Epidermal Growth Factor, Latrophilin, and Seven Transmembrane Domain-Containing Protein 1 Marker, a Novel Angiogenesis Marker

Total Page:16

File Type:pdf, Size:1020Kb

Epidermal Growth Factor, Latrophilin, and Seven Transmembrane Domain-Containing Protein 1 Marker, a Novel Angiogenesis Marker Journal name: OncoTargets and Therapy Article Designation: Review Year: 2015 Volume: 8 OncoTargets and Therapy Dovepress Running head verso: Serban et al Running head recto: ELTD1 structure, function, and its role in angiogenesis open access to scientific and medical research DOI: http://dx.doi.org/10.2147/OTT.S93843 Open Access Full Text Article REVIEW Epidermal growth factor, latrophilin, and seven transmembrane domain-containing protein 1 marker, a novel angiogenesis marker Florentina Serban Abstract: Epidermal growth factor, latrophilin, and seven transmembrane domain-containing Stefan-Alexandru Artene protein 1 on chromosome 1 (ELTD1), an orphan adhesion G-protein coupled receptor, was Ada Maria Georgescu reported as a regulator of angiogenesis, also involved in cancer progression and development. Stefana Oana Purcaru More recently, ELTD1 was identified as a potential new tumor marker for high-grade glioma. Daniela Elise Tache ELTD1, belongs to the G-protein coupled receptor superfamily that comprises the biggest Oana Alexandru receptor family in the human genome. Following the discovery of ELTD1 almost a decade ago, only a few research groups have attempted to find its role in normal and tumor cells, important Anica Dricu information about this receptor remaining still unknown. The ELTD1 ligand has not currently Department of Biochemistry, been identified and intracellular signaling studies have not yet been performed in normal or University of Medicine and Pharmacy For personal use only. of Craiova, Craiova, Romania tumor cells. Although the current published data on ELTD1 function and structure are rather limited, this receptor seems to be very important, not only as biomarker, but also as molecular target in glioblastoma. This review summarizes and discusses the current knowledge on ELTD1 structure, function, and its role in both physiological and tumoral angiogenesis. Keywords: ELTD1, angiogenesis, glioma, biomarker Introduction Since the early ages of oncology, medical researchers have strived to discover new biomarkers, which can be correlated with early stages of cancer development, tumor progression, and resistance to therapy. With the discovery of targeted therapy, some of OncoTargets and Therapy downloaded from https://www.dovepress.com/ by 54.191.40.80 on 10-Sep-2017 these markers became interesting therapeutic targets due to their implication in intricate pathophysiological processes involved in cancer growth, invasion, or resistance to curative approaches. One of the most studied pathophysiological events involved in cancer development and progression is angiogenesis. Depriving nascent cancer cells of their nutrients provided by aberrant, newly formed blood vessels became an attrac- tive approach that, in theory, could deter or even reverse neoplastic growth. However, both early and more recent trials have yielded limited results due to the complex nature of microvasculature in each cancer type, the multiple pathways implicated in cell signaling, and the vast number of genes responsible for both normal and cancer angiogenesis.1–5 Together, these variables can confer both natural and acquired resis- tance to anti-angiogenic therapy, leading to mixed clinical results.6–8 Many angiogenic inhibitors, designated for cancer treatment, are currently in preclinical and clinical use. The vascular endothelial growth factor receptor family is a well-studied angiogenic Correspondence: Anica Dricu Department of Biochemistry, University class of receptors9–11 that have been constantly used to develop new cancer therapies of Medicine and Pharmacy of Craiova, for quite a while now.12–14 The therapeutic results, however, for many malignant dis- Petru Rares 2, 200349, Craiova, Romania Email [email protected] eases, in which vascular endothelial growth factor receptor dysfunction is believed submit your manuscript | www.dovepress.com OncoTargets and Therapy 2015:8 3767–3774 3767 Dovepress © 2015 Serban et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further http://dx.doi.org/10.2147/OTT.S93843 permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php Powered by TCPDF (www.tcpdf.org) 1 / 1 Serban et al Dovepress to drive tumor angiogenesis, have been ineffective. Future as part of the secretin family, but was later revealed to be a approaches should include inhibition of multiple pathways distinct group. As a particular feature, this family presents an involved in cancer microvasculature formation or the dis- unusually elongated N-terminal ectodomain, which is often covery of new angiogenesis markers, more specific for each perceived as combinations of different adhesion-linked motifs: cancer type.15–18 cadherins,34 thrombospondins,35,36 leucine-rich repeats,37 and One such possible candidate is epidermal growth factor, epithelial growth factor (EGF)-like domain.38,39 Members latrophilin, and seven transmembrane domain-containing of the adhesion family are implicated in multiple cellular protein 1 on chromosome 1 (ELTD1), a biomarker recently functions such as cytoskeletal regulation,40–43 planar cell linked to both normal and pathological angiogenesis.19,20 polarity,42,44,45 cell adhesion and migration,46–48 cellular pro- An editorial article linked ELTD1 levels to how the human liferation and death,35,49,50 hematopoiesis, immunity,51–53 and organism responds to hematopoietic stem cell transplant by angiogenesis.19,54–57 The adhesion family includes the latrophi- developing graft-versus-host disease.21 Using complementary lin-like subfamily, with its four members: the orphan ELTD1 DNA microarray, another study also found that ELTD1 was receptor, as well as the latrophilin 1, 2, and 3 receptors.58 significantly upregulated in patients with ulcerative colitis Nechiporuk et al27 mapped the ELTD1 gene on the with dysplastic lesions when compared with normal, nondys- 1p33–p32 band, belonging to chromosome 1. The gene plastic, and colic mucosa.22 Upregulation of the ELTD1 gene contains 15 exons having two splice variants: a full-length was observed in studies describing genomic adaption to high version and a shorter variant represented by a fraction of a altitudes in the Andean population,23 cannabis use disorders,24 transmembrane domain.59 The gene encodes a 3,527 nucle- genetic predisposition for obesity in both humans and pigs,25 otide transcript, which further translates into a 690 amino acid and even resistance to therapy in cattle afflicted by ticks.26 protein. The ELTD1 receptor is formed of a large extracel- Initially mentioned in 2001, as a receptor normally lular domain, a seven transmembrane domain coupled with a regulated in the human heart,27 ELTD1 has been recently short cytoplasmic tail. The extracellular domain contains an linked to the progression and development of glioblastoma N-terminal region, an EGF-like domain, a calcium-binding For personal use only. multiforme (GBM),28,29 a particularly aggressive brain tumor EGF domain, and a GPCR proteolysis site. The cytoplasmic with a very bleak prognosis. domain contains a tyrosine kinase phosphorylation site, Although it was discovered 14 years ago,27 in the scientific suggested to be involved in receptor intracellular signaling literature, only a few published works have dealt directly with (Figure 1).27 Unfortunately, no information is yet available this topic. The current review is an analysis of the information in current literature on the downstream signaling pathways currently available on ELTD1. implicated in signal transduction or the ligands that bind to the ELTD1 receptor. Origin and structure of the ELTD1 receptor ELTD1 implication in angiogenesis Ontogenetically, ELTD1 belongs to the G-protein coupled Due to the low number of studies concerning ELTD1, its OncoTargets and Therapy downloaded from https://www.dovepress.com/ by 54.191.40.80 on 10-Sep-2017 receptor (GPCR) superfamily, which comprises the big- roles in both physiological and pathological angiogenesis gest receptor family in the human genome. Also called are quite unknown. In the first study published in this area, the 7α-helicases transmembrane receptors, the GPCR Nechiporuk et al27 asserted that the ELTD1 receptor was superfamily transducts signals from the extracellular to the highly expressed in cardiomyocytes and smooth muscle cells intracellular domain using guanine-binding proteins. The of both blood vessels and bronchi, in murine models. ELTD1 GPCR superfamily is involved in a multitude of human regulation was also linked to the switch between hyperplastic physiological processes, pertaining to different areas such and hypertrophic evolution in the development of cardio- as chemotaxis, smell, hormone secretion, taste, vision, or myocytes during the physiological differentiation process, inflammation.30–32 in both human and rat models. The receptor’s presence Containing over 900 members, the GPCR superfamily in the coronary arteries also raises further question marks comprises five major families: glutamate (22 members), regarding its implication in coronary angiogenesis.27 More rhodopsin (701 members), adhesion
Recommended publications
  • FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron Report FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development Matthew L. O’Sullivan,1,5 Joris de Wit,1,5 Jeffrey N. Savas,2 Davide Comoletti,3 Stefanie Otto-Hitt,1,6 John R. Yates III,2 and Anirvan Ghosh1,4,* 1Neurobiology Section, Division of Biology, University of California San Diego, La Jolla, CA 92093, USA 2Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA 3Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA 4CNS Discovery, F. Hoffmann-La Roche, 4070 Basel, Switzerland 5These authors contributed equally to this work 6Present address: Department of Natural Sciences, Carroll College, Helena, MT 59625, USA *Correspondence: [email protected] DOI 10.1016/j.neuron.2012.01.018 SUMMARY much effort has been expended investigating the mechanisms of a-latrotoxin action (Su¨ dhof, 2001), nothing is known about Latrophilins (LPHNs) are a small family of G protein- the endogenous function of latrophilins in vertebrates. Further coupled receptors known to mediate the massive evidence for the importance of latrophilins in the proper synaptic exocytosis caused by the black widow functioning of neural circuits comes from recent human spider venom a-latrotoxin, but their endogenous genetics studies that have linked LPHN3 mutations to attention ligands and function remain unclear. Mutations in deficit hyperactivity disorder (ADHD), a common and highly LPHN3 are strongly associated with attention deficit heritable developmental psychiatric disorder (Arcos-Burgos et al., 2010; Domene´ et al., 2011; Jain et al., 2011; Ribase´ s hyperactivity disorder, suggesting a role for latrophi- et al., 2011).
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • General Discussion
    UvA-DARE (Digital Academic Repository) EGF-TM7 receptors: A diverse and still evolving family of receptors on the leukocyte surface Matmati, M. Publication date 2008 Link to publication Citation for published version (APA): Matmati, M. (2008). EGF-TM7 receptors: A diverse and still evolving family of receptors on the leukocyte surface. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Chapter 6 General Discussion GENERAL DISCUSSION Since their identification, starting about 15 years ago, a growing amount of data has accumulated about the structure, the expression, the ligands and, more recently, also the functional implications of EGF-TM7 receptors. Studies with antibody treatment and gene targeting in mice and antibody treatment of human cells in vitro, led to the implication of EGF-TM7 receptors in the trafficking of granulocytes, the generation of efferent antigen specific regulatory T cells and the potentiation of different granulocyte effector functions [1-4].
    [Show full text]
  • Supplementary Data
    Supplemental Data A novel mouse model of X-linked nephrogenic diabetes insipidus: Phenotypic analysis and therapeutic implications Jian Hua Li, Chung-Lin Chou, Bo Li, Oksana Gavrilova, Christoph Eisner, Jürgen Schnermann, Stasia A. Anderson, Chu-Xia Deng, Mark A. Knepper, and Jürgen Wess Supplemental Methods Metabolic cage studies. Animals were maintained in mouse metabolic cages (Hatteras Instruments, Cary, NC) under controlled temperature and light conditions (12 hr light and dark cycles). Mice received a fixed daily ration of 6.5 g of gelled diet per 20 g of body weight per day. The gelled diet was composed of 4 g of Basal Diet 5755 (Test Diet, Richmond, IN), 2.5 ml of deionized water, and 65 mg agar. Preweighted drinking water was provided ad libitum during the course of the study. Mice were acclimated in the metabolic cages for 1-2 days. Urine was collected under mineral oil in preweighted collection vials for successive 24 hr periods. Analysis of GPCR expression in mouse IMCD cells via TaqMan real-time qRT-PCR. Total RNA prepared from mouse IMCD tubule suspensions was reverse transcribed as described under Experimental Procedures. Tissues from ten 10-week old C57BL/6 WT mice were collected and pooled for each individual experiment. cDNA derived from 640 ng of RNA was mixed with an equal volume of TaqMan gene expression 2 x master mix (Applied Biosystems, Foster City, CA). 100 μl-aliquots of this mixture (corresponding to 80 ng of RNA) were added to each of the 8 fill ports of a 384-well plate of a mouse GPCR array panel (Applied Biosystems).
    [Show full text]
  • Lgr5 Homologues Associate with Wnt Receptors and Mediate R-Spondin Signalling
    ARTICLE doi:10.1038/nature10337 Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling Wim de Lau1*, Nick Barker1{*, Teck Y. Low2, Bon-Kyoung Koo1, Vivian S. W. Li1, Hans Teunissen1, Pekka Kujala3, Andrea Haegebarth1{, Peter J. Peters3, Marc van de Wetering1, Daniel E. Stange1, Johan E. van Es1, Daniele Guardavaccaro1, Richard B. M. Schasfoort4, Yasuaki Mohri5, Katsuhiko Nishimori5, Shabaz Mohammed2, Albert J. R. Heck2 & Hans Clevers1 The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues. The genes Lgr4, Lgr5 and Lgr6 encode orphan 7-transmembrane 4–5 post-induction onwards.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Reck and Gpr124 Activate Canonical Wnt Signaling To
    RECK AND GPR124 ACTIVATE CANONICAL WNT SIGNALING TO CONTROL MAMMALIAN CENTRAL NERVOUS SYSTEM ANGIOGENESIS AND BLOOD-BRAIN BARRIER REGULATION by Chris Moonho Cho A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July 2018 © Chris Moonho Cho 2018 All rights reserved Abstract Canonical Wnt signaling plays a pivotal role in promoting central nervous system (CNS) angiogenesis and blood-brain barrier (BBB) formation and maintenance. Specifically, Wnt7a and Wnt7b are required for vascular development in the forebrain and ventral spinal cord. Yet, how these two ligands – among the 19 mammalian Wnts – are selectively communicated to Frizzled receptors expressed on endothelial cells (ECs) remains largely unclear. In this thesis, we propose a novel paradigm for Wnt specificity. We have identified two EC surface proteins – orphan receptor Gpr124, and more recently, GPI-anchored Reck (reversion-inducing cysteine-rich protein with Kazal motifs) – as essential receptor co-factors that assemble into a multi-protein complex with Wnt7a/7b and Frizzled for the development of the mammalian neurovasculature. Specifically, we show that EC-specific reduction in Reck impairs CNS angiogenesis and that EC-specific postnatal loss of Reck, combined with loss of Norrin, impairs BBB maintenance. We identify the critical domains of both Reck and Gpr124 that are required for Wnt activity, and demonstrate that these regions are important for ii direct binding and complex formation. Importantly, weakening this interaction by targeted mutagenesis reduces Reck-Gpr124 stimulation of Wnt7a signaling in cell culture and impairs CNS angiogenesis. Finally, a soluble Gpr124 probe binds specifically to cells expressing Frizzled (Fz), Wnt7a or Wnt7b, and Reck; and a soluble Reck probe binds specifically to cells expressing Fz, Wnt7a or Wnt7b, and Gpr124.
    [Show full text]
  • Profiling G Protein-Coupled Receptors of Fasciola Hepatica Identifies Orphan Rhodopsins Unique to Phylum Platyhelminthes
    bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Profiling G protein-coupled receptors of Fasciola hepatica 2 identifies orphan rhodopsins unique to phylum 3 Platyhelminthes 4 5 Short title: Profiling G protein-coupled receptors (GPCRs) in Fasciola hepatica 6 7 Paul McVeigh1*, Erin McCammick1, Paul McCusker1, Duncan Wells1, Jane 8 Hodgkinson2, Steve Paterson3, Angela Mousley1, Nikki J. Marks1, Aaron G. Maule1 9 10 11 1Parasitology & Pathogen Biology, The Institute for Global Food Security, School of 12 Biological Sciences, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn 13 Road, Belfast, BT9 7BL, UK 14 15 2 Institute of Infection and Global Health, University of Liverpool, Liverpool, UK 16 17 3 Institute of Integrative Biology, University of Liverpool, Liverpool, UK 18 19 * Corresponding author 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 G protein-coupled receptors (GPCRs) are established drug targets. Despite their 24 considerable appeal as targets for next-generation anthelmintics, poor understanding 25 of their diversity and function in parasitic helminths has thwarted progress towards 26 GPCR-targeted anti-parasite drugs.
    [Show full text]
  • The Role of the Serotonergic System and the Effects of Antidepressants During Brain Development Examined Using in Vivo Pet Imaging and in Vitro Receptor Binding
    From THE DEPARTMENT OF CLINICAL NEUROSCIENCE Karolinska Institutet, Stockholm, Sweden THE ROLE OF THE SEROTONERGIC SYSTEM AND THE EFFECTS OF ANTIDEPRESSANTS DURING BRAIN DEVELOPMENT EXAMINED USING IN VIVO PET IMAGING AND IN VITRO RECEPTOR BINDING Stal Saurav Shrestha Stockholm 2014 Cover Illustration: Voxel-wise analysis of the whole monkey brain using the PET radioligand, [11C]DASB showing persistent serotonin transporter upregulation even after more than 1.5 years of fluoxetine discontinuation. All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Universitetsservice-AB © Stal Saurav Shrestha, 2014 ISBN 978-91-7549-522-4 Serotonergic System and Antidepressants During Brain Development To my family Amaze yourself ! Stal Saurav Shrestha, 2014 The Department of Clinical Neuroscience The role of the serotonergic system and the effects of antidepressants during brain development examined using in vivo PET imaging and in vitro receptor binding AKADEMISK AVHANDLING som för avläggande av medicine doktorsexamen vid Karolinska Institutet offentligen försvaras i CMM föreläsningssalen L8:00, Karolinska Universitetssjukhuset, Solna THESIS FOR DOCTORAL DEGREE (PhD) Stal Saurav Shrestha Date: March 31, 2014 (Monday); Time: 10 AM Venue: Center for Molecular Medicine Lecture Hall Floor 1, Karolinska Hospital, Solna Principal Supervisor: Opponent: Robert B. Innis, MD, PhD Klaus-Peter Lesch, MD, PhD National Institutes of Health University of Würzburg Department of NIMH Department
    [Show full text]
  • Flow Reagents Single Color Antibodies CD Chart
    CD CHART CD N° Alternative Name CD N° Alternative Name CD N° Alternative Name Beckman Coulter Clone Beckman Coulter Clone Beckman Coulter Clone T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells T Cells B Cells Granulocytes NK Cells Macrophages/Monocytes Platelets Erythrocytes Stem Cells Dendritic Cells Endothelial Cells Epithelial Cells CD1a T6, R4, HTA1 Act p n n p n n S l CD99 MIC2 gene product, E2 p p p CD223 LAG-3 (Lymphocyte activation gene 3) Act n Act p n CD1b R1 Act p n n p n n S CD99R restricted CD99 p p CD224 GGT (γ-glutamyl transferase) p p p p p p CD1c R7, M241 Act S n n p n n S l CD100 SEMA4D (semaphorin 4D) p Low p p p n n CD225 Leu13, interferon induced transmembrane protein 1 (IFITM1). p p p p p CD1d R3 Act S n n Low n n S Intest CD101 V7, P126 Act n p n p n n p CD226 DNAM-1, PTA-1 Act n Act Act Act n p n CD1e R2 n n n n S CD102 ICAM-2 (intercellular adhesion molecule-2) p p n p Folli p CD227 MUC1, mucin 1, episialin, PUM, PEM, EMA, DF3, H23 Act p CD2 T11; Tp50; sheep red blood cell (SRBC) receptor; LFA-2 p S n p n n l CD103 HML-1 (human mucosal lymphocytes antigen 1), integrin aE chain S n n n n n n n l CD228 Melanotransferrin (MT), p97 p p CD3 T3, CD3 complex p n n n n n n n n n l CD104 integrin b4 chain; TSP-1180 n n n n n n n p p CD229 Ly9, T-lymphocyte surface antigen p p n p n
    [Show full text]
  • Molecular Characterization of Clonal Human Renal Forming Cells Cohen-Zontag Osnat , Gershon Rotem , Harari-Steinberg Orit , Kant
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.978254; this version posted March 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Molecular characterization of clonal human renal forming cells Cohen-Zontag Osnat1,7,*, Gershon Rotem1,7,*, Harari-Steinberg Orit1,7,*, Kanter Itamar4, Omer Dorit1,7 , Pleniceanu Oren1,7, Tam Gal4, Oriel Sarit4, Ben-Hur Herzl8,9 , Katz Guy1,3,5,7, Zohar Dotan2,7, Kalisky Tomer4,#, Dekel Benjamin1, 6,7,#,^, Pode- Shakked Naomi1,3,7,#. 1Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel 2Dept of Urology, Sheba Medical Center, Tel-Hashomer, Israel 3The Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel 4Faculty of Engineering and Bar-Ilan Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan, Israel. 5The Joseph Buchman Gynecology and Maternity Center, Sheba Medical Center, Tel- Hashomer, Israel 6Division of Pediatric Nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel 7Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel 8L.E.M. Laboratory of Early Detection, Nes Ziona, Israel 9Department of Obstetrics and Gynecology, Assaf Harofeh Medical Center, Tzrifin, Israel *These first authors contributed equally to this work #These senior authors contributed equally to this work ^Correspondence: Benjamin Dekel MD, PhD Pediatric Stem Cell Research Institute Edmond & Lily Safra Children's Hospital, Sheba Medical Center E-mails: [email protected] or [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.03.05.978254; this version posted March 6, 2020.
    [Show full text]
  • ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed In
    Edinburgh Research Explorer ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed in Mammalian Monocyte-Macrophages Citation for published version: Waddell, L, Lefevre, L, Bush, S, Raper, A, Young, R, Lisowski, Z, McCulloch, M, Muriuki, C, Sauter, K, Clark, E, Irvine, KN, Pridans, C, Hope, J & Hume, D 2018, 'ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed in Mammalian Monocyte-Macrophages' Frontiers in Immunology, vol. 9, 2246. DOI: 10.3389/fimmu.2018.02246 Digital Object Identifier (DOI): 10.3389/fimmu.2018.02246 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Frontiers in Immunology General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 05. Apr. 2019 ORIGINAL RESEARCH published: 01 October 2018 doi: 10.3389/fimmu.2018.02246 ADGRE1 (EMR1, F4/80) Is a Rapidly-Evolving Gene Expressed in Mammalian Monocyte-Macrophages Lindsey A. Waddell 1†, Lucas Lefevre 1†, Stephen J. Bush 2†, Anna Raper 1, Rachel Young 1, Zofia M.
    [Show full text]