CLOUD-CLONE 製品リスト Shigematsu Co.,LTD

Total Page:16

File Type:pdf, Size:1020Kb

CLOUD-CLONE 製品リスト Shigematsu Co.,LTD CLOUD-CLONE 製品リスト Shigematsu Co.,LTD. Product No. Name Format CEA544Hu ELISA Kit for Immunoglobulin G (IgG) 96-well strip plate CEB409Hu ELISA Kit for Hemoglobin (HB) 96-well strip plate CEB028Ra ELISA Kit for Albumin (ALB) 96-well strip plate SEB409Mu ELISA Kit for Hemoglobin (HB) 96-well strip plate CEA544Gu ELISA Kit for Immunoglobulin G (IgG) 96-well strip plate SEB409Rb ELISA Kit for Hemoglobin (HB) 96-well strip plate CEB028Rb ELISA Kit for Albumin (ALB) 96-well strip plate SEB409Ra ELISA Kit for Hemoglobin (HB) 96-well strip plate CEB028Gu ELISA Kit for Albumin (ALB) 96-well strip plate HEA544Hu High Sensitive ELISA Kit for Immunoglobulin G (IgG) 96-well strip plate CEA544Mu ELISA Kit for Immunoglobulin G (IgG) 96-well strip plate CEB028Mu ELISA Kit for Albumin (ALB) 96-well strip plate CEC036Mu ELISA Kit for Transferrin (TRF) 96-well strip plate CEA544Ga ELISA Kit for Immunoglobulin G (IgG) 96-well strip plate CEA544Ra ELISA Kit for Immunoglobulin G (IgG) 96-well strip plate CEA544Rb ELISA Kit for Immunoglobulin G (IgG) 96-well strip plate SEB409Gu ELISA Kit for Hemoglobin (HB) 96-well strip plate SEA448Hu ELISA Kit for Insulin (INS) 96-well strip plate SEA480Hu ELISA Kit for Myoglobin (MYO) 96-well strip plate SEA518Hu ELISA Kit for Ferritin (FE) 96-well strip plate SEC036Ca ELISA Kit for Transferrin (TRF) 96-well strip plate CEB028Hu ELISA Kit for Albumin (ALB) 96-well strip plate CEB028Ca ELISA Kit for Albumin (ALB) 96-well strip plate SEB409Eq ELISA Kit for Hemoglobin (HB) 96-well strip plate SEA049Hu ELISA Kit for Interferon Gamma (IFNg) 96-well strip plate SEB107Hu ELISA Kit for Low Density Lipoprotein (LDL) 96-well strip plate SEA747Hu ELISA Kit for Complement 1q (C1q) 96-well strip plate SEA260Hu ELISA Kit for Beta-2-Microglobulin (b2M) 96-well strip plate SEA371Hu ELISA Kit for Interferon Gamma Induced Protein 10kDa (IP10) 96-well strip plate CEB459Ge ELISA Kit for Ovalbumin (OVA) 96-well strip plate CEA544Eq ELISA Kit for Immunoglobulin G (IgG) 96-well strip plate SEA077Ra ELISA Kit for Interleukin 4 (IL4) 96-well strip plate SEA028Mu ELISA Kit for Erythropoietin (EPO) 96-well strip plate SEA899Mu ELISA Kit for Osteopontin (OPN) 96-well strip plate SEA100Hu ELISA Kit for Matrix Metalloproteinase 2 (MMP2) 96-well strip plate SEA077Hu ELISA Kit for Interleukin 4 (IL4) 96-well strip plate SEA150Hu ELISA Kit for Carcinoembryonic Antigen (CEA) 96-well strip plate SEA847Mu ELISA Kit for Resistin (RETN) 96-well strip plate SEC036Hu ELISA Kit for Transferrin (TRF) 96-well strip plate SEA153Hu ELISA Kit for Alpha-Fetoprotein (aFP) 96-well strip plate SEA045Ra ELISA Kit for Colony Stimulating Factor 2, Granulocyte Macrophage (GMCSF) 96-well strip plate SEA548Mu ELISA Kit for Intercellular Adhesion Molecule 1 (ICAM1) 96-well strip plate SEB859Mu ELISA Kit for Lectin Like Oxidized Low Density Lipoprotein Receptor 1 (LOX1) 96-well strip plate SEA086Mu ELISA Kit for Selectin, Leukocyte (SELL) 96-well strip plate SEA569Mu ELISA Kit for Selectin, Platelet (SELP) 96-well strip plate SEA560Mu ELISA Kit for Epidermal Growth Factor (EGF) 96-well strip plate SEA042Hu ELISA Kit for Colony Stimulating Factor 3, Granulocyte (GCSF) 96-well strip plate SEA045Hu ELISA Kit for Colony Stimulating Factor 2, Granulocyte Macrophage (GMCSF) 96-well strip plate SEA050Hu ELISA Kit for Insulin Like Growth Factor 1 (IGF1) 96-well strip plate SEA050Mu ELISA Kit for Insulin Like Growth Factor 1 (IGF1) 96-well strip plate SEA120Mu ELISA Kit for Stem Cell Factor (SCF) 96-well strip plate SEA605Mu ELISA Kit for Adiponectin (ADP) 96-well strip plate SEA114Mu ELISA Kit for Placenta Growth Factor (PLGF) 96-well strip plate SEA560Hu ELISA Kit for Epidermal Growth Factor (EGF) 96-well strip plate SEH266Hu ELISA Kit for Renal Tumor Antigen (RAGE) 96-well strip plate SEB699Mu ELISA Kit for Angiopoietin Like Protein 3 (ANGPTL3) 96-well strip plate SEA042Mu ELISA Kit for Colony Stimulating Factor 3, Granulocyte (GCSF) 96-well strip plate SEA817Hu ELISA Kit for Haptoglobin (Hpt) 96-well strip plate SEA093Mu ELISA Kit for Macrophage Inflammatory Protein 1 Beta (MIP1b) 96-well strip plate SEA103Hu ELISA Kit for Matrix Metalloproteinase 8 (MMP8) 96-well strip plate SEA547Hu ELISA Kit for Vascular Cell Adhesion Molecule 1 (VCAM1) 96-well strip plate SEA547Mu ELISA Kit for Vascular Cell Adhesion Molecule 1 (VCAM1) 96-well strip plate SEA126Mu ELISA Kit for TEK Tyrosine Kinase, Endothelial (Tie2) 96-well strip plate SEB603Ra ELISA Kit for Growth Regulated Oncogene Beta (GROb) 96-well strip plate SEA089Hu ELISA Kit for Monocyte Chemotactic Protein 3 (MCP3) 96-well strip plate SEA899Hu ELISA Kit for Osteopontin (OPN) 96-well strip plate SEA050Ra ELISA Kit for Insulin Like Growth Factor 1 (IGF1) 96-well strip plate SEA087Hu ELISA Kit for Monocyte Chemotactic Protein 1 (MCP1) 96-well strip plate SEA122Hu ELISA Kit for Stromal Cell Derived Factor 1 (SDF1) 96-well strip plate SEA041Ra ELISA Kit for Neutrophil Activating Protein 3 (NAP3) 96-well strip plate SEB601Mu ELISA Kit for B-Lymphocyte Chemoattractant 1 (BLC1) 96-well strip plate SEA861Hu ELISA Kit for Complement Component 3 (C3) 96-well strip plate SEA151Hu ELISA Kit for Kallikrein 3 (KLK3) 96-well strip plate SEA371Mu ELISA Kit for Interferon Gamma Induced Protein 10kDa (IP10) 96-well strip plate SEB886Hu ELISA Kit for Angiotensin I Converting Enzyme 2 (ACE2) 96-well strip plate 1 / 86 CLOUD-CLONE 製品リスト Shigematsu Co.,LTD. Product No. Name Format SEA213Mu ELISA Kit for Triggering Receptor Expressed On Myeloid Cells 1 (TREM1) 96-well strip plate SEA001Hu ELISA Kit for Activin A (ACVA) 96-well strip plate SEA038Hu ELISA Kit for FMS Like Tyrosine Kinase 3 Ligand (Flt3L) 96-well strip plate SEB818Mu ELISA Kit for Vascular Endothelial Growth Factor Receptor 1 (VEGFR1) 96-well strip plate SEA092Hu ELISA Kit for Macrophage Inflammatory Protein 1 Alpha (MIP1a) 96-well strip plate SEA061Hu ELISA Kit for Interleukin 15 (IL15) 96-well strip plate SEA071Ra ELISA Kit for Interleukin 1 Alpha (IL1a) 96-well strip plate SEA563Hu ELISA Kit for Interleukin 1 Beta (IL1b) 96-well strip plate SEA569Hu ELISA Kit for Selectin, Platelet (SELP) 96-well strip plate SEA021Hu ELISA Kit for Ciliary Neurotrophic Factor (CNTF) 96-well strip plate SEA029Mu ELISA Kit for Selectin, Endothelium (SELE) 96-well strip plate SEA041Hu ELISA Kit for Neutrophil Activating Protein 3 (NAP3) 96-well strip plate SEA896Hu ELISA Kit for Cystatin 3 (CST3) 96-well strip plate SEA384Mu ELISA Kit for Interleukin 23 (IL23) 96-well strip plate SEA223Mu ELISA Kit for Interleukin 1 Receptor Antagonist (IL1RA) 96-well strip plate SEA980Mu ELISA Kit for Endoglin (ENG) 96-well strip plate SEA090Mu ELISA Kit for Colony Stimulating Factor 1, Macrophage (MCSF) 96-well strip plate SEA091Hu ELISA Kit for Macrophage Derived Chemokine (MDC) 96-well strip plate SEA116Hu ELISA Kit for Regulated On Activation In Normal T-Cell Expressed And Secreted (RANTES) 96-well strip plate SEA125Hu ELISA Kit for Tyrosine Kinase With Immunoglobulin Like And EGF Like Domains Protein 1 (Tie1) 96-well strip plate SEB851Hu ELISA Kit for Vascular Endothelial Growth Factor 121 (VEGF121) 96-well strip plate SEA552Ra ELISA Kit for Tissue Inhibitors Of Metalloproteinase 1 (TIMP1) 96-well strip plate SEA080Ca ELISA Kit for Interleukin 8 (IL8) 96-well strip plate SEB367Mu ELISA Kit for Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) 96-well strip plate SEA321Ra ELISA Kit for Galectin 1 (GAL1) 96-well strip plate SEC032Mu ELISA Kit for Interleukin 22 (IL22) 96-well strip plate SEA007Hu ELISA Kit for Angiogenin (ANG) 96-well strip plate SEA017Hu ELISA Kit for Cadherin, Epithelial (CDHE) 96-well strip plate SEA029Hu ELISA Kit for Selectin, Endothelium (SELE) 96-well strip plate SEA394Hu ELISA Kit for Tissue Factor Pathway Inhibitor (TFPI) 96-well strip plate SEA771Hu ELISA Kit for Chemokine C-X-C-Motif Ligand 16 (CXCL16) 96-well strip plate SEB522Hu ELISA Kit for Pulmonary Activation Regulated Chemokine (PARC) 96-well strip plate SEB601Hu ELISA Kit for B-Lymphocyte Chemoattractant 1 (BLC1) 96-well strip plate SEB651Hu ELISA Kit for Cutaneous T-Cell Attracting Chemokine (CTACK) 96-well strip plate SEA055Hu ELISA Kit for Insulin Like Growth Factor Binding Protein 4 (IGFBP4) 96-well strip plate SEA073Mu ELISA Kit for Interleukin 2 (IL2) 96-well strip plate SEA085Hu ELISA Kit for Leukemia Inhibitory Factor (LIF) 96-well strip plate SEA090Hu ELISA Kit for Colony Stimulating Factor 1, Macrophage (MCSF) 96-well strip plate SEA130Hu ELISA Kit for Tissue Inhibitors Of Metalloproteinase 4 (TIMP4) 96-well strip plate SEC071Hu ELISA Kit for Interferon Inducible T-Cell Alpha Chemoattractant (ITaC) 96-well strip plate SEB132Hu ELISA Kit for Chemokine C-C-Motif Ligand 1 (CCL1) 96-well strip plate SEB499Hu ELISA Kit for Tumor Necrosis Factor Receptor Superfamily, Member 1A (TNFRSF1A) 96-well strip plate SEB249Mu ELISA Kit for Tumor Necrosis Factor Receptor Superfamily, Member 5 (TNFRSF5) 96-well strip plate SEA031Hu ELISA Kit for Factor Related Apoptosis Ligand (FASL) 96-well strip plate SEA031Mu ELISA Kit for Factor Related Apoptosis Ligand (FASL) 96-well strip plate SEA044Hu ELISA Kit for Growth Hormone (GH) 96-well strip plate SEA101Hu ELISA Kit for Matrix Metalloproteinase 3 (MMP3) 96-well strip plate SEA054Mu ELISA Kit for Insulin Like Growth Factor Binding Protein 3 (IGFBP3) 96-well strip plate SEA120Hu ELISA Kit for Stem Cell Factor (SCF) 96-well strip plate SEA124Mu ELISA Kit for Transforming Growth Factor Beta 1 (TGFb1) 96-well strip plate SEA552Hu ELISA Kit for Tissue Inhibitors Of Metalloproteinase
Recommended publications
  • Supplemental Information to Mammadova-Bach Et Al., “Laminin Α1 Orchestrates VEGFA Functions in the Ecosystem of Colorectal Carcinogenesis”
    Supplemental information to Mammadova-Bach et al., “Laminin α1 orchestrates VEGFA functions in the ecosystem of colorectal carcinogenesis” Supplemental material and methods Cloning of the villin-LMα1 vector The plasmid pBS-villin-promoter containing the 3.5 Kb of the murine villin promoter, the first non coding exon, 5.5 kb of the first intron and 15 nucleotides of the second villin exon, was generated by S. Robine (Institut Curie, Paris, France). The EcoRI site in the multi cloning site was destroyed by fill in ligation with T4 polymerase according to the manufacturer`s instructions (New England Biolabs, Ozyme, Saint Quentin en Yvelines, France). Site directed mutagenesis (GeneEditor in vitro Site-Directed Mutagenesis system, Promega, Charbonnières-les-Bains, France) was then used to introduce a BsiWI site before the start codon of the villin coding sequence using the 5’ phosphorylated primer: 5’CCTTCTCCTCTAGGCTCGCGTACGATGACGTCGGACTTGCGG3’. A double strand annealed oligonucleotide, 5’GGCCGGACGCGTGAATTCGTCGACGC3’ and 5’GGCCGCGTCGACGAATTCACGC GTCC3’ containing restriction site for MluI, EcoRI and SalI were inserted in the NotI site (present in the multi cloning site), generating the plasmid pBS-villin-promoter-MES. The SV40 polyA region of the pEGFP plasmid (Clontech, Ozyme, Saint Quentin Yvelines, France) was amplified by PCR using primers 5’GGCGCCTCTAGATCATAATCAGCCATA3’ and 5’GGCGCCCTTAAGATACATTGATGAGTT3’ before subcloning into the pGEMTeasy vector (Promega, Charbonnières-les-Bains, France). After EcoRI digestion, the SV40 polyA fragment was purified with the NucleoSpin Extract II kit (Machery-Nagel, Hoerdt, France) and then subcloned into the EcoRI site of the plasmid pBS-villin-promoter-MES. Site directed mutagenesis was used to introduce a BsiWI site (5’ phosphorylated AGCGCAGGGAGCGGCGGCCGTACGATGCGCGGCAGCGGCACG3’) before the initiation codon and a MluI site (5’ phosphorylated 1 CCCGGGCCTGAGCCCTAAACGCGTGCCAGCCTCTGCCCTTGG3’) after the stop codon in the full length cDNA coding for the mouse LMα1 in the pCIS vector (kindly provided by P.
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Enzymatic Encoding Methods for Efficient Synthesis Of
    (19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN,
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • PROTEOMIC ANALYSIS of HUMAN URINARY EXOSOMES. Patricia
    ABSTRACT Title of Document: PROTEOMIC ANALYSIS OF HUMAN URINARY EXOSOMES. Patricia Amalia Gonzales Mancilla, Ph.D., 2009 Directed By: Associate Professor Nam Sun Wang, Department of Chemical and Biomolecular Engineering Exosomes originate as the internal vesicles of multivesicular bodies (MVBs) in cells. These small vesicles (40-100 nm) have been shown to be secreted by most cell types throughout the body. In the kidney, urinary exosomes are released to the urine by fusion of the outer membrane of the MVBs with the apical plasma membrane of renal tubular epithelia. Exosomes contain apical membrane and cytosolic proteins and can be isolated using differential centrifugation. The analysis of urinary exosomes provides a non- invasive means of acquiring information about the physiological or pathophysiological state of renal cells. The overall objective of this research was to develop methods and knowledge infrastructure for urinary proteomics. We proposed to conduct a proteomic analysis of human urinary exosomes. The first objective was to profile the proteome of human urinary exosomes using liquid chromatography-tandem spectrometry (LC- MS/MS) and specialized software for identification of peptide sequences from fragmentation spectra. We unambiguously identified 1132 proteins. In addition, the phosphoproteome of human urinary exosomes was profiled using the neutral loss scanning acquisition mode of LC-MS/MS. The phosphoproteomic profiling identified 19 phosphorylation sites corresponding to 14 phosphoproteins. The second objective was to analyze urinary exosomes samples isolated from patients with genetic mutations. Polyclonal antibodies were generated to recognize epitopes on the gene products of these genetic mutations, NKCC2 and MRP4. The potential usefulness of urinary exosome analysis was demonstrated using the well-defined renal tubulopathy, Bartter syndrome type I and using the single nucleotide polymorphism in the ABCC4 gene.
    [Show full text]
  • Protein Identities in Evs Isolated from U87-MG GBM Cells As Determined by NG LC-MS/MS
    Protein identities in EVs isolated from U87-MG GBM cells as determined by NG LC-MS/MS. No. Accession Description Σ Coverage Σ# Proteins Σ# Unique Peptides Σ# Peptides Σ# PSMs # AAs MW [kDa] calc. pI 1 A8MS94 Putative golgin subfamily A member 2-like protein 5 OS=Homo sapiens PE=5 SV=2 - [GG2L5_HUMAN] 100 1 1 7 88 110 12,03704523 5,681152344 2 P60660 Myosin light polypeptide 6 OS=Homo sapiens GN=MYL6 PE=1 SV=2 - [MYL6_HUMAN] 100 3 5 17 173 151 16,91913397 4,652832031 3 Q6ZYL4 General transcription factor IIH subunit 5 OS=Homo sapiens GN=GTF2H5 PE=1 SV=1 - [TF2H5_HUMAN] 98,59 1 1 4 13 71 8,048185945 4,652832031 4 P60709 Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 - [ACTB_HUMAN] 97,6 5 5 35 917 375 41,70973209 5,478027344 5 P13489 Ribonuclease inhibitor OS=Homo sapiens GN=RNH1 PE=1 SV=2 - [RINI_HUMAN] 96,75 1 12 37 173 461 49,94108966 4,817871094 6 P09382 Galectin-1 OS=Homo sapiens GN=LGALS1 PE=1 SV=2 - [LEG1_HUMAN] 96,3 1 7 14 283 135 14,70620005 5,503417969 7 P60174 Triosephosphate isomerase OS=Homo sapiens GN=TPI1 PE=1 SV=3 - [TPIS_HUMAN] 95,1 3 16 25 375 286 30,77169764 5,922363281 8 P04406 Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 - [G3P_HUMAN] 94,63 2 13 31 509 335 36,03039959 8,455566406 9 Q15185 Prostaglandin E synthase 3 OS=Homo sapiens GN=PTGES3 PE=1 SV=1 - [TEBP_HUMAN] 93,13 1 5 12 74 160 18,68541938 4,538574219 10 P09417 Dihydropteridine reductase OS=Homo sapiens GN=QDPR PE=1 SV=2 - [DHPR_HUMAN] 93,03 1 1 17 69 244 25,77302971 7,371582031 11 P01911 HLA class II histocompatibility antigen,
    [Show full text]
  • Health Effects Support Document for Perfluorooctanoic Acid (PFOA)
    United States Office of Water EPA 822-R-16-003 Environmental Protection Mail Code 4304T May 2016 Agency Health Effects Support Document for Perfluorooctanoic Acid (PFOA) Perfluorooctanoic Acid – May 2016 i Health Effects Support Document for Perfluorooctanoic Acid (PFOA) U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 EPA Document Number: 822-R-16-003 May 2016 Perfluorooctanoic Acid – May 2016 ii BACKGROUND The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the U.S. Environmental Protection Agency (EPA) to periodically publish a list of unregulated chemical contaminants known or anticipated to occur in public water systems and that may require regulation under SDWA. The SDWA also requires the Agency to make regulatory determinations on at least five contaminants on the Contaminant Candidate List (CCL) every 5 years. For each contaminant on the CCL, before EPA makes a regulatory determination, the Agency needs to obtain sufficient data to conduct analyses on the extent to which the contaminant occurs and the risk it poses to populations via drinking water. Ultimately, this information will assist the Agency in determining the most appropriate course of action in relation to the contaminant (e.g., developing a regulation to control it in drinking water, developing guidance, or deciding not to regulate it). The PFOA health assessment was initiated by the Office of Water, Office of Science and Technology in 2009. The draft Health Effects Support Document for Perfluoroctanoic Acid (PFOA) was completed in 2013 and released for public comment in February 2014.
    [Show full text]
  • Follicular Thyroglobulin Enhances Gene Expression Necessary for Thyroid Hormone Secretion
    Endocrine Journal 2015, 62 (11), 1007-1015 Original Follicular thyroglobulin enhances gene expression necessary for thyroid hormone secretion Yuko Ishido1), 2), 3), Yuqian Luo1), 3), Aya Yoshihara1), 3), Moyuru Hayashi3), Akio Yoshida2), Ichiro Hisatome2) and Koichi Suzuki1), 3) 1) Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Disease, Tokyo 189-0002, Japan 2) Division of Regenerative Medicine and Therapeutics, Department of Genetic Medicine and Regenerative Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, Yonago, 683-8503, Japan 3) Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo 173-8605, Japan Abstract. We have previously shown that follicular thyroglobulin (Tg) has an unexpected function as an autocrine negative- feedback regulator of thyroid hormone (TH) biosynthesis. Tg significantly suppressed the expression of genes necessary for iodide transport and TH synthesis by counteracting stimulation by TSH. However, whether follicular Tg also regulates intracellular TH transport and its secretion from thyrocytes is not known. In the present study, we examined the potential effect of follicular Tg on TH transport and secretion by quantifying the expression of two TH transporters: monocarboxylate transporter 8 (MCT8) and μ-crystallin (CRYM). Our results showed that follicular Tg at physiologic concentrations enhanced both the mRNA and protein expression levels of MCT8 and CRYM in a time- and dose-dependent manner in rat thyroid FRTL-5 cells. Although both the sodium/iodide symporter (NIS), an essential transporter of iodide from blood into the thyroid, and MCT8, a transporter of synthesized TH from the gland, were co-localized on the basolateral membrane of rat thyrocytes in vivo, Tg decreased NIS expression and increased the expression of MCT8 by counteracting TSH action.
    [Show full text]
  • Natural Course of Congenital Hypothyroidism by Dual Oxidase 2 Mutations from the Neonatal Period Through Puberty
    Y Maruo and others Clinical features of DUOX2 174:4 453–463 Clinical Study defects Natural course of congenital hypothyroidism by dual oxidase 2 mutations from the neonatal period through puberty Yoshihiro Maruo1, Keisuke Nagasaki, Katsuyuki Matsui, Yu Mimura, Asami Mori, Maki Fukami2 and Yoshihiro Takeuchi Correspondence should be addressed Department of Pediatrics, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga 520-2192, Japan, to Y Maruo 1Department of Pediatrics, Niigata University, Niigata, Japan and 2Department of Molecular Endocrinology, Email National Research Institute for Child Health and Development, Tokyo, Japan [email protected] Abstract Aim: We previously reported that biallelic mutations in dual oxidase 2 (DUOX2) cause transient hypothyroidism. Since then, many cases with DUOX2 mutations have been reported. However, the clinical features and prognosis of individuals with DUOX2 defects have not been clarified. Objective: We investigated the prognosis of patients with congenital hypothyroidism (CH) due to DUOX2 mutations. Patients: Twenty-five patients were identified by a neonatal screening program and included seven familial cases. Their serum TSH values ranged from 18.9 to 734.6 mU/l. Twenty-two of the patients had low serum free thyroxine (fT4) levels (0.17–1.1 ng/dl). Twenty-four of the patients were treated with L-thyroxine. Methods: We analyzed the DUOX2, thyroid peroxidase, NaC/IK symporter, and dual oxidase maturation factor 2 genes of these 25 patients by PCR-amplified direct sequencing. An additional 11 genes were analyzed in 11 of the 25 patients using next-generation sequencing. Results: All patients had biallelic DUOX2 mutations, and seven novel alleles were detected.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Table S1. the Clinicopathological Data of the Laryngeal Cancer Cases Involved in the Primary Tissue Culture
    Table S1. The clinicopathological data of the laryngeal cancer cases involved in the primary tissue culture Case Gender Age at Smoking Alcohol Histological type TNM Tumor coding* diagnosis status status staging† differentiation LC01 male 63 Yes Yes Supraglottic squamous cell carcinoma T4N2M0 Moderate LC14 male 73 Yes Yes Supraglottic squamous cell carcinoma T3N2M0 Moderate LC53 male 54 Yes No Supraglottic squamous cell carcinoma T3N2M0 Moderate LC95 male 50 Yes Yes Glottic squmamous cell carcinoma T3N1M0 Poor *LC represents laryngeal cancer. † staged according to Sixth Edition (2002) of the AJCC-UICC TNM Staging System. Table S2. The clinical characteristics of the 149 patients with laryngeal SCC used for ELISA Variable N (%) Variable N(%) Age (years) Disease stage ≤55 58 (38.9) I 33 (22.1) >55 91 (61.1) II 32 (21.5) Median (range) 58 (35-82) III 41 (27.5) IV 41 (27.5) Missing 2 (1.3) Gender T stage* Male 140 (94.0) T1 33 (21.5) Female 9 (6.0) T2 36 (24.2) T3 52 (34.9) T4 26 (17.4) Missing 2 (1.3) Smoking status Lymph node status Ever 124 (83.2) pN0 110 (73.8) Never 11 (7.4) pN+ 37 (24.8) Missing 14 (9.4) Missing 2 (1.3) Alcohol status Tumor differentiation Yes 84 (56.4) well 34 (22.8) No 51(34.2) moderate 78 (52.3) Missing 14 (9.4) poor 24 (16.1) Missing 13 (8.7) Anatomical region Glottis 82 (55.0) Supraglottis 60 (40.3) Subglottis 1 (0.7) Missing 6 (4.0) *staged according to Sixth Edition (2002) of the AJCC-UICC TNM Staging System.
    [Show full text]