Race Between Polymer Electrolytes and Inorganic Sulfide El
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Electrolyte Panel
Lab Dept: Chemistry Test Name: ELECTROLYTE PANEL General Information Lab Order Codes: LYTE Synonyms: Electrolytes; Lytes CPT Codes: 80051 – Electrolyte panel Test Includes: Carbon Dioxide, Chloride, Potassium, Sodium concentrations reported in mEq/L, and AGAP (Anion Gap). Logistics Test Indications: The maintenance of osmotic pressure and water distribution in the various body fluid compartments is primarily a function of the four major electrolytes, Na+, K+, Cl-, and HCO3-. In addition to water homeostasis, these electrolytes play an important part in the maintenance of pH, regulation of proper heart and muscle functions, involvement in electron transfer reactions, and participation in catalysis as cofactors for enzymes. Lab Testing Sections: Chemistry Phone Numbers: MIN Lab: 612-813-6280 STP Lab: 651-220-6550 Test Availability: Daily, 24 hours Turnaround Time: 30 minutes Special Instructions: N/A Specimen Specimen Type: Blood Container: Green top (Li Heparin) tube, preferred Alternate tube: Red, marble or gold top tube Draw Volume: 0.6 mL blood Processed Volume: 0.2 mL serum/plasma Collection: Routine blood collection. Mix tubes containing anticoagulant by gentle inversion. Note: Venipuncture samples are preferred, but capillary specimens will be accepted. Special Processing: Lab Staff: Sample must be run within one hour of collection for CO2 stability. Centrifuge specimen, remove serum/plasma aliquot into a plastic sample cup. Avoid prolonged contact with separated cells. Store at refrigerated temperatures. Patient Preparation: None Sample Rejection: Mislabeled or unlabeled specimens Interpretive Reference Range: See individual analyte procedures Critical Values: See individual analyte procedures Limitations: See individual analyte procedures Methodology: See individual analyte procedures References: See individual analyte procedures Updates: 2/8/2016: Update alt tube types . -
An Investigation of Lithium Solid Electrolyte Materials
AN INVESTIGATION OF LITHIUM SOLID ELECTROLYTE MATERIALS WITH FIRST PRINCIPLES CALCULATIONS BY NICHOLAS LEPLEY A Thesis Submitted to the Graduate Faculty of WAKE FOREST UNIVERSITY GRADUATE SCHOOL OF ARTS AND SCIENCES in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Physics December 2013 Winston-Salem, North Carolina Approved By: N. A. W. Holzwarth, Ph.D., Advisor Freddie Salsbury Jr., Ph.D., Chair William Kerr, Ph.D. Timo Thonhauser, Ph.D. Table of Contents List of Figures iv Chapter List of Abbreviations v Chapter Abstract vi I Background 1 Chapter 1 Battery Chemistry and Challenges 2 1.1 Fundamental Operation . .2 1.2 State of the Art . .3 1.3 Solid Electrolyte Materials . .6 Chapter 2 Computational Methods 9 2.1 Density Functional Theory . .9 2.2 Implementation . 12 2.3 Additional sources of error . 13 II Summary of Published Work 14 Chapter 3 Computer modeling of lithium phosphate and thiophosphate electrolyte materials 15 3.1 Overview . 15 3.2 Publication results and conclusions . 15 3.3 My contributions . 16 3.4 Further results and conclusions . 16 Chapter 4 Computer Modeling of Crystalline Electrolytes: Lithium Thio- phosphates and Phosphates 17 4.1 Overview . 17 4.2 Publication results and conclusions . 17 4.3 My contributions . 21 4.4 Further results and conclusions . 21 ii Chapter 5 Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles 22 5.1 Overview . 22 5.2 Publication results and conclusions . 22 5.3 My contributions . 24 5.4 Further results and conclusions . 25 Chapter 6 Conclusions and future directions 27 III Appendix 32 Chapter 7 Computer modeling of lithium phosphate and thiophosphate electrolyte materials 33 Chapter 8 Computer modeling of crystalline electrolytes: lithium thio- phosphates and phosphates 41 Chapter 9 Structures, Li+ mobilities, and interfacial properties of solid electrolytes Li3PS4 and Li3PO4 from first principles 52 IV Curriculum Vitae 64 iii List of Figures 1.1 Schematic of Li-ion battery . -
NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: a Brief Review
International Journal of Molecular Sciences Review NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review Daniel J. Morales 1,2 and Steven Greenbaum 1,* 1 Department of Physics and Astronomy, Hunter College of the City University of New York, New York, NY 10065, USA; [email protected] 2 Ph.D. Program in Physics, CUNY Graduate Center, New York, NY 10036, USA * Correspondence: [email protected] Received: 9 April 2020; Accepted: 28 April 2020; Published: 11 May 2020 Abstract: The widespread use of energy storage for commercial products and services have led to great advancements in the field of lithium-based battery research. In particular, solid state lithium batteries show great promise for future commercial use, as solid electrolytes safely allow for the use of lithium-metal anodes, which can significantly increase the total energy density. Of the solid electrolytes, inorganic glass-ceramics and Li-based garnet electrolytes have received much attention in the past few years due to the high ionic conductivity achieved compared to polymer-based electrolytes. This review covers recent work on novel glassy and crystalline electrolyte materials, with a particular focus on the use of solid-state nuclear magnetic resonance spectroscopy for structural characterization and transport measurements. Keywords: NMR; inorganic electrolytes; glassy electrolytes; ceramic electrolytes 1. Introduction As lithium ion batteries continue to permeate the commercial market, the search continues to produce an all solid-state equivalent with the same or superior performance. While liquid organic electrolytes continue to exhibit high performance and long cyclability, the risk of thermal runaway and inability to utilize Li metal anodes without the risk of dendrite formation are ongoing issues. -
A Review of Cathode and Anode Materials for Lithium-Ion Batteries
A Review of Cathode and Anode Materials for Lithium-Ion Batteries Yemeserach Mekonnen Aditya Sundararajan Arif I. Sarwat IEEE Student Member IEEE Student Member IEEE Member Department of Electrical & Department of Electrical & Department of Electrical & Computer Engineering Computer Engineering Computer Engineering Florida International University Florida International University Florida International University Email: [email protected] Email: [email protected] Email: [email protected] Abstract—Lithium ion batteries are one of the most technologies such as plug-in HEVs. For greater application use, commercially sought after energy storages today. Their batteries are usually expensive and heavy. Li-ion and Li- based application widely spans from Electric Vehicle (EV) to portable batteries show promising advantages in creating smaller, devices. Their lightness and high energy density makes them lighter and cheaper battery storage for such high-end commercially viable. More research is being conducted to better applications [18]. As a result, these batteries are widely used in select the materials for the anode and cathode parts of Lithium (Li) ion cell. This paper presents a comprehensive review of the common consumer electronics and account for higher sale existing and potential developments in the materials used for the worldwide [2]. Lithium, as the most electropositive element making of the best cathodes, anodes and electrolytes for the Li- and the lightest metal, is a unique element for the design of ion batteries such that maximum efficiency can be tapped. higher density energy storage systems. The discovery of Observed challenges in selecting the right set of materials is also different inorganic compounds that react with alkali metals in a described in detail. -
Physical and Chemical Properties of Germanium
Physical And Chemical Properties Of Germanium Moneyed and amnesic Erasmus fertilise her fatuousness revitalise or burrow incommunicatively. Creditable Petr still climbs: regarding and lissome Lazarus bully-off quite punctiliously but slums her filoplume devotedly. Zane still defilade venomous while improvident Randell bloodiest that wonderers. Do you for this context of properties and physical explanation of Silicon is sincere to metals in its chemical behaviour. Arsenic is extremely toxic, RS, carbon is the tongue one considered a full nonmetal. In nature, which name a widely used azo dye. Basic physical and chemical properties of semiconductors are offset by the energy gap between valence conduction! Other metalloids on the periodic table are boron, Batis ZB, only Germanium and Antimony would be considered metals for the purposes of nomenclature. Storage temperature: no restrictions. At room temperature, the semiconducting elements are primarily nonmetallic in character. This application requires Javascript. It has also new found in stars and already the atmosphere of Jupiter. Wellings JS, it is used as an eyewash and insecticide. He has studied in Spain and Hungary and authored many research articles published in indexed journals and books. What are oral health benefits of pumpkins? The material on this site may not be reproduced, germanium, the radiation emitted from an active device makes it locatable. Classify each statement as an extensive property must an intensive property. In germanium and physical chemical properties of the border lines from the! The most electronegative elements are at the nod in the periodic table; these elements often react as oxidizing agents. Atomic Volume and Allotropy of the Elements. -
Solid Electrolyte Batteries
SOLID ELECTROLYTE BATTERIES John B. Goodenough and Yuhao Lu Texas Materials Institute The University of Texas at Austin Project ID: ES060 DOE Vehicle Technologies Annual Merit Review Meeting May 9-13, 2011 This presentation does not contain any proprietary or confidential information. 1 The University of Texas at Austin Overview Timeline Barriers • Project Start Date-Oct. 2009 • Lithium-ion solid electrolyte. • Project End Date- Sept. 2010 • Choice of redox couples. • Percent complete: 100% complete • Flow-through- cathode cell design Budget Partners • Funding received in FY09-FY10 – $315K • Karim Zaghib of Hydro Quebec • Funding received in FY10-FY11 – $315K 2 The University of Texas at Austin Milestones Develop and test a suitable test cell. (Jan. 10) Completed Optimize components of the cell. (Apr. 10) Completed Develop a lithium/Fe(NO3)3 cell. (July. 10) Completed Design of a new cell (Sept. 10) Completed Test flow-through cell (Jan. 11) Completed 3 The University of Texas at Austin Typical Lithium Ion Battery (LIB) Cell e- e- - Separator + Li+ Anode Li+ Cathode (Reducing Agent) (Oxidizing Agent) Li+ SEI layer Electrolyte Capacity limited by Li solid solution in cathode and loss in SEI layer Voltage limited by Eg of carbonate electrolyte. 4 The University of Texas at Austin Why Oxides? E E Co: 4s0 Co: 4s0 Co(II): t4e2 µLi 4.0 eV Co(IV): t5e0 EFC EFC (pinned) Co(III): t6e0 Co(III): t6e0 O: 2p6 O: 2p6 N(E) N(E) Li CoO (0<x<0.55) LiCoO2 1-x 2 2- + Holes form peroxide (O2) for x> 0.55 or H inserted from electrolyte. -
Chapter 13: Electrochemical Cells
March 19, 2015 Chapter 13: Electrochemical Cells electrochemical cell: any device that converts chemical energy into electrical energy, or vice versa March 19, 2015 March 19, 2015 Voltaic Cell -any device that uses a redox reaction to transform chemical potential energy into electrical energy (moving electrons) -the oxidizing agent and reducing agent are separated -each is contained in a half cell There are two half cells in a voltaic cell Cathode Anode -contains the SOA -contains the SRA -reduction reaction -oxidation takes place takes place - (-) electrode -+ electrode -anions migrate -cations migrate towards the anode towards cathode March 19, 2015 Electrons move through an external circuit from the anode to cathode Electricity is produced by the cell until one of the reactants is used up Example: A simple voltaic cell March 19, 2015 When designing half cells it is important to note the following: -each half cell needs an electrolyte and a solid conductor -the electrode and electrolyte cannot react spontaneously with each other (sometimes carbon and platinum are used as inert electrodes) March 19, 2015 There are two kinds of porous boundaries 1. Salt Bridge 2. Porous Cup · an unglazed ceramic cup · tube filled with an inert · separates solutions but electrolyte such as NaNO allows ions to pass 3 through or Na2SO4 · the ends are plugged so the solutions are separated, but ions can pass through Porous boundaries allow for ions to move between two half cells so that charge can be equalized between two half cells 2+ 2– electrolyte: Cu (aq), SO4 (aq) 2+ 2– electrolyte: Zn (aq), SO4 (aq) electrode: zinc electrode: copper March 19, 2015 Example: Metal/Ion Voltaic Cell V Co(s) Zn(s) Co2+ SO 2- 4 2+ SO 2- Zn 4 Example: A voltaic cell with an inert electrode March 19, 2015 Example Label the cathode, anode, electron movement, ion movement, and write the half reactions taking place at each half cell. -
Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: a Review Mogalahalli Reddy, Christian Julien, Alain Mauger, Karim Zaghib
Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review Mogalahalli Reddy, Christian Julien, Alain Mauger, Karim Zaghib To cite this version: Mogalahalli Reddy, Christian Julien, Alain Mauger, Karim Zaghib. Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review. Nanomaterials, MDPI, 2020, 10 (8), pp.1606. 10.3390/nano10081606. hal-02944666 HAL Id: hal-02944666 https://hal.sorbonne-universite.fr/hal-02944666 Submitted on 21 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. nanomaterials Review Sulfide and Oxide Inorganic Solid Electrolytes for All-Solid-State Li Batteries: A Review Mogalahalli V. Reddy 1 , Christian M. Julien 2,* , Alain Mauger 2 and Karim Zaghib 3,* 1 Centre of Excellence in Transportation Electrification and Energy Storage (CETEES), Institute of Research Hydro-Québec, 1806, Lionel-Boulet Blvd., Varennes, QC J3X 1S1, Canada; [email protected] 2 Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), -
All-Solid-State Lithium Batteries with Wide Operating Temperature Range
ENVIRONMENT, ENERGY & RESOURCES All-Solid-State Lithium Batteries with Wide Operating Temperature Range Mitsuyasu OGAWA*, Kentaro YOSHIDA and Keizo HARADA All-solid-state batteries do not use a flammable organic liquid electrolyte which has a risk of boiling, freezing or burning, and are therefore expected to operate in a wide temperature range. This paper reports on the development of a solid- state thin film lithium battery using a high conductive sulfide solid electrolyte and its charge-discharge characteristics at high and low temperatures. The high ionic conductivity of the sulfide solid electrolyte can reduce internal resistance, which greatly affects the charge-discharge characteristics of a battery. Test results show that, at room temperature, the capacity of this battery at a high discharge rate (24C) reaches 89% of the capacity at a low discharge rate (0.5 C). Cycle characteristics also confirmed that there was no degradation up to 100 cycles at both 170˚C and -40˚C. Keywords: solid-state battery, lithium battery, solid electrolyte, operating temperature range 1. Introduction the battery’s energy density. Because of these issues, all-solid-state lithium batteries Lithium ion secondary batteries have a high voltage have been proposed as a fundamental solution (Fig. 2)(2)-(4). and a high energy density, as shown in Fig. 1, and are All-solid-state batteries never use any liquid cell compo- widely used in mobile devices such as cell phones, note- nents. Instead of using organic electrolyte, a lithium ion book PCs and PDAs. However, since lithium ion secondary conductive ceramic, known as a solid electrolyte, is used. -
Fluid and Electrolyte Therapy Lyon Lee DVM Phd DACVA Purposes of Fluid Administration During the Perianesthetic Period
Fluid and Electrolyte Therapy Lyon Lee DVM PhD DACVA Purposes of fluid administration during the perianesthetic period • Replace insensible fluid losses (evaporation, diffusion) during the anesthetic period • Replace sensible fluid losses (blood loss, sweating) during the anesthetic period • Maintain an adequate and effective blood volume • Maintain cardiac output and tissue perfusion • Maintain patency of an intravenous route of drug administration Review normal body water distribution • 1 gm = 1 ml; 1 kg = 1 liter; 1 kg = 2.2 lbs • Total body water: 60% of body weight • Intracellular water: 40% of body weight • Extracellular water (plasma water + interstitial water): 20% of body weight • Interstitial water: 20 % of body weight • Plasma water: 5 % of body weight • Blood volume: 9 % of body weight (blood volume = plasma water + red blood cell volume) • Inter-compartmental distribution of water is maintained by hydrostatic, oncotic, and osmotic forces • Daily water requirement: 1-3 ml/kg/hr (24-72 ml/kg/day) o 50 ml x body weight (kg) provides rough estimate for daily requirement • Requirements vary with age, environment, disease, etc… 1 Figure 1. Normal body water distribution Body 100% Water Tissue 60 % (100) 40 % Intracellular space Extracellular space 40 % (60) 20 % (40) Interstitial space Intravascular space 15 % (30) 5 % (10) Fluid movement across capillary membranes • Filtration is governed by Starling’s equation as below • Net driving pressure into the capillary = [(Pc – Pi) – (πp – πi)] o Pc = capillary hydrostatic pressure (varies from artery to vein) o Pi = interstitial hydrostatic pressure (0) o πp = plasma oncotic pressure (28 mmHg) o πi = interstitial oncotic pressure (3 mmHg) • If colloid osmotic pressure (COP) in the capillaries decreases lower than the COP in the interstitium, fluid will move out of the vessels and edema will develop. -
Zinc Anode-Compatible In-Situ Solid Electrolyte Interphase Via Cation Solvation Modulation
ARTICLE https://doi.org/10.1038/s41467-019-13436-3 OPEN Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation Huayu Qiu1,2,4, Xiaofan Du1,4, Jingwen Zhao1*, Yantao Wang1, Jiangwei Ju1, Zheng Chen1, Zhenglin Hu1, Dongpeng Yan 3, Xinhong Zhou2* & Guanglei Cui1* The surface chemistry of solid electrolyte interphase is one of the critical factors that govern the cycling life of rechargeable batteries. However, this chemistry is less explored for zinc 1234567890():,; anodes, owing to their relatively high redox potential and limited choices in electrolyte. Here, we report the observation of a zinc fluoride-rich organic/inorganic hybrid solid electrolyte interphase on zinc anode, based on an acetamide-Zn(TFSI)2 eutectic electrolyte. A combi- nation of experimental and modeling investigations reveals that the presence of anion- complexing zinc species with markedly lowered decomposition energies contributes to the in situ formation of an interphase. The as-protected anode enables reversible (~100% Coulombic efficiency) and dendrite-free zinc plating/stripping even at high areal capacities (>2.5 mAh cm‒2), endowed by the fast ion migration coupled with high mechanical strength of the protective interphase. With this interphasial design the assembled zinc batteries exhibit excellent cycling stability with negligible capacity loss at both low and high rates. 1 Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China. 2 College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. 3 College of Chemistry, Beijing Normal University, Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing 100875, P. -
Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Bachman, John Christopher, Sokseiha Muy, Alexis Grimaud, Hao-Hsun Chang, Nir Pour, Simon F. Lux, Odysseas Paschos, et al. “Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction.” Chemical Reviews 116, no. 1 (January 13, 2016): 140–162. As Published http://dx.doi.org/10.1021/acs.chemrev.5b00563 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/109539 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. A Review of Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction John Christopher Bachman1,2,‡, Sokseiha Muy1,3,‡, Alexis Grimaud1,4,‡, Hao-Hsun Chang1,4, Nir Pour1,4, Simon F. Lux5, Odysseas Paschos6, Filippo Maglia6, Saskia Lupart6, Peter Lamp6, Livia Giordano1,4,7 and Yang Shao-Horn1,2,3,4 * 1Electrochemical Energy Laboratory, 2Department of Mechanical Engineering, 3Department of Materials Science and Engineering, 4Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States 5BMW Group Technology Office USA, Mountain View, California 94043, United