FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Edinburgh Research Explorer
Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S. -
ADGRE2-NTF Is Regulated by Site- Specific N-Glycosylation
www.nature.com/scientificreports OPEN Membrane-association of EMR2/ ADGRE2-NTF is regulated by site- specifc N-glycosylation Received: 19 December 2017 Yi-Shu Huang1,4, Nien-Yi Chiang1, Gin-Wen Chang1 & Hsi-Hsien Lin1,2,3 Accepted: 27 February 2018 The evolutionarily conserved adhesion G protein-coupled receptors (aGPCRs) play critical roles in Published: xx xx xxxx biological processes as diverse as brain development, cell polarity and innate immune functions. A defning feature of aGPCRs is the GPCR autoproteolysis inducing (GAIN) domain capable of self- catalytic cleavage, resulting in the generation of an extracellular N-terminal fragment (NTF) and a seven-transmembrane C-terminal fragment (CTF) involved in the cellular adhesion and signaling functions, respectively. Interestingly, two diferent NTF subtypes have previously been identifed, namely an NTF that couples non-covalently with the CTF and a membrane-associated NTF that tethers on cell surface independently. The two NTF subtypes are expected to regulate aGPCR signaling via distinct mechanisms however their molecular characteristics are largely unknown. Herein, the membrane-associated NTF of EMR2/ADGRE2 is investigated and found to be modifed by diferential N-glycosylation. The membrane association of EMR2-NTF occurs in post-ER compartments and site- specifc N-glycosylation in the GAIN domain is involved in modulating its membrane-association ability. Finally, a unique amphipathic α-helix in the GAIN domain is identifed as a putative membrane anchor of EMR2-NTF. These results provide novel insights into the complex interaction and activation mechanisms of aGPCRs. Characterized by a long extracellular domain (ECD) with cell-adhesion functions and a seven-transmembrane (7TM) domain with signaling functions, the adhesion G protein-coupled receptors (aGPCRs) have been impli- cated in diverse biological activities and human diseases1. -
Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile
Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile Julien Patenaude and Claude Perreault This information is current as J Immunol 2016; 196:4760-4770; Prepublished online 29 of October 1, 2021. April 2016; doi: 10.4049/jimmunol.1502499 http://www.jimmunol.org/content/196/11/4760 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2016/04/29/jimmunol.150249 Material 9.DCSupplemental References This article cites 65 articles, 18 of which you can access for free at: http://www.jimmunol.org/content/196/11/4760.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile Julien Patenaude and Claude Perreault In order to understand the role of mesenchymal cells (MCs) in the adult thymus, we performed whole transcriptome analyses of primary thymic, bone, and skin MCs. -
Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners. -
New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation
International Journal of Molecular Sciences Review New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation Sandra Berndt * and Ines Liebscher Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-341-9722175 Abstract: Src family kinases (SFKs) are key regulators of cell proliferation, differentiation, and survival. The expression of these non-receptor tyrosine kinases is strongly correlated with cancer development and tumor progression. Thus, this family of proteins serves as an attractive drug target. The activation of SFKs can occur via multiple signaling pathways, yet many of them are poorly understood. Here, we summarize the current knowledge on G protein-coupled receptor (GPCR)- mediated regulation of SFKs, which is of considerable interest because GPCRs are among the most widely used pharmaceutical targets. This type of activation can occur through a direct interaction between the two proteins or be allosterically regulated by arrestins and G proteins. We postulate that a rearrangement of binding motifs within the active conformation of arrestin-3 mediates Src regulation by comparison of available crystal structures. Therefore, we hypothesize a potentially different activation mechanism compared to arrestin-2. Furthermore, we discuss the probable direct regulation of SFK by GPCRs and investigate the intracellular domains of exemplary GPCRs with conserved polyproline binding motifs that might serve as scaffolding domains to allow such a direct interaction. Large intracellular domains in GPCRs are often understudied and, in general, not much Citation: Berndt, S.; Liebscher, I. is known of their contribution to different signaling pathways. -
G Protein-Coupled Receptors at the Crossroad Between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts
International Journal of Molecular Sciences Review G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts Ernestina M. De Francesco 1,2, Federica Sotgia 3, Robert B. Clarke 2, Michael P. Lisanti 3 and Marcello Maggiolini 1,* ID 1 Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy; [email protected] 2 Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK; [email protected] 3 Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK; [email protected] (F.S.); [email protected] (M.P.L.) * Correspondence: [email protected]; Tel.: +39-0984-493076 Received: 30 October 2017; Accepted: 11 December 2017; Published: 14 December 2017 Abstract: G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical biological responses. As GPCRs can be activated by an extensive range of factors including hormones, neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases. In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of aberrant GPCR signaling could represent a promising target in anticancer therapy. -
1 Novel Expression Signatures Identified by Transcriptional Analysis
ARD Online First, published on October 7, 2009 as 10.1136/ard.2009.108043 Ann Rheum Dis: first published as 10.1136/ard.2009.108043 on 7 October 2009. Downloaded from Novel expression signatures identified by transcriptional analysis of separated leukocyte subsets in SLE and vasculitis 1Paul A Lyons, 1Eoin F McKinney, 1Tim F Rayner, 1Alexander Hatton, 1Hayley B Woffendin, 1Maria Koukoulaki, 2Thomas C Freeman, 1David RW Jayne, 1Afzal N Chaudhry, and 1Kenneth GC Smith. 1Cambridge Institute for Medical Research and Department of Medicine, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK 2Roslin Institute, University of Edinburgh, Roslin, Midlothian, EH25 9PS, UK Correspondence should be addressed to Dr Paul Lyons or Prof Kenneth Smith, Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Hills Road, Cambridge, CB2 0XY, UK. Telephone: +44 1223 762642, Fax: +44 1223 762640, E-mail: [email protected] or [email protected] Key words: Gene expression, autoimmune disease, SLE, vasculitis Word count: 2,906 The Corresponding Author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence (or non-exclusive for government employees) on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in Annals of the Rheumatic Diseases and any other BMJPGL products to exploit all subsidiary rights, as set out in their licence (http://ard.bmj.com/ifora/licence.pdf). http://ard.bmj.com/ on September 29, 2021 by guest. Protected copyright. 1 Copyright Article author (or their employer) 2009. -
Characterization of the Teneurin C-Terminal Associated Peptide (TCAP) and Latrophilin Ligand-Receptor Pair in an Immortalized Skeletal Muscle Cell Line
Characterization of the Teneurin C-terminal Associated Peptide (TCAP) and Latrophilin Ligand-Receptor Pair in an Immortalized Skeletal Muscle Cell Line by Thomas Dodsworth A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Cell and Systems Biology University of Toronto Ⓒ Copyright by Thomas Dodsworth (2019) Characterization of the Teneurin C-terminal Associated Peptide (TCAP) and Latrophilin Ligand-Receptor Pair in an Immortalized Skeletal Muscle Cell Line Thomas Dodsworth Master of Science Graduate Department of Cell and Systems Biology University of Toronto 2019 Abstract Teneurin C-terminal associated peptide (TCAP) is an ancient and conserved bioactive peptide that is evolutionarily related to corticotropin releasing factor (CRF). Recently, synthetic TCAP-1 was shown to increase cellular energy availability and alter contractile performance in rodent skeletal muscle. However, the exact receptor signalling mechanism through which this occurs is unknown. Based on evidence of their interaction in vitro, we hypothesized that TCAP-1 signals through latrophilins—a family of Adhesion G-protein coupled receptors—to elicit its effects in muscle. To test this, I knocked-down and knocked-out latrophilins in the immortalized mouse myoblast C2C12 cell line by small interfering RNA (siRNA) and CRISPR/Cas9 gene editing methods, respectively, and examined the efficacy of TCAP-1 in knockdown and knockout cells. We determined that latrophilin-1 is necessary for TCAP-1-mediated increases in intracellular calcium, NADH turnover, and PGC-1a expression. This establishes, for the first time, that the TCAP-latrophilin ligand-receptor pair has a functional role in skeletal muscle. ii Acknowledgements My completion of this degree would not have been possible without the support of these incredible individuals. -
Latrophilins Are Essential for Endothelial Junctional Fluid Shear Stress Mechanotransduction
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932822; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Latrophilins are essential for endothelial junctional fluid shear stress mechanotransduction Keiichiro Tanaka1,*, Andrew Prendergast1, Jared Hintzen1, Abhishek Kumar1, Minhwan Chung1, Anthony Koleske2, Jason Crawford3, Stefania Nicoli1 and Martin A. Schwartz1,4,5,* 1 Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511, USA 2 Dept Molecular Biochemistry and Biophysics 3 Dept Chemistry 4 Dept of Cell Biology 5 Dept Biomedical Engineering Running title: Latrophilins in shear stress sensing *Authors for correspondence: [email protected]; [email protected]; bioRxiv preprint doi: https://doi.org/10.1101/2020.02.03.932822; this version posted February 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Endothelial cell (EC) responses to fluid shear stress (FSS) are crucial for vascular development, adult physiology and disease. PECAM1 is an important transducer but earlier events remain poorly understood. We therefore investigated heterotrimeric G proteins in FSS sensing. Knockdown (KD) in ECs of single Gα proteins had little effect but combined depletion of Gαi and Gαq/11 blocked all known PECAM1-dependent responses. Re-expression of Gαi2 and Gαq but not Gαi1 and Gαi3 rescued these effects. Sequence alignment and mutational studies identified that K307 in Gαi2 and Gq/11 (Q306 in Gαi1/3), determines participation in flow signaling. -
Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2013 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons Recommended Citation Bogard, Amy Sue , "Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells" (2013). Theses and Dissertations (ETD). Paper 330. http://dx.doi.org/10.21007/etd.cghs.2013.0029. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Molecular Therapeutics and Cell Signaling Research Advisor Rennolds Ostrom, Ph.D. Committee Elizabeth Fitzpatrick, Ph.D. Edwards Park, Ph.D. Steven Tavalin, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2013.0029 Comments Six month embargo expired June 2014 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/330 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Amy Sue Bogard December 2013 Copyright © 2013 by Amy Sue Bogard. -
Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’S Disease
SAGE-Hindawi Access to Research International Journal of Alzheimer’s Disease Volume 2010, Article ID 604792, 56 pages doi:10.4061/2010/604792 Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’s Disease Wayne Chadwick, 1 Randall Brenneman,1, 2 Bronwen Martin,3 and Stuart Maudsley1 1 Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA 2 Miller School of Medicine, University of Miami, Miami, FL 33124, USA 3 Metabolism Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA Correspondence should be addressed to Stuart Maudsley, [email protected] Received 17 May 2010; Accepted 27 July 2010 Academic Editor: Gemma Casadesus Copyright © 2010 Wayne Chadwick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Various animal models of Alzheimer’s disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins. -
Repertoires of G Protein-Coupled Receptors for Ciona-Specific Neuropeptides
Repertoires of G protein-coupled receptors for Ciona-specific neuropeptides Akira Shiraishia, Toshimi Okudaa, Natsuko Miyasakaa, Tomohiro Osugia, Yasushi Okunob, Jun Inouec, and Honoo Satakea,1 aBioorganic Research Institute, Suntory Foundation for Life Sciences, 619-0284 Kyoto, Japan; bDepartment of Biomedical Intelligence, Graduate School of Medicine, Kyoto University, 606-8507 Kyoto, Japan; and cMarine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 904-0495 Okinawa, Japan Edited by Thomas P. Sakmar, The Rockefeller University, New York, NY, and accepted by Editorial Board Member Jeremy Nathans March 11, 2019 (received for review September 26, 2018) Neuropeptides play pivotal roles in various biological events in the conservesagreaternumberofneuropeptide homologs than proto- nervous, neuroendocrine, and endocrine systems, and are corre- stomes (e.g., Caenorhabditis elegans and Drosophila melanogaster) lated with both physiological functions and unique behavioral and other invertebrate deuterostomes (7–13), confirming the evo- traits of animals. Elucidation of functional interaction between lutionary and phylogenetic relatedness of ascidians to vertebrates. neuropeptides and receptors is a crucial step for the verification of The second group includes Ciona-specific novel neuropeptides, their biological roles and evolutionary processes. However, most namely Ci-NTLPs, Ci-LFs, and Ci-YFV/Ls (SI Appendix,Fig. receptors for novel peptides remain to be identified. Here, we S1 and Table S1), which share neither consensus motifs nor se- show the identification of multiple G protein-coupled receptors quence similarity with any other peptides (8, 9). The presence of (GPCRs) for species-specific neuropeptides of the vertebrate sister both homologous and species-specific neuropeptides highlights this group, Ciona intestinalis Type A, by combining machine learning phylogenetic relative of vertebrates as a prominent model organism and experimental validation.