Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Module 3: Defects, Diffusion and Conduction in Ceramics Introduction
Objectives_template Module 3: Defects, Diffusion and Conduction in Ceramics Introduction In this module, we will discuss about migration of the defects which happens via an atomistic process called as diffusion. Diffusivity of species in the materials is also related to their physical properties such as electrical conductivity and mobility via Nernst-Einestein relation which we shall derive. As we shall also see, the conductivity in ceramics is a sum of ionic and electronic conductivity and the ratio of two determines the applicability of ceramic materials for applications. Subsequently framework will be established for understanding the temperature dependence of conductivity via a simple atomistic model leading to the same conclusions as predicted by the diffusivity model. Subsequently we will look into the conduction in glasses and look at some examples of fast ion conductors, material of importance for a variety of applications. Presence of charged defects in ceramics also means the existence of electrical potential gradients, in addition to the chemical gradient, which results in a unified equation for electrochemical potential. Finally, we will look at a few important applications for conducting ceramic materials. The Module contains: Diffusion Diffusion Kinetics Examples of Diffusion in Ceramics Mobility and Diffusivity Analogue to the Electrical Properties Conduction in Ceramics vis-à-vis metallic conductors: General Information Ionic Conduction: Basic Facts Ionic and Electronic Conductivity Characteristics of Ionic Conduction Theory of Ionic Conduction Conduction in Glasses Fast Ion Conductors Examples of Ionic Conduction Electrochemical Potential Nernst Equation and Application of Ionic Conductors Examples of Ionic Conductors in Engineering Applications Summary Suggested Reading: file:///C|/Documents%20and%20Settings/iitkrana1/Desktop/new_electroceramics_14may,2012/lecture13/13_1.htm[5/25/2012 3:03:41 PM] Objectives_template Physical Ceramics: Principles for Ceramic Science and Engineering, Y.-M. -
An Investigation of Lithium Solid Electrolyte Materials
AN INVESTIGATION OF LITHIUM SOLID ELECTROLYTE MATERIALS WITH FIRST PRINCIPLES CALCULATIONS BY NICHOLAS LEPLEY A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Physics December 2013 Winston-Salem, North Carolina Approved By: N. A. W. Holzwarth, Ph.D., Advisor Freddie Salsbury Jr., Ph.D., Chair William Kerr, Ph.D. Timo Thonhauser, Ph.D. Table of Contents List of Figures iv Chapter List of Abbreviations v Chapter Abstract vi I Background 1 Chapter 1 Battery Chemistry and Challenges 2 1.1 Fundamental Operation . .2 1.2 State of the Art . .3 1.3 Solid Electrolyte Materials . .6 Chapter 2 Computational Methods 9 2.1 Density Functional Theory . .9 2.2 Implementation . 12 2.3 Additional sources of error . 13 II Summary of Published Work 14 Chapter 3 Computer modeling of lithium phosphate and thiophosphate electrolyte materials 15 3.1 Overview . 15 3.2 Publication results and conclusions . 15 3.3 My contributions . 16 3.4 Further results and conclusions . 16 Chapter 4 Computer Modeling of Crystalline Electrolytes: Lithium Thio- phosphates and Phosphates 17 4.1 Overview . 17 4.2 Publication results and conclusions . 17 4.3 My contributions . 21 4.4 Further results and conclusions . 21 ii Chapter 5 Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles 22 5.1 Overview . 22 5.2 Publication results and conclusions . 22 5.3 My contributions . 24 5.4 Further results and conclusions . 25 Chapter 6 Conclusions and future directions 27 III Appendix 32 Chapter 7 Computer modeling of lithium phosphate and thiophosphate electrolyte materials 33 Chapter 8 Computer modeling of crystalline electrolytes: lithium thio- phosphates and phosphates 41 Chapter 9 Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles 52 IV Curriculum Vitae 64 iii List of Figures 1.1 Schematic of Li-ion battery . -
NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: a Brief Review
International Journal of Molecular Sciences Review NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review Daniel J. Morales 1,2 and Steven Greenbaum 1,* 1 Department of Physics and Astronomy, Hunter College of the City University of New York, New York, NY 10065, USA; [email protected] 2 Ph.D. Program in Physics, CUNY Graduate Center, New York, NY 10036, USA * Correspondence: [email protected] Received: 9 April 2020; Accepted: 28 April 2020; Published: 11 May 2020 Abstract: The widespread use of energy storage for commercial products and services have led to great advancements in the field of lithium-based battery research. In particular, solid state lithium batteries show great promise for future commercial use, as solid electrolytes safely allow for the use of lithium-metal anodes, which can significantly increase the total energy density. Of the solid electrolytes, inorganic glass-ceramics and Li-based garnet electrolytes have received much attention in the past few years due to the high ionic conductivity achieved compared to polymer-based electrolytes. This review covers recent work on novel glassy and crystalline electrolyte materials, with a particular focus on the use of solid-state nuclear magnetic resonance spectroscopy for structural characterization and transport measurements. Keywords: NMR; inorganic electrolytes; glassy electrolytes; ceramic electrolytes 1. Introduction As lithium ion batteries continue to permeate the commercial market, the search continues to produce an all solid-state equivalent with the same or superior performance. While liquid organic electrolytes continue to exhibit high performance and long cyclability, the risk of thermal runaway and inability to utilize Li metal anodes without the risk of dendrite formation are ongoing issues. -
Physical and Chemical Properties of Germanium
Physical And Chemical Properties Of Germanium Moneyed and amnesic Erasmus fertilise her fatuousness revitalise or burrow incommunicatively. Creditable Petr still climbs: regarding and lissome Lazarus bully-off quite punctiliously but slums her filoplume devotedly. Zane still defilade venomous while improvident Randell bloodiest that wonderers. Do you for this context of properties and physical explanation of Silicon is sincere to metals in its chemical behaviour. Arsenic is extremely toxic, RS, carbon is the tongue one considered a full nonmetal. In nature, which name a widely used azo dye. Basic physical and chemical properties of semiconductors are offset by the energy gap between valence conduction! Other metalloids on the periodic table are boron, Batis ZB, only Germanium and Antimony would be considered metals for the purposes of nomenclature. Storage temperature: no restrictions. At room temperature, the semiconducting elements are primarily nonmetallic in character. This application requires Javascript. It has also new found in stars and already the atmosphere of Jupiter. Wellings JS, it is used as an eyewash and insecticide. He has studied in Spain and Hungary and authored many research articles published in indexed journals and books. What are oral health benefits of pumpkins? The material on this site may not be reproduced, germanium, the radiation emitted from an active device makes it locatable. Classify each statement as an extensive property must an intensive property. In germanium and physical chemical properties of the border lines from the! The most electronegative elements are at the nod in the periodic table; these elements often react as oxidizing agents. Atomic Volume and Allotropy of the Elements. -
Ionic Conduction in the Solid State
J. Chem. Sci., Vol. 118, No. 1, January 2006, pp. 135–154. © Indian Academy of Sciences. Ionic conduction in the solid state P PADMA KUMAR and S YASHONATH Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012 e-mail: [email protected] Abstract. Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these sol- ids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of these investigations with focus on what is known and elaborate on issues that still remain unresolved. Conductivity depends on a number of factors such as presence of interstitial sites, ion size, temperature, crystal structure etc. We discuss the recent results from atomistic computer simula- tions on the dependence of conductivity in NASICONs as a function of composition, temperature, phase change and cation among others. A new potential for modelling of NASICON structure that has been proposed is also discussed. Keywords. Ionic conduction; solid state; atomistic computer simulations; NASICON structure. 1. Introduction 2. A brief history of superionic conductors There exist many solids with high ionic conductivity The study of ionic conduction in solid state origi- (>10–4 W–1 cm–1) and they are of immense use in di- nated way back in 1838 when Faraday discovered verse technological applications. Some of these solids that PbF2 and Ag2S are good conductors of electri- which are also good electronic conductors are often city.2,3 These solids are, the first ever discovered referred to as ‘mixed conductors’, while the term solid electrolyte and intercalation electrode respecti- ‘superionic conductor’ or ‘fast ion conductor’ is re- vely. -
Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: a Review Mogalahalli Reddy, Christian Julien, Alain Mauger, Karim Zaghib
Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review Mogalahalli Reddy, Christian Julien, Alain Mauger, Karim Zaghib To cite this version: Mogalahalli Reddy, Christian Julien, Alain Mauger, Karim Zaghib. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials, MDPI, 2020, 10 (8), pp.1606. 10.3390/nano10081606. hal-02944666 HAL Id: hal-02944666 https://hal.sorbonne-universite.fr/hal-02944666 Submitted on 21 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. nanomaterials Review Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review Mogalahalli V. Reddy 1 , Christian M. Julien 2,* , Alain Mauger 2 and Karim Zaghib 3,* 1 Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada; [email protected] 2 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), -
Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Bachman, John Christopher, Sokseiha Muy, Alexis Grimaud, Hao-Hsun Chang, Nir Pour, Simon F. Lux, Odysseas Paschos, et al. “Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.” Chemical Reviews 116, no. 1 (January 13, 2016): 140–162. As Published http://dx.doi.org/10.1021/acs.chemrev.5b00563 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/109539 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. A Review of Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction John Christopher Bachman1,2,‡, Sokseiha Muy1,3,‡, Alexis Grimaud1,4,‡, Hao-Hsun Chang1,4, Nir Pour1,4, Simon F. Lux5, Odysseas Paschos6, Filippo Maglia6, Saskia Lupart6, Peter Lamp6, Livia Giordano1,4,7 and Yang Shao-Horn1,2,3,4 * 1Electrochemical Energy Laboratory, 2Department of Mechanical Engineering, 3Department of Materials Science and Engineering, 4Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States 5BMW Group Technology Office USA, Mountain View, California 94043, United -
ABSTRACT METAL ISOTOPE FRACTIONATION INDUCED by FAST ION CONDUCTION in NATURAL and SYNTHETIC WIRE SILVER by Calvin J. Anderson A
ABSTRACT METAL ISOTOPE FRACTIONATION INDUCED BY FAST ION CONDUCTION IN NATURAL AND SYNTHETIC WIRE SILVER by Calvin J. Anderson An unusual metal isotope fractionation has been observed in association with the growth of wire silver, whose unique texture and morphology can be explained by superionic + conduction of Ag in Ag2S. This constitutes the first recognition of mass migration by fast ion conduction in nature. Stable Ag isotope analysis revealed natural wire silver is normally enriched in the heavy isotope 109Ag, while common fractionation mechanisms would predict the opposite. In synthetic wires grown at high temperature (>450°C), this fractionation is amplified by an order of magnitude more than expected by any known isotope effect. This may indicate a previously unrecognized isotope fractionation mechanism associated with superionic conductors in nature and in general, which would have important implications for the geochemistry of ore deposits, as well as fast-ion technologies including atomic switches and solid-state ion batteries. METAL ISOTOPE FRACTIONATION INDUCED BY FAST ION CONDUCTION IN NATURAL AND SYNTHETIC WIRE SILVER A Thesis Submitted to the Faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science by Calvin J. Anderson Miami University Oxford, Ohio 2018 Advisor: John Rakovan Reader: Mark Krekeler Reader: Elisabeth Widom ©2018 Calvin J. Anderson This Thesis titled METAL ISOTOPE FRACTIONATION INDUCED BY FAST ION CONDUCTION IN NATURAL AND SYNTHETIC WIRE SILVER by Calvin -
Ab Initio Investigation of the Stability of Electrolyte/Electrode Interfaces in All-Solid-State Na Batteries
Lawrence Berkeley National Laboratory Recent Work Title Ab initio investigation of the stability of electrolyte/electrode interfaces in all-solid-state Na batteries Permalink https://escholarship.org/uc/item/2jb9x0h6 Journal Journal of Materials Chemistry A, 7(14) ISSN 2050-7488 Authors Lacivita, V Wang, Y Bo, SH et al. Publication Date 2019 DOI 10.1039/c8ta10498k Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Materials Chemistry A View Article Online PAPER View Journal Ab initio investigation of the stability of electrolyte/ electrode interfaces in all-solid-state Na batteries† Cite this: DOI: 10.1039/c8ta10498k Valentina Lacivita, *a Yan Wang, b Shou-Hang Boc and Gerbrand Ceder*ad All-solid-state batteries show great potential for achieving high energy density with less safety problems; however, (electro)chemical issues at the solid electrolyte/electrode interface may severely limit their performance. In this work, the electrochemical stability and chemical reactivity of a wide range of potential Na solid-state electrolyte chemistries were investigated using density functional theory calculations. In general, lower voltage limits are predicted for both the reduction and oxidation of Na compounds compared with those of their Li counterparts. The lower reduction limits for the Na compounds indicate their enhanced cathodic stability as well as the possibility of stable sodium metal cycling against a number of oxides and borohydrides. With increasing Na content (or chemical potential), improved cathodic stability but also reduced anodic stability are observed. An increase in the oxidation voltage is shown for Na polyanion systems, including borohydrides, NaSICON-type oxides, and Creative Commons Attribution 3.0 Unported Licence. -
Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries, Chem (2018)
Please cite this article in press as: Xia et al., Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries, Chem (2018), https://doi.org/10.1016/j.chempr.2018.11.013 Review Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries Shuixin Xia,1,4 Xinsheng Wu,1,4 Zhichu Zhang,1 Yi Cui,2,3,* and Wei Liu1,* The fundamental understandings and technological innovations in lithium-ion The Bigger Picture batteries are essential for delivering high energy density, stable cyclability, Lithium-ion batteries are one of and cost-effective energy storages with the growing demands in the applica- the most promising energy- tions of electrical vehicles and smart grid. Solid-state electrolytes (SSEs) are storage devices for their high more promising than organic liquid electrolyte in terms of excellent safety in energy density, superior cycling developing lithium-metal anode as well as other high-capacity cathode chemis- stability, and light weight. tries, such as sulfur and oxygen. Considerable efforts have been made to give However, the state-of-the-art birth to the superionic conductors with ionic conductivities higher than lithium-ion batteries cannot satisfy À À 10 3 Scm 1 at room temperature. However, the high interfacial impedances the rising demand of high energy from the poor compatibility of SSEs with electrodes limit their practical applica- density. Advanced lithium tions, which are discussed in this review. Furthermore, the recent advances batteries based on metallic and critical challenges for all-solid-state lithium-metal batteries based on the lithium anodes could provide cathode materials of lithium-intercalation compounds, sulfur, and oxygen are higher energy density and thus overviewed, and their future developments are also prospected. -
The Elements.Pdf
A Periodic Table of the Elements at Los Alamos National Laboratory Los Alamos National Laboratory's Chemistry Division Presents Periodic Table of the Elements A Resource for Elementary, Middle School, and High School Students Click an element for more information: Group** Period 1 18 IA VIIIA 1A 8A 1 2 13 14 15 16 17 2 1 H IIA IIIA IVA VA VIAVIIA He 1.008 2A 3A 4A 5A 6A 7A 4.003 3 4 5 6 7 8 9 10 2 Li Be B C N O F Ne 6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18 11 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 Na Mg IIIB IVB VB VIB VIIB ------- VIII IB IIB Al Si P S Cl Ar 22.99 24.31 3B 4B 5B 6B 7B ------- 1B 2B 26.98 28.09 30.97 32.07 35.45 39.95 ------- 8 ------- 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 4 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.85 58.47 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 5 Rb Sr Y Zr NbMo Tc Ru Rh PdAgCd In Sn Sb Te I Xe 85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.8 127.6 126.9 131.3 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 6 Cs Ba La* Hf Ta W Re Os Ir Pt AuHg Tl Pb Bi Po At Rn 132.9 137.3 138.9 178.5 180.9 183.9 186.2 190.2 190.2 195.1 197.0 200.5 204.4 207.2 209.0 (210) (210) (222) 87 88 89 104 105 106 107 108 109 110 111 112 114 116 118 7 Fr Ra Ac~RfDb Sg Bh Hs Mt --- --- --- --- --- --- (223) (226) (227) (257) (260) (263) (262) (265) (266) () () () () () () http://pearl1.lanl.gov/periodic/ (1 of 3) [5/17/2001 4:06:20 PM] A Periodic Table of the Elements at Los Alamos National Laboratory 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanide Series* Ce Pr NdPmSm Eu Gd TbDyHo Er TmYbLu 140.1 140.9 144.2 (147) 150.4 152.0 157.3 158.9 162.5 164.9 167.3 168.9 173.0 175.0 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Actinide Series~ Th Pa U Np Pu AmCmBk Cf Es FmMdNo Lr 232.0 (231) (238) (237) (242) (243) (247) (247) (249) (254) (253) (256) (254) (257) ** Groups are noted by 3 notation conventions. -
Stability and Ionic Mobility in Argyrodite-Related Lithium-Ion Solid Electrolytes† Cite This: Phys
PCCP View Article Online PAPER View Journal | View Issue Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes† Cite this: Phys. Chem. Chem. Phys., 2015, 17,16494 Hao Min Chen, Chen Maohua and Stefan Adams* In the search for fast lithium-ion conducting solids for the development of safe rechargeable all-solid- state batteries with high energy density, thiophosphates and related compounds have been demonstrated to be particularly promising both because of their record ionic conductivities and their typically low charge transfer resistances. In this work we explore a wide range of known and predicted thiophosphates with a particular focus on the cubic argyrodite phase with a robust three-dimensional network of ion migration pathways. Structural and hydrolysis stability are calculated employing density functional method in combination with a generally applicable method of predicting the relevant critical reaction. The activation energy for ion migration in these argyrodites is then calculated using the empirical bond valence Received 30th March 2015, pathway method developed in our group, while bandgaps of selected argyrodites are calculated as a basis Accepted 29th May 2015 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. for assessing the electrochemical window. Findings for the lithium compounds are also compared to DOI: 10.1039/c5cp01841b those of previously known copper argyrodites and hypothetical sodium argyrodites. Therefrom, guidelines for experimental work are derived to yield phases