Franklin Mineral Digest 1959

Total Page:16

File Type:pdf, Size:1020Kb

Franklin Mineral Digest 1959 Franklin Mineral Digest 1959 PARAGENETIC TABLE OF THE MINERALS OF THE FRANKLIN AREA Primary Ore Minerals Hydrothermal vein minerals Franklinite Willemite A lbi te Loseyite Zincite Tephroite Fowlerite Quartz Tremolite Zincite Pegmatite Contact Minerals Lrocidolite Hematite Willemite Beta erolite Skarn: Pneumatolyttc products: Friedelite Goethite Hyalophane Margarosanite Schallerite Manganite Diopside Pectolite Mcgovernite Pyrochroite Jeffersonite W illemite Leucophoenicite Manganbrucite Schefferite Barylite Gageite Chalcophanite Zinc schefferite Nasonite Hodgkinsonite Hedyphane Fowlerite Barysilite Ganophyllite Arseniosiderite Bustamite Glaucochroite Apophyllite Allactite Zinc-manganese cum- Tephroite Calciothomsonite Chlorophoenicite mingtonite La rsenite Stilbite Magnesium chlorophoeni- Manganiferous amphi- Calcium larsenite Heulandite cite boles : Beryllium vesuvianite Chlorite Holdenite Hastingsite, Paragasite, Roeblingite Manganiferous serpentine Sussexite etc. Hancockite Bementite Barite Garnet, var. andradite Prehnite Talc Celestite Hardystonite Leucophoenicite Fluoborite Anhydrite Tephroite Clinohedrite Mooreite Galena Roepperite Hodgkinsonite Delta-mooreite Sphalerite Glaucochroite Datolite Aragonite Greenockite Vesuvianite, var. cyprine Cahnite Dolomite Pyrite Xonotlite Sussexite Siderite Marcasite Biotite, var. Mangano- Manganoaxinite Rh odochrosite Millerite phyllite Cuspidine Smithsonite Tennantite Gahnite Apatite Surface oxidation products Magnetite Hedyphane Svabite Recrystallization prod- Calamine Psilomelane Franklinite ucts: Halloysite Cern site Fluorite Franklinite Neotocite Malachite Barite Zincite Manganiferous serpentine Azurite Silver Manganosite Desaulesite A urichalcite Copper Hematite Quartz Hydrozincite Lead Willemite Cuprite Smithsonite Galena Tephroite Hematite Descloizite Chalcocite Hy drohetaerolite A nglesite Niccolite Limonite Gypsum Chloanthite Chalcophanite Sphalerite Chalcopyrite Bornite Pyrite Lollingite Arsenopyrite Kentrolite Franklin Atteralrillirai cAssaciation AND FRANKLIN MINERAL DIGEST BOX 408 - MIDDLEBURGH, N. Y. The following statements are taken from letters received by the secretary from Association members during the past year regarding the FMA, its activities and the Digest : "I want to compliment you on this Digest, because I am certain it represents a great deal of work on your part and it is something you may well take pride in." G.J.S., White Plains, N. Y. "Enjoyed the Digest and wish to compliment the Association for the nice job. I cer- tainly feel the Association is setting out to perform a very valuable and worthwhile work." J.M.P., Bountiful, Utah "I want to congratulate you and your club there in N.Y. I have just finished your fine work (Digest) on the Franklin compl ex. It will make a nice textbook, and I treasure it." G.C.D., Overland, Missouri "This is a mighty fine issue, carrying a great deal of valuable data, and printed on extra good paper with a mighty fine mechanical job. You have done a lot of work here and I do hope it gets the support so justly deserved." H.C.D., Portland, Oregon "It's a great service you folks have done in reprinting the Palache article as well as the other items in the first issue of the Digest." R.G.H., Des Moines, Iowa "The Digest seems to have gone over very big in this section. Many of my friends were interested so I was able to get several to join the FMA." R.H., Bloomfield, N.J. "I think this a wonderful organization (FMA) and the Franklin Mineral Digest is a very interesting document. I am proud indeed to be a part of this fine organization." E.J.A., Pittstown, N.J. "We found this Digest extremely interesting and useful and would like to dis- tribute these extra copies to some friends. I feel that every member of the club owes you a sincere vote of thanks for your efforts in producing this book." F.Z.E., Sparta, N.J. "It looks like you have done an excellent job, and you and your organization are to be commended for your efforts and objectives in wishing to preserve the informa- tion about the Franklin minerals." K.W., Trenton, N.J. "Congratulations on the first FMA Digest. For a mineral association so young, this is a truly great accomplishment. The publications alone are worth the price of mem- bership." D.H., Gettysburg, Pennsylvania "I was more than pleased to learn of the aims of the new Franklin Mineralogical Association. I should think that these aims will certainly fill a long-felt need." H.K., Union, N.J. "I was greatly interested in the copy of the Digest you sent us." E. L., Los Angeles, California "The copies of the Digest have been very well received here at the North Jersey Mineralogical Society." J.J.D., Clifton, N.J. "I must compliment you and tell you what a marvelous accomplishment you have in this volume. That this represents an enormous amount of spare-time work is evi- dent. Your material is well chosen, well edited, apparently complete and current, and beautifully presented. Again, my congratulations." C.A.B., Lansdale, Pennsylvania Franklin Mineral Digest • +• BOX No. 408 MIDDLEBURGH. NEW YORK to ray parents ANNA AND STEVE NAVRATIL had they never lived the Franklin Mineralogical Association might never have been born Franklin Mineral Digest Volume II November 1959 TABLE OF CONTENTS PAGE MEMORIAL OF CHARLES PALACHE by Clifford Frondel 1 THE MINERALS OF FRANKLIN AND STERLING HILL, SUSSEX COUNTY, NEW JERSEY by Charles Palache EXPLANATION OF GEOLOGICAL MAP OF THE FRANKLIN MINING DISTRICT 20 GEOLOGICAL MAP OF THE FRANKLIN DISTRICT, SHOWING SITES OF PRINCIPAL MINERAL LOCALITIES 21 DESCRIPTION OF THE FRANKLIN FURNACE QUADRANGLE by A. C. Spencer, H. B. Kummel, J. E. Wolff, R. D. Salisbury and Charles Palache 23 THE POST-PALACHE FRANKLIN AND STERLING HILL MINERALS (Part II) 39 A COMPARISON OF THE ORE DEPOSITS OF LANGBAN, SWEDEN, WITH THOSE OF FRANKLIN, NEW JERSEY by Charles Palache 41 The Franklin Mineral Digest is the official publication of the Franklin Mineralogical Association. It is pub- lished once a year at Middleburgh, New York. It is available through membership of two dollars a year in the Association. FOUNDED OCTOBER 29, 1957 Mailing Address FMA, Box No. 408, Middleburg'', New York Preamble to the Constitution of the Franklin Mineralogical Association We of the Franklin Mineralogical Association dedicate ourselves to the following principles and objectives: (1) to unite all individuals interested in the Franklin-Sterling Hill, Sussex County, New Jersey district and to coordinate independent activities for mutual benefit. (2) to gather and disseminate information relative to the district to all members via: a) a circulating library b) the Franklin Mineral Digest c) other means as prove workable (3) to foster a spirit of individual responsibility to the group objectives. (4) to safeguard, preserve and transmit to posterity the historical, geological and mineralog- ical knowledge pertinent to the Franklin district. (5) to honor the memory of Bauer, Berman, Palache and the other giants of the Franklin era. (6) to promote a campaign of safety-mindedness among collectors visiting the Franklin col- lecting areas. (7) to aspire to a high order of scientific inquiry. (8) to perpetuate the prominent position enjoyed by the Franklin district in the mineral- ogical world. (9) to enhance the collections of individual members. (10) to confirm the authenticity of minerals from the district. (11) to establish a mineral museum representative of, and devoted exclusively to minerals from the Franklin district. (12) to cooperate with existing groups and societies of kindred spirit. ry Memorial of Charles Palache by CLIFFORD FRONDEL Department of Mineralogy, Harvard University, Cambridge, Massachusetts Charles Palache was born July 18, 1869, and died December 5, 1954, in the eighty-sixth year of his age. One of the most eminent crystallographers and mineralogists of the world, he lived in a period of revolutionary developments in mineralogical science. Palache's ancestors belonged to a group of Sephardic Jews who at the end of the 15th Cen- tury were exiled from Portugal to Holland. Much later one family migrated to Jamaica where Charles Palache's grandfather, John, headed a plantation. For political reasons he abandoned that home in 1834, put his wife and three daughters on a ship sailing for New York, but died before he could follow them in the next boat. Three months later Palache's father, James, was born in New York City. Lured by reports of gold in California, James left his home at the age of fifteen to serve as cabin boy on a schooner rounding Cape Horn. He landed in San Francisco in 1849. There, established as a merchant, he married Helen D. Whitney, who had traveled from her home in Green Bay, Wisconsin, in a caravan of seven covered wagons. Their son, Charles Palache, was a sensitive boy who at an early age evidenced an intense interest in nature and collected objects of natural his- tory. Palache graduated from Berkeley High School, and entered the University of California in 1887. He elected the four year course in mining, since in its content there was more natural history than in any other, and graduated at the top of his class. Andrew C. Lawson was appointed Profes- sor of Geology in his senior year, and Palache returned the following year to assist Lawson in min- eralogy and to study for the doctorate, which he received in 1894. Lawson, himself at the start of a long and distinguished career, was a stimulating teacher and it is to him that Palache credited the inspiration that took him from a career in mining into mineralogy. At first Palache's interests were in field geology and petrography, and with Lawson he did the field work for the first geologic maps of the San Francisco Peninsula and the Berkeley area. In 1894, Palache left for a year of study abroad, first to work under Ferdinand Zirkel at Leipzig, where T. C. Walker and Bundjiro Koto were fellow students, and then to study with Paul Groth and Ernst Weinschenk at Munich. Other American students working in Groth's laboratory at the time were T. A. Jagger, A. B. Peck and A. S. Eakle.
Recommended publications
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • Stated Meeting
    1893.1 SEW YORK ACADEMY OF SCIENCES. 75 single day-might, in his long experience, with every possibility be depended on. SECTIONOF ASTROXOMYAND PHYSICS. Professor REESin the chair. The secretary read a paper by Mr. Herman S. naris, Fellow in Astronomy at Col‘umbia Col- lege, entitled “ Sote on Bessel’s determination of thc relative parallaxes of p and fl Cassiopei:e.” Mr. naris had re-reduced the observations of right ascension difference of the two stars made by Bessel in the years 1814 to 1816, and printed in Engel- inanii’s “Abhandlnngen ron F. W. Ijesscl,” vol. 2, p. 215. Em- ploying the duwers, proper motions of the two stnrs and introducing into the Besselian equations a term to allow for dif- ferential proper motion, Mr. Davis arrives at the value : Parallax of p relative to t) Cassiopeiz =+0. ”02 5 Off 24. Where Bessel had obtained -- 0 “.12 5 Off .29. It will be seen that the new reduction diminishes materially the probable error of the result, in spite of the fact that the in- troduction of the proper motion term into the parallax equa- tions has lessened the weight of the determination of the parallax itself. Mr. Davis’ result is in very close though perhaps acci- dental accord with that derived from Mr. Rutherfiird’s photo- graphic measures, which was + 0” .04 (Annals N. Y. Academy, rol. viii., 11. 11). Professor William Hallock read a paper on ‘’ The Theory of Geysers,” in which he described his researches upon the geysers of the Yellowstone Park, and explained their action.
    [Show full text]
  • Sarkinite Mn (Aso4)(OH)
    2+ Sarkinite Mn2 (AsO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Crystals typically thick tabular {100}, elongated, to 4 mm, short prismatic, or tabular along [010]. May be crudely spherical, granular massive. Physical Properties: Cleavage: On {100}, distinct. Fracture: Subconchoidal to uneven. Hardness = 4–5 D(meas.) = 4.08–4.18 D(calc.) = 4.20 Optical Properties: Semitransparent. Color: Flesh-red to dark blood-red, rose-red, orange, orange-brown, brown, reddish yellow to yellow; pale rose to yellow in transmitted light. Streak: Rose-red to yellow. Luster: Greasy. Optical Class: Biaxial (–). Pleochroism: Weak. Orientation: Y = b; X ∧ c = –54◦. Dispersion: r< v. Absorption: X > Z > Y. α = 1.790–1.793 β = 1.794–1.807 γ = 1.798–1.809 2V(meas.) = 83◦ Cell Data: Space Group: P 21/a. a = 12.779(2) b = 13.596(2) c = 10.208(2) β = 108◦530 Z=16 X-ray Powder Pattern: Pajsberg [Harstigen mine, near Persberg], Sweden. 3.18 (10), 3.04 (10), 3.29 (9), 3.48 (8), 2.90 (7), 2.65 (6), 6.0 (3) Chemistry: (1) (2) (3) (1) (2) (3) P2O5 0.21 ZnO 0.15 As2O5 41.60 44.09 43.23 PbO 0.25 CO2 0.76 MgO 0.98 0.19 FeO 0.13 0.02 CaO 1.40 0.29 MnO 51.60 51.77 53.38 H2O 3.06 [3.40] 3.39 CuO 0.01 insol. 0.38 Total 100.37 [99.92] 100.00 (1) Pajsberg [Harstigen mine, near Persberg], Sweden.
    [Show full text]
  • L. Jahnsite, Segelerite, and Robertsite, Three New Transition Metal Phosphate Species Ll. Redefinition of Overite, an Lsotype Of
    American Mineralogist, Volume 59, pages 48-59, 1974 l. Jahnsite,Segelerite, and Robertsite,Three New TransitionMetal PhosphateSpecies ll. Redefinitionof Overite,an lsotypeof Segelerite Pnur BnnN Moone Thc Departmcntof the GeophysicalSciences, The Uniuersityof Chicago, Chicago,Illinois 60637 ilt. lsotypyof Robertsite,Mitridatite, and Arseniosiderite Peur BmaN Moonp With Two Chemical Analvsesbv JUN Iro Deryrtrnent of GeologicalSciences, Haraard Uniuersity, Cambridge, Massrchusetts 02 I 38 Abstract Three new species,-jahnsite, segelerite, and robertsite,-occur in moderate abundance as late stage products in corroded triphylite-heterosite-ferrisicklerite-rockbridgeite masses, associated with leucophosphite,hureaulite, collinsite, laueite, etc.Type specimensare from the Tip Top pegmatite, near Custer, South Dakota. Jahnsite, caMn2+Mgr(Hro)aFe3+z(oH)rlPC)oln,a 14.94(2),b 7.14(l), c 9.93(1)A, p 110.16(8)", P2/a, Z : 2, specific gavity 2.71, biaxial (-), 2V large, e 1.640,p 1.658,t l.6lo, occurs abundantly as striated short to long prismatic crystals, nut brown, yellow, yellow-orange to greenish-yellowin color.Formsarec{001},a{100},il2oll, jl2}ll,ft[iol],/tolll,nt110],andz{itt}. Segeierite,CaMg(HrO)rFes+(OH)[POdz, a 14.826{5),b 18.751(4),c7.30(1)A, Pcca, Z : 8, specific gaavity2.67, biaxial (-), 2Ylarge,a 1.618,p 1.6t5, z 1.650,occurs sparingly as striated yellow'green prismaticcrystals, with c[00], r{010}, nlll0l and qll2l } with perfect {010} cleavage'It is the Feg+-analogueofoverite; a restudy on type overite revealsthe spacegroup Pcca and the ideal formula CaMg(HrO)dl(OH)[POr]r. Robertsite,carMna+r(oH)o(Hro){Ponlr, a 17.36,b lg.53,c 11.30A,p 96.0o,A2/a, Z: 8, specific gravity3.l,T,cleavage[l00] good,biaxial(-) a1.775,8 *t - 1.82,2V-8o,pleochroismextreme (Y, Z = deep reddish brown; 17 : pale reddish-pink), @curs as fibrous massesand small wedge- shapedcrystals showing c[001 f , a{1@}, qt031}.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Minnesota's Mineral Resources
    CHAPTER • 9 Minnesota's Mineral Resources IN MINNESOTA the production of iron ore is far more valuable economically than the total of all other mineral products, but im­ portant industries are based on Minnesota's other geological forma­ tions as well. Architectural, monumental, and structural stone are produced from granite, limestone, dolomite, and other Minnesota rocks. Gravel and sand are excavated and processed, and clay is used for many ceramic products. :Manganese in important amounts occurs in the iron ores of the Cuyuna district. Finally, although they are often not thought of as mineral products, two of our most im­ portant mineral resources are water and soil. The iron ores and mining operations of the Mesabi, Vermilion, and Cuyuna iron-bearing districts and of the southeastern lYlinnesota counties will be discussed in detail in later chapters, but a few sta­ tistics on Minnesota's iron ore industry may remind us how impor­ tant this geological heritage is. The following is an estimate of Min­ nesota's iron ore reserves, made on lYlay 1, 1961: Gross Tons Mesabi Range 500,799,179 Vermilion Range 9,755,974 Cuyuna Range 36,530,000 Fillmore County 'il,860,337 Total iron ore 549,945,490 172 MI NESOTA'S MINERAL RESOURCES The total production of iron ore in Minne ota to January 1, 1962, was 2,529,737,553 tons. Total taxes paid on iron ore to January 1, 1961 , were approximately $1,257,448,400, a very important source of funds for the state government. Slightly over 60 per cent of the total iron ore produced in the United States has come from l\1inne- ota.
    [Show full text]
  • Charlesite, a New Mineral of the Ettringite Group, from Franklin, New Jersey
    American Mineralogist, Volume 68, pages 1033-1037,1983 Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey PBre J. DuxN Department of Mineral Sciences SmithsonianInstitution, Washington,D. C. 20560 DoNero R. Peecon Department of GeologicalSciences University of Michigan, Ann Arbor, Michigan 48109 PBrnn B. LBavBNs Departmentof Geology Universityof Delaware, Newark, Delaware l97ll eNo JonN L. Beuu Franklin Mineral Museum Franklin. New Jersey 07416 Abstract Charlesite,ideally C4(AI,Si)z(SO4)2(B(OH)4)(OH,O)r2.26H2Ois a member of the ettrin- gite group from Franklin, New Jersey, and is the Al analogueof sturmanite. Chemical analysisyielded CaO27.3, Al2O3 5.1, SiO2 3.1, SO3 12.8,B2o33.2, H2O 48.6, sum : 100.1 percent.-Charlesiteis hexagonal,probable spacegroup P3lc, with a = ll.16(l), c = 21.21(2)4. The strongest lines in the X-ray powder difraction pattern (d, IlIo, hkl) are: 9.70,100, 100;5.58, 80, 110;3.855,80, ll4;2.749,70,304;2.538,70,126;2.193,70,2261 404. Charlesite occurs as simple hexagonal crystals tabular on {0001} and has a perfect {10T0}cleavage. The densityis 1.77glcm3 (obs.) and 1.79glcms (calc.). Optically, charlesite is uniaxial( -) with a : | .492(3)and e : 1.475(3).It occurswith clinohedrite,ganophyllite, xonotlite, prehnite, roeblingite and other minerals in severalparageneses at Franklin, New Jersey. Charlesite is named in honor of the late Professor Charles Palache. Introduction were approved, prior to publication, by the Commission Minerals and Mineral Names. I. M. A. The An ettringite-like mineral was first described from on New specimenwas divided into three portions.
    [Show full text]
  • List of New Mineral Names: with an Index of Authors
    415 A (fifth) list of new mineral names: with an index of authors. 1 By L. J. S~v.scs~, M.A., F.G.S. Assistant in the ~Iineral Department of the,Brltish Museum. [Communicated June 7, 1910.] Aglaurito. R. Handmann, 1907. Zeita. Min. Geol. Stuttgart, col. i, p. 78. Orthoc]ase-felspar with a fine blue reflection forming a constituent of quartz-porphyry (Aglauritporphyr) from Teplitz, Bohemia. Named from ~,Xavpo~ ---- ~Xa&, bright. Alaito. K. A. ~Yenadkevi~, 1909. BuU. Acad. Sci. Saint-P6tersbourg, ser. 6, col. iii, p. 185 (A~am~s). Hydrate~l vanadic oxide, V205. H~O, forming blood=red, mossy growths with silky lustre. Founi] with turanite (q. v.) in thct neighbourhood of the Alai Mountains, Russian Central Asia. Alamosite. C. Palaehe and H. E. Merwin, 1909. Amer. Journ. Sci., ser. 4, col. xxvii, p. 899; Zeits. Kryst. Min., col. xlvi, p. 518. Lead recta-silicate, PbSiOs, occurring as snow-white, radially fibrous masses. Crystals are monoclinic, though apparently not isom0rphous with wol]astonite. From Alamos, Sonora, Mexico. Prepared artificially by S. Hilpert and P. Weiller, Ber. Deutsch. Chem. Ges., 1909, col. xlii, p. 2969. Aloisiite. L. Colomba, 1908. Rend. B. Accad. Lincei, Roma, set. 5, col. xvii, sere. 2, p. 233. A hydrated sub-silicate of calcium, ferrous iron, magnesium, sodium, and hydrogen, (R pp, R',), SiO,, occurring in an amorphous condition, intimately mixed with oalcinm carbonate, in a palagonite-tuff at Fort Portal, Uganda. Named in honour of H.R.H. Prince Luigi Amedeo of Savoy, Duke of Abruzzi. Aloisius or Aloysius is a Latin form of Luigi or I~ewis.
    [Show full text]
  • Mineralogy of Low Grade Metamorphosed Manganese Sediments of the Urals: Petrological and Geological Applications
    Ore Geology Reviews 85 (2017) 140–152 Contents lists available at ScienceDirect Ore Geology Reviews journal homepage: www.elsevier.com/locate/oregeorev Mineralogy of low grade metamorphosed manganese sediments of the Urals: Petrological and geological applications Aleksey I. Brusnitsyn a,⁎, Elena V. Starikova b,c,IgorG.Zhukovd,e a Department of Mineralogy, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia b JSC “PolarGeo”, 24 line, 3–7, St. Petersburg 199106, Russia c Department of Geology of Mineral Deposits, St. Petersburg State University, Universitetskaya Emb. 7/9, St. Petersburg 199034, Russia d Institute of Mineralogy, Urals Branch, Russian Academy of Sciences, Miass, Chelyabinsk District 456317, Russia e National Research South Urals State University, Miass Branch, 8 July str., 10a, Miass, Chelyabinsk District, 456304, Russia article info abstract Article history: The paper describes mineralogy of the low grade metamorphosed manganese sediments, which occur in sedi- Received 25 September 2015 mentary complexes of the Pai Khoi Ridge and the Polar Urals and volcanosedimentary complexes of the Central Received in revised form 5 July 2016 and South Urals. The degree of metamorphism of the rocks studied corresponds to PT conditions of the prehnite– Accepted 7 July 2016 pumpellyite (deposits of Pai Khoi and Polar and South Urals) and green schist (deposits of the Central Urals) fa- Available online 9 July 2016 cies. One hundred and nine minerals were identified in the manganese-bearing rocks on the basis of optical and electron microscopy, X-ray diffraction, and microprobe analysis. According to the variations in the amount of Keywords: – – Manganese major minerals of the manganese rocks of the Urals, they are subdivided on carbonate (I), oxide carbonate sil- 2+ Deposit icate (II), and oxide–silicate (III) types.
    [Show full text]
  • Inrnorucrron the Mineral Roeblingite Has Been Reported from Two
    MINERALOGICAL NOTES THE AMERICAN MINERALOGIST, VOL. 51, MARCH_APRIL' 1966 NEW DATA ON ROEBLINGITE1 FnaxrrrN F. Forr, !n., Department of Geology and Mineralogy, The IJniaersity of Michigan, Ann Arbor, Michigan- INrnorucrroN The mineral roeblingite has been reported from two Iocalities: Franklin was Furnace,New Jersey,and Langban, Sweden.The Franklin material frrst describedby Penfield and Foote (1897) as dense,white, compact massesof minute prismatic crystals associatedwith axinite, willemite, datolite, barite, arsenopyrite,sphalerite, titanite, rhodonite and rhodo- chrosite,in or near the limestone-granitecontact. During an extensive mineralogical investigation of the Langban mineralsinitiated in the late 1920'sby G. Aminoff of the Natural History Museum, Stockholm, Sweden, a mineral similar in composition to roeblingite was discovered. A complete investigation of this new dis- covery demanded more reliable chemical data than was offered by Penfieldand Foote.Therefore, R. Blix (1931)performed several chemical analyseson the Franklin roeblingite in an effort to remedy the difficulty encounteredby Penfield and Foote in assigninga chemical formula. The chemical analyses from both sources are tabulated in Table I. Strunz (1957) reports the Langban roeblingite as possibly being orthorhombic with o:8.3, b:13.1, and c:12'65 A. Ho*evet' some difficulty is en- countered in obtaining a reasonable formula from the application of theseparameters to the available chemical analyses. X-nav ANar-vsrs A specimenfrom each of the localities was investigated by both powder diffraction and single crystal methods. This investigation confirmed that roeblingite found at Langban is structurally identical to the Franklin material. A list of indexed d-values for roeblingite is presented in Table II.
    [Show full text]
  • THE CRYSTAL STRUCTURE of CAHNITE, Cabaso4 (OH)4
    THE CRYSTAL STRUCTURE OF CAHNITE, CaBAsO4 (OH)4 by Charles T. Prewitt S.B., M.I.T.AAT.rc (1955) SUBMITTED IN PARTIAL YULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY (1960) Signature of Author .,. ..... .. ... .... Department of>Geolgy nd Geophysics, May 20, 1960 Certified by . t -.. 4-w.Vi 4 ... .. ... , . Thesis Supervisor Accepted by . .* . .... ... Chairman, Departmental Committee on Graduate Students THE CRYSTAL STRUCTURE OF CAHNITE, Ca2 BAs04 (OH)4 Charles T. Prewitt Submitted to the Department of Geology on May 20, 1960 in partial fulfillment of the requirements for the degree of Master of Science. Cahnite is one of the few crystals which had been assigned to crystal class 4. A precession study showed that its diffraction sphol is 4/m I-/-, which contains space groups I4, I4E, and14/. Because of the known 4 morphology, it must be assigned to space group I4. The unit cell, whose dimensions are a = 7.11A, o = 6.201, contains two formula weights of Ca BAsO (OH)L. The structure was studied with the aid of in ensity medsurements made with a single-crystal diffractometer. Patterson s ntheses were first made for projections along the c, a, and 110 directions. The atomic numbers of the atoms are in the ratio As:Ca.0:B = 33:20:8:5, so that the Patterson peaks are dominated by the atom pairs containing arsenic as one member of the pair. Since there are only two arsenic atoms in a body-centered cell, one As can be arbitrarily assigned to the origin.
    [Show full text]
  • Zincite (Zn, Mn2+)O
    Zincite (Zn, Mn2+)O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6mm. Crystals rare, typically pyramidal, hemimorphic, with large {0001}, to 2.5 cm, rarely curved; in broad cleavages, foliated, granular, compact, massive. Twinning: On {0001}, with composition plane {0001}. Physical Properties: Cleavage: {1010}, perfect; parting on {0001}, commonly distinct. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4 VHN = 205–221 (100 g load). D(meas.) = 5.66(2) D(calc.) = 5.6730 Rare pale yellow fluorescence under LW UV. Optical Properties: Translucent, transparent in thin fragments. Color: Yellow-orange to deep red, rarely yellow, green, colorless; deep red to yellow in transmitted light; light rose-brown in reflected light, with strong red to yellow internal reflections. Streak: Yellow-orange. Luster: Subadamantine to resinous. Optical Class: Uniaxial (+). ω = 2.013 = 2.029 R1–R2: (400) 13.0–13.6, (420) 12.8–13.2, (440) 12.6–12.8, (460) 12.3–12.6, (480) 12.1–12.4, (500) 12.0–12.2, (520) 11.8–12.1, (540) 11.8–12.0, (560) 11.7–11.9, (580) 11.6–11.8, (600) 11.4–11.7, (620) 11.3–11.6, (640) 11.2–11.5, (660) 11.1–11.4, (680) 11.0–11.2, (700) 11.0–11.2 Cell Data: Space Group: P 63mc (synthetic). a = 3.24992(5) c = 5.20658(8) Z = 2 X-ray Powder Pattern: Synthetic. 2.476 (100), 2.816 (71), 2.602 (56), 1.626 (40), 1.477 (35), 1.911 (29), 1.379 (28) Chemistry: (1) (2) SiO2 0.08 FeO 0.01 0.23 MnO 0.27 0.29 ZnO 99.63 98.88 Total 99.99 [99.40] (1) Sterling Hill, New Jersey, USA.
    [Show full text]