatial ecology is challenging and has lacked detailed study, despite them being commercially important species in the UK, as well as being at risk of population decline due to overfishing. This research aimed to examine the fine-scale spatial occurrence, habitat selection and resource partitioning among the four skates across a coastal area off Plymouth, UK, in the western English Channel. In addition, I investigated the interaction of Rajidae with commercial fisheries to determine if interactions between species were different and whether existing management measures are effective.
    [Show full text]
  • Med Shark Report Prelims
    Overview of the Conservation Status of Cartilaginous Fishes (Chondrichthyans) in the Mediterranean Sea Rachel D. Cavanagh and Claudine Gibson The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. Published by: The World Conservation Union (IUCN), Gland, Switzerland and Malaga, Spain. Copyright: © 2007 International Union for Conservation of Nature and Natural Resources. Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Cavanagh, Rachel D. and Gibson, Claudine. 2007. Overview of the Conservation Status of Cartilaginous Fishes (Chondrichthyans) in the Mediterranean Sea. IUCN, Gland, Switzerland and Malaga, Spain. vi + 42 pp. ISBN-10 / ISBN-13 (Book) ISBN-10 / ISBN-13 (CD) Cover design by: Chadi Abi Faraj, IUCN Centre for Mediterranean Cooperation. Cover photo: Mobula mobular: an Endangered species predominantly restricted to the Mediterranean Sea. Maurizio Wurtz. Layout by: NatureBureau, 36 Kingfisher Court, Hambridge Road, Newbury RG14 5SJ, UK. Produced by: NatureBureau Printed by: Information Press, Oxford, UK. Available from: IUCN Centre for Mediterranean Cooperation C/ Marie Curie 35 29590 Campanillas, Malaga, Spain. Tel: +34 952 028430 Fax: +34 952 028145 www.uicnmed.org A catalogue of IUCN publications is also available at www.iucn.org/publications.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]