The Role of the Serotonergic System and the Effects of Antidepressants During Brain Development Examined Using in Vivo Pet Imaging and in Vitro Receptor Binding
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HTR1A Polymorphisms and Clinical Efficacy Of
International Journal of Neuropsychopharmacology, (2016) 19(5): 1–10 doi:10.1093/ijnp/pyv125 Advance Access publication November 14, 2015 Research Article research article HTR1A Polymorphisms and Clinical Efficacy of Antipsychotic Drug Treatment in Schizophrenia: A Meta-Analysis Yoshiteru Takekita, MD, PhD; Chiara Fabbri, MD; Masaki Kato, MD, PhD; Yosuke Koshikawa, MA; Aran Tajika, MD; Toshihiko Kinoshita, MD, PhD; Alessandro Serretti, MD, PhD Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy (Drs Takekita, Fabbri, and Serretti); Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan (Drs Takekita, Kato, Koshikawa, and Kinoshita); Department of Health Promotion and Human Behavior, Kyoto University Graduate School of Medicine/School of Public Health, Kyoto, Japan (Dr Tajika). Correspondence: Yoshiteru Takekita, MD, PhD, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Viale Carlo Pepoli 5, Bologna, 40123, Italy ([email protected]). Abstract Background: This meta-analysis was conducted to evaluate whether HTR1A gene polymorphisms impact the efficacy of antipsychotic drugs in patients with schizophrenia. Methods: Candidate gene studies that were published in English up to August 6, 2015 were identified by a literature search of PubMed, Web of Science, and Google scholar. Data were pooled from individual clinical trials considering overall symptoms, positive symptoms and negative symptoms, and standard mean differences were calculated by applying a random-effects model. Results: The present meta-analysis included a total of 1281 patients from 10 studies. Three polymorphisms of HTR1A (rs6295, rs878567, and rs1423691) were selected for the analysis. In the pooled data from all studies, none of these HTR1A polymorphisms correlated significantly with either overall symptoms or positive symptoms. -
Lgr5 Homologues Associate with Wnt Receptors and Mediate R-Spondin Signalling
ARTICLE doi:10.1038/nature10337 Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling Wim de Lau1*, Nick Barker1{*, Teck Y. Low2, Bon-Kyoung Koo1, Vivian S. W. Li1, Hans Teunissen1, Pekka Kujala3, Andrea Haegebarth1{, Peter J. Peters3, Marc van de Wetering1, Daniel E. Stange1, Johan E. van Es1, Daniele Guardavaccaro1, Richard B. M. Schasfoort4, Yasuaki Mohri5, Katsuhiko Nishimori5, Shabaz Mohammed2, Albert J. R. Heck2 & Hans Clevers1 The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues. The genes Lgr4, Lgr5 and Lgr6 encode orphan 7-transmembrane 4–5 post-induction onwards. -
Profiling G Protein-Coupled Receptors of Fasciola Hepatica Identifies Orphan Rhodopsins Unique to Phylum Platyhelminthes
bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Profiling G protein-coupled receptors of Fasciola hepatica 2 identifies orphan rhodopsins unique to phylum 3 Platyhelminthes 4 5 Short title: Profiling G protein-coupled receptors (GPCRs) in Fasciola hepatica 6 7 Paul McVeigh1*, Erin McCammick1, Paul McCusker1, Duncan Wells1, Jane 8 Hodgkinson2, Steve Paterson3, Angela Mousley1, Nikki J. Marks1, Aaron G. Maule1 9 10 11 1Parasitology & Pathogen Biology, The Institute for Global Food Security, School of 12 Biological Sciences, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn 13 Road, Belfast, BT9 7BL, UK 14 15 2 Institute of Infection and Global Health, University of Liverpool, Liverpool, UK 16 17 3 Institute of Integrative Biology, University of Liverpool, Liverpool, UK 18 19 * Corresponding author 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/207316; this version posted October 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 22 Abstract 23 G protein-coupled receptors (GPCRs) are established drug targets. Despite their 24 considerable appeal as targets for next-generation anthelmintics, poor understanding 25 of their diversity and function in parasitic helminths has thwarted progress towards 26 GPCR-targeted anti-parasite drugs. -
Exploring the Heteromeric Interface of the 5-HT2A-Mglu2 Receptor Complex
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2020 Exploring the Heteromeric Interface of the 5-HT2A-mGlu2 Receptor Complex Mohamed Aarif Abdul Kareem Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Nervous System Diseases Commons, Other Psychiatry and Psychology Commons, Physiological Processes Commons, and the Translational Medical Research Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/6235 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Exploring the Heteromeric Interface of the 5-HT2A-mGlu2 Receptor Complex A Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physiology and Biophysics at Virginia Commonwealth University By: Mohamed Aarif Abdul Kareem B.A. Neurobiology, Boston University, 2018 Mentor: Javier González-Maeso Associate Professor Department of Physiology and Biophysics Virginia Commonwealth University Richmond, Virginia April 30, 2020 Acknowledgments: Thank you to my peers for their continued support of my dreams and aspirations. Thank you to my mentors for pushing and supporting me every step of the way. Thank you to Virginia Commonwealth University for providing opportunities which foster my passion for science and allow it to continue to flourish. Indeed, I owe much gratitude to my parents, Abdul & Jasmine Kareem, who have guided me in becoming a strong, independent student, and encourage me to take calculated risks and face challenges head on. -
Functional Analysis of the Latrophilin Homolog Dcirl in Drosophila Melanogaster
Functional analysis of the latrophilin homolog dCirl in Drosophila melanogaster Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Jennifer Gehring aus Würzburg Physiologisches Institut – Lehrstuhl für Physiologie Schwerpunkt Neurophysiologie Würzburg, 2014 Eingereicht am: ………………………… Mitglieder der Promotionskommission: Vorsitzender: ………………………… Gutachter: Prof. Dr. Manfred Heckmann Gutachter: Prof. Dr. Christian Stigloher Tag des Promotionskolloquiums: ………………………... Doktorurkunde ausgehändigt am: .................................. I Erklärung Ich versichere hiermit, dass ich die vorliegende Dissertation mit dem Titel “Functional analysis of the latrophilin homolog dCirl in Drosophila melanogaster” eigenständig angefertigt und mich dabei keiner anderen als der von mir angegebenen Quellen und Hilfsmittel bedient habe. Die Dissertation wurde in der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht. Würzburg, 2014 ____________________________ Jennifer Gehring II Contents Contents 1. Summary............... ................................................................................................. 1 2. Introduction........... .................................................................................................. 4 2.1 Adhesion class G-protein coupled receptors ..................................................... 4 2.1.1 Latrophilin – a prototype of adhesion-GPCRs ............................................ 6 2.1.2 Structural -
Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners. -
Annual Report 2004 Neurobiology R Esearch U
Annual Report 2004 Neurobiology Research U nit Dept. Neurology, Neuroscience Centre Rigshospitalet The H ealth Science Faculty Copenhagen U niversity www.nru.dk F ront page: A 3D reconstruction of a hierarchical clustering. The central blue cluster matches well the spatial location of the cerebral venous vasculature. Liptrot et al., 2004. Preface This annual report provides an overview of the scientific activities that took place within the Neurobiology Research U nit (NRU ) in 2004. Two PhD-theses were defended in 2004: Karen H usted Adams defended her thesis on 5- H T 2A receptor binding measurements in a large healthy control group. H er thesis is the first of many theses to follow from NRU within the field of clinical molecular neuroimaging studies. Kristin Scheuer, MD, defended her thesis on patients with H ereditary Spastic Paraplegia (H SP). She studied cerebral affection in SPG4 linked H SP by employing functional and structural neuroimaging in combination with comprehensive neuropsychological testing. In April, Professor Gitte M. Knudsen was appointed a tenure position as professor at the U niversity of Copenhagen and in June, she replaced Olaf B. Paulson as chairman of NRU . This ‘generation change’ had been carefully planned over several years and consequently the transition went quite smoothly. Professor Olaf B. Paulson remains as professor at NRU and as chairman of the Danish Research Centre for Magnetic Resonance at H vidovre U niversity H ospital. At the Neuroreceptor Mapping Meeting (NRM) that took place in Vancouver, Canada, this summer NRU was selected as a host of NRM in 2006. The preparations are already in full progress (for more information see also www.nrm06.org) and we look very much forward to welcome our colleagues to Copenhagen in July 2006. -
The 2.1 A˚Resolution Structure of Cyanopindolol-Bound B1
The 2.1 A˚ Resolution Structure of Cyanopindolol-Bound + b1-Adrenoceptor Identifies an Intramembrane Na Ion that Stabilises the Ligand-Free Receptor Jennifer L. Miller-Gallacher.¤a, Rony Nehme´ ., Tony Warne, Patricia C. Edwards, Gebhard F. X. Schertler¤b¤c, Andrew G. W. Leslie, Christopher G. Tate* Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, Cambridgeshire, United Kingdom Abstract The b1-adrenoceptor (b1AR) is a G protein-coupled receptor (GPCR) that is activated by the endogenous agonists adrenaline and noradrenaline. We have determined the structure of an ultra-thermostable b1AR mutant bound to the weak partial agonist cyanopindolol to 2.1 A˚ resolution. High-quality crystals (100 mm plates) were grown in lipidic cubic phase without the assistance of a T4 lysozyme or BRIL fusion in cytoplasmic loop 3, which is commonly employed for GPCR crystallisation. An intramembrane Na+ ion was identified co-ordinated to Asp872.50, Ser1283.39 and 3 water molecules, which is part of a more extensive network of water molecules in a cavity formed between transmembrane helices 1, 2, 3, 6 and 7. Remarkably, + this water network and Na ion is highly conserved between b1AR and the adenosine A2A receptor (rmsd of 0.3 A˚), despite an overall rmsd of 2.4 A˚ for all Ca atoms and only 23% amino acid identity in the transmembrane regions. The affinity of + agonist binding and nanobody Nb80 binding to b1AR is unaffected by Na ions, but the stability of the receptor is decreased by 7.5uC in the absence of Na+. Mutation of amino acid side chains that are involved in the co-ordination of either + Na or water molecules in the network decreases the stability of b1AR by 5–10uC. -
Adrenergic G-Protein- Coupled Receptor
Vol 454 | 24 July 2008 | doi:10.1038/nature07101 ARTICLES Structure of a b1-adrenergic G-protein- coupled receptor Tony Warne1, Maria J. Serrano-Vega1, Jillian G. Baker2, Rouslan Moukhametzianov1, Patricia C. Edwards1, Richard Henderson1, Andrew G. W. Leslie1, Christopher G. Tate1 & Gebhard F. X. Schertler1 G-protein-coupled receptors have a major role in transmembrane signalling in most eukaryotes and many are important drug targets. Here we report the 2.7 A˚ resolution crystal structure of a b1-adrenergic receptor in complex with the high-affinity antagonist cyanopindolol. The modified turkey (Meleagris gallopavo) receptor was selected to be in its antagonist conformation and its thermostability improved by earlier limited mutagenesis. The ligand-binding pocket comprises 15 side chains from amino acid residues in 4 transmembrane a-helices and extracellular loop 2. This loop defines the entrance of the ligand-binding pocket and is stabilized by two disulphide bonds and a sodium ion. Binding of cyanopindolol to the b1-adrenergic receptor and binding of carazolol to the b2-adrenergic receptor involve similar interactions. A short well-defined helix in cytoplasmic loop 2, not observed in either rhodopsin or the b2-adrenergic receptor, directly interacts by means of a tyrosine with the highly conserved DRY motif at the end of helix 3 that is essential for receptor activation. G-protein-coupled receptors (GPCRs) are a large family of integral These structures, both containing the high affinity antagonist cara- membrane proteins that are prevalent in eukaryotes from yeast to zolol, defined the overall architecture of b2AR and the structure of the man, and function as key intermediaries in the transduction of sig- ligand-binding pocket. -
Drugs for Primary Prevention of Atherosclerotic Cardiovascular Disease: an Overview of Systematic Reviews
Supplementary Online Content Karmali KN, Lloyd-Jones DM, Berendsen MA, et al. Drugs for primary prevention of atherosclerotic cardiovascular disease: an overview of systematic reviews. JAMA Cardiol. Published online April 27, 2016. doi:10.1001/jamacardio.2016.0218. eAppendix 1. Search Documentation Details eAppendix 2. Background, Methods, and Results of Systematic Review of Combination Drug Therapy to Evaluate for Potential Interaction of Effects eAppendix 3. PRISMA Flow Charts for Each Drug Class and Detailed Systematic Review Characteristics and Summary of Included Systematic Reviews and Meta-analyses eAppendix 4. List of Excluded Studies and Reasons for Exclusion This supplementary material has been provided by the authors to give readers additional information about their work. © 2016 American Medical Association. All rights reserved. 1 Downloaded From: https://jamanetwork.com/ on 09/28/2021 eAppendix 1. Search Documentation Details. Database Organizing body Purpose Pros Cons Cochrane Cochrane Library in Database of all available -Curated by the Cochrane -Content is limited to Database of the United Kingdom systematic reviews and Collaboration reviews completed Systematic (UK) protocols published by by the Cochrane Reviews the Cochrane -Only systematic reviews Collaboration Collaboration and systematic review protocols Database of National Health Collection of structured -Curated by Centre for -Only provides Abstracts of Services (NHS) abstracts and Reviews and Dissemination structured abstracts Reviews of Centre for Reviews bibliographic -
Department of Clinical Physiology, Nuclear Medicine &
Department of Clinical Physiology, Nuclear Medicine & PET Annual Report 2017 PET 1991 Scanditronix 32 MeV, 1991 GE4096 PET Scanner – – 25 1993 NMR Spectrometer years anniversary 1993 PET Advance Scanner June, 21st 1992-2017 2001 PET/CT Scanner 2005 PET/CT Scanner 2005 Cyclotron 2 The most grateful 2007 HRRT Scanner thank you to 2009 Radiochemistry Synthesizer the John and Birthe Meyer Foundation 2011 PET/MR Scanner 2017 PET/CT Scanner Rigshospitalet · University of Copenhagen Contents Preface ......................................................................................................................................2 Mission and objectives ...............................................................................................................4 Organisation and staff 2017.......................................................................................................6 Highlights 2017 .......................................................................................................................10 Medical secretaries ..................................................................................................................12 The KF Section ........................................................................................................................14 Water damages ........................................................................................................................16 Inauguration of new professor .................................................................................................19 -
(±)-Pindolol Acts As a Partial Agonist at Atypical >-Adrenoceptors in The
Jpn. J. Pharmacol. 85, 35 – 40 (2001) (±)-Pindolol Acts as a Partial Agonist at Atypical >-Adrenoceptors in the Guinea Pig Duodenum Takahiro Horinouchi and Katsuo Koike* Department of Chemical Pharmacology, Toho University School of Pharmaceutical Sciences, 2-2-1, Miyama, Funabashi, Chiba 274-8510, Japan Received July 19, 2000 Accepted September 29, 2000 ABSTRACT—The agonistic and antagonistic effects of (±)-pindolol (1-(1H-indol-4-yloxy)-3-[(1-methyleth- yl)amino]-2-propanol) were estimated to clarify whether (±)-pindolol acts as a partial agonist on atypical b-adrenoceptors in the guinea pig duodenum. (±)-Pindolol induced concentration-dependent relaxation with a pD2 value of 5.10 ± 0.03 and an intrinsic activity of 0.83 ± 0.03. However, the relaxations to (±)-pindolol were not antagonized by the non-selective b 1- and b 2-adrenoceptor antagonist (±)-propranolol (1 mM). In the presence of (±)-propranolol (1 mM), the non-selective b1-, b2- and b3-adrenoceptor antagonist (±)-bupranolol (30 mM) induced a rightward shift of the concentration-response curves for (±)-pindolol (apparent pA2 = 5.41 ± 0.06). In the presence of (±)-propranolol, (±)-pindolol (10 mM) weakly but significant- ly antagonized the relaxant effects to catecholamines ((-)-isoprenaline, (-)-noradrenaline and (-)-adrenaline), a selective b 3-adrenoceptor agonist BRL37344 ((R*,R*)-(±)-4-[2-[(2-(3-chlorophenyl)-2-hydroxyethyl) amino]propyl]phenoxyacetic acid sodium salt) and a non-conventional partial b 3-adrenoceptor agonist (±)-CGP12177A ([4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazol-2-one] hydrochloride). These results demonstrate that (±)-pindolol possesses both agonistic and antagonistic effects on atypical b-adrenoceptors in the guinea pig duodenum.