Smith, Darrell (2014) a Values-Based Wood-Fuel Landscape Evaluation: Building a Fuzzy Logic Framework to Integrate Socio-Cultural, Ecological, and Economic Value
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Weed-Insect Pollinator Networks As Bio-Indicators of Ecological Sustainability in Agriculture
Agron. Sustain. Dev. DOI 10.1007/s13593-015-0342-x REVIEW ARTICLE Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review Orianne Rollin1,2 & Giovanni Benelli3 & Stefano Benvenuti 4 & Axel Decourtye1,2,5 & Steve D. Wratten6 & Angelo Canale3 & Nicolas Desneux7 Accepted: 12 November 2015 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The intensification of agricultural practices contrib- arable lands; (2) weed-insect pollinator interactions are mod- utes to the decline of many taxa such as insects and wild ulated by the flowers’ features and their quality which are plants. Weeds are serious competitors for crop production attracting insects; (3) most weeds are associated with general- and are thus controlled. Nonetheless, weeds enhance floral ist insect pollinators; and (4) even if weed-pollinator networks diversity in agricultural landscapes. Weeds provide food for are largely mutualistic, some antagonist networks can be ob- insects in exchange for pollination. The stability of mutualistic served when deception occurs. We propose three weed-insect interactions in pollination networks depends on conservation pollinator networks as potential bio-indicators to evaluate the of insect pollinator and weed communities. Some agricultural ecological sustainability of arable land management strategies practices can destabilize interactions and thus modify the sta- in temperate areas: (1) Geometridae and Bombyliidae species bility of pollination networks. Therefore, more knowledge on visiting Caryophyllaceae, (2) Papilionidae foraging on weed-insect networks is needed. Here, we review the interac- Apiaceae, and (3) Syrphidae visiting Asteraceae. tions involved in insect visits to weed flowers in temperate arable lands. -
The Radiation of Satyrini Butterflies (Nymphalidae: Satyrinae): A
Zoological Journal of the Linnean Society, 2011, 161, 64–87. With 8 figures The radiation of Satyrini butterflies (Nymphalidae: Satyrinae): a challenge for phylogenetic methods CARLOS PEÑA1,2*, SÖREN NYLIN1 and NIKLAS WAHLBERG1,3 1Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden 2Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Av. Arenales 1256, Apartado 14-0434, Lima-14, Peru 3Laboratory of Genetics, Department of Biology, University of Turku, 20014 Turku, Finland Received 24 February 2009; accepted for publication 1 September 2009 We have inferred the most comprehensive phylogenetic hypothesis to date of butterflies in the tribe Satyrini. In order to obtain a hypothesis of relationships, we used maximum parsimony and model-based methods with 4435 bp of DNA sequences from mitochondrial and nuclear genes for 179 taxa (130 genera and eight out-groups). We estimated dates of origin and diversification for major clades, and performed a biogeographic analysis using a dispersal–vicariance framework, in order to infer a scenario of the biogeographical history of the group. We found long-branch taxa that affected the accuracy of all three methods. Moreover, different methods produced incongruent phylogenies. We found that Satyrini appeared around 42 Mya in either the Neotropical or the Eastern Palaearctic, Oriental, and/or Indo-Australian regions, and underwent a quick radiation between 32 and 24 Mya, during which time most of its component subtribes originated. Several factors might have been important for the diversification of Satyrini: the ability to feed on grasses; early habitat shift into open, non-forest habitats; and geographic bridges, which permitted dispersal over marine barriers, enabling the geographic expansions of ancestors to new environ- ments that provided opportunities for geographic differentiation, and diversification. -
Annotated Checklist of Albanian Butterflies (Lepidoptera, Papilionoidea and Hesperioidea)
A peer-reviewed open-access journal ZooKeysAnnotated 323: 75–89 (2013) checklist of Albanian butterflies( Lepidoptera, Papilionoidea and Hesperioidea) 75 doi: 10.3897/zookeys.323.5684 CHECKLIST www.zookeys.org Launched to accelerate biodiversity research Annotated checklist of Albanian butterflies (Lepidoptera, Papilionoidea and Hesperioidea) Rudi Verovnik1, Miloš Popović2 1 University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111, 1000 Ljubljana, Slovenia 2 HabiProt, Bulevar oslobođenja 106/34, 11040 Belgrade, Serbia Corresponding author: Rudi Verovnik ([email protected]) Academic editor: Carlos Peña | Received 25 May 2013 | Accepted 6 August 2013 | Published 13 August 2013 Citation: Verovnik R, Popović M (2013) Annotated checklist of Albanian butterflies (Lepidoptera, Papilionoidea and Hesperioidea). ZooKeys 323: 75–89. doi: 10.3897/zookeys.323.5684 Abstract The Republic of Albania has a rich diversity of flora and fauna. However, due to its political isolation, it has never been studied in great depth, and consequently, the existing list of butterfly species is outdated and in need of radical amendment. In addition to our personal data, we have studied the available litera- ture, and can report a total of 196 butterfly species recorded from the country. For some of the species in the list we have given explanations for their inclusion and made other annotations. Doubtful records have been removed from the list, and changes in taxonomy have been updated and discussed separately. The purpose of our paper is to remove confusion and conflict regarding published records. However, the revised checklist should not be considered complete: it represents a starting point for further research. -
Phylogenetic Relatedness of Erebia Medusa and E. Epipsodea (Lepidoptera: Nymphalidae) Confirmed
Eur. J. Entomol. 110(2): 379–382, 2013 http://www.eje.cz/pdfs/110/2/379 ISSN 1210-5759 (print), 1802-8829 (online) Phylogenetic relatedness of Erebia medusa and E. epipsodea (Lepidoptera: Nymphalidae) confirmed 1 2, 3 4 MARTINA ŠEMELÁKOVÁ , PETER PRISTAŠ and ĽUBOMÍR PANIGAJ 1 Institute of Biology and Ecology, Department of Cellular Biology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia; e-mail: [email protected] 2 Institute of Animal Physiology, Slovak Academy of Science, Soltesovej 4–6, 040 01 Košice, Slovakia 3 Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, 841 04 Banská Bystrica, Slovakia 4 Institute of Biology and Ecology, Department of Zoology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia Key words. Lepidoptera, Nymphalidae, Erebia medusa, E. epipsodea, mtDNA, COI, ND1 Abstract. The extensive genus Erebia is divided into several groups of species according to phylogenetic relatedness. The species Erebia medusa was assigned to the medusa group and E. epipsodea to the alberganus group. A detailed study of the morphology of their copulatory organs indicated that these species are closely related and based on this E. epipsodea was transferred to the medusa group. Phylogenetic analyses of the gene sequences of mitochondrial cytochrome C oxidase subunit I (COI) and mitochondrial NADH dehydrogenase subunit 1 (ND1) confirm that E. medusa and E. epipsodea are closely related. A possible scenario is that the North American species, E. episodea, evolved after exclusion/isolation from E. medusa, whose current centre of distribution is in Europe. -
Introduction
BULGARIA Nick Greatorex-Davies. European Butterflies Group Contact ([email protected]) Local Contact Prof. Stoyan Beshkov. ([email protected]) National Museum of Natural History (NMNH), Sofia, Butterfly Conservation Europe Partner Bulgarian Academy of Sciences Stanislav Abadjiev compiled and collated butterfly records for the whole of Bulgaria and published a Local Recording Scheme distribution atlas in 2001 (see below). Records are still being gathered and can be sent to Stoyan Beshkov at NMNH, Sofia. Butterfly List See Butterflies of Bulgaria website (Details below) Introduction Bulgaria is situated in eastern Europe with its eastern border running along the Black Sea coast. It is separated from Romania for much of its northern border by the River Danube. It shares its western border with Serbia and Macedonia, and its southern border with Greece and Turkey. Bulgaria has a land area of almost 111,000 sq km (smaller than England but bigger than Scotland) and a declining human population of 7.15 million (as of 2015), 1.5 million of which live in the capital city, Sofia. It is very varied in both climate, topography and habitats. Substantial parts of the country are mountainous, particularly in the west, south-west and central ‘spine’ of the country and has the highest mountain in the Balkan Mountains (Musala peak in the Rila Mountains, 2925m) (Map 1). Almost 70% of the land area is above 200m and over 27% above 600m. About 40% of the country is forested and this is likely to increase through natural regeneration due to the abandonment of agricultural land. Following nearly 500 years under the rule of the Ottoman Empire, Bulgaria was independent for just a few years from 1908 before coming under the domination of the soviet communist regime in 1946. -
Nota Lepidopterologica
©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Nota lepid. 23 (2): 1 19-140; 01.VIL2000 ISSN 0342-7536 Comparative data on the adult biology, ecology and behaviour of species belonging to the genera Hipparchia, Chazara and Kanetisa in central Spain (Nymphalidae: Satyrinae) Enrique Garcia-Barros Department of Biology (Zoology), Universidad Autönoma de Madrid, E-28049 Madrid, Spain, e-mail: [email protected] Summary. The potential longevity, fecundity, mating frequencies, behaviour, and sea- sonal reproductive biology were studied in several satyrine butterflies belonging to the genera Hipparchia, Chazara and Kanetisa, in an area located in central Spain. All the species studied appear to be potentially long-lived, and a relatively long period of pre- oviposition is shown to occur in C. briseis and K. circe. Potential fecundity varies between 250 and 800 eggs depending on the species (with maxima exceeding 1300 eggs in K. circe). The results are discussed in terms of the possible ecological relationships between adult ecological traits and the species abundance, and the possibility of a marked geographic variation between species, that might be of interest in relation to specific management and conservation. Zusammenfassung. Für mehrere Vertreter der Gattungen Hipparchia, Chazara und Kanetisa (Satyrinae) wurden in einem Gebiet in Zentralspanien potentielle Lebensdauer, potentielle Fekundität, Paarungshäufigkeiten im Freiland und saisonaler Verlauf der Reproduktionstätigkeit untersucht. Alle untersuchten Arten sind potentiell langlebig, eine relativ lange Präovipositionsperiode tritt bei C. briseis und K circe auf. Die potentielle Fekundität variiert je nach Art zwischen 250 und 800 Eiern (mit einem Maximum von über 1300 Eiern bei K circe). -
Die Gattung Coenonympha HÜBNER, 1819, in Europa: Systematik, Ökologie Und Schutz (Lepidoptera: Papilionoidea: Nymphalidae: Satyrinae)
Oedippus 25:1-42 30.IX.2007 Die Gattung Coenonympha HÜBNER, 1819, in Europa: Systematik, Ökologie und Schutz (Lepidoptera: Papilionoidea: Nymphalidae: Satyrinae) MARTIN WIEMERS Key words: Europe; allozyme electrophoresis; systematics; identification; ecology; conservation. Abstract: A review of the systematics, ecology and conservation of the 13 species of the genus Coenonympha which are currently recognized from Europe is presented. The paper comprises results from allozyme electrophoretic studies in several Coenonympha species with a focus on C. glycerion. These prove that populations of the latter species from the Iberian Peninsula are genetically differentiated from Central European populations, but freely interbreed in the Pyrenees. Therefore the taxon iphioides should be regarded as a subspecies of C. glycerion. Authors’ address: Dr. Martin Wiemers, Department für Populationsökologie, Universität Wien, Althanstr. 14, A-1090 Wien, [email protected]. Price: 12,-- € Inhaltsverzeichnis: 1. Einleitung 2 2. Die Gattung Coenonympha 4 3. Enzymelektrophoretische Untersuchungen 7 3.1 Einleitung 7 3.2 Material und Methoden 7 3.3 Ergebnisse 9 3.4 Diskussion 13 4. Bestimmungsschlüssel der europäischen Coenonympha-Arten 14 5. Die europäischen Coenonympha-Arten 15 C. tullia 15 C. rhodopensis 17 C. glycerion 18 C. hero 19 C. arcania 20 C. gardetta 21 C. leander 23 C. dorus 24 C. corinna 25 C. pamphilus 26 C. lyllus 28 C. thyrsis 28 C. oedippus 29 6. Gefährdung und Schutz 30 7. Summary 33 8. Zitierte Literatur 34 9. Anhang 40 1 1. Einleitung Die Wiesenvögelchen der Gattung Coenonympha sind jedem europäischen Schmet- terlingskundler ein Begriff, denn in den meisten grasigen Habitaten sind Vertreter dieser Augenfalter oft zahlreich anzutreffen. -
Endemits and Rare Species in the Lepidoptera Collection of the Museum of Dacian and Roman Civilisation (Hunedoara County, Romania)
Muzeul Olteniei Craiova. Oltenia. Studii 2i comunic;ri. 1tiinXele Naturii, Tom. XXIV/2008 ISSN 1454-6914 ENDEMITS AND RARE SPECIES IN THE LEPIDOPTERA COLLECTION OF THE MUSEUM OF DACIAN AND ROMAN CIVILISATION (HUNEDOARA COUNTY, ROMANIA) SILVIA BURNAZ Abstract. The author presents the endemits and rare species of Lepidoptera collection, one of the oldest collections preserved in the Museum of Dacian and Roman Civilisation of Deva (Hunedoara County, Romania). The collection was set up by JOSEF MALLÁSZ, curator of the museum in the first decades of XX century. Species of Lepidoptera were collected by JOSEF MALLÁSZ in the surrounding of Deva locality and also in Metaliferi Mountains (S;c;râmb and Mada Gorges) and Retezat Mountains. The old collection also contains specimens collected by LADISLAU DIÓSZEGHY and DANIEL CZEKELIUS. Until the present, this collection contains 12,272 specimens belonging to 947 species. They are collected by the author or by other entomologists of Romania: FREDERIC KÖNIG, IOSIF C:PU1E, MARIN MOLDOVAN, LÁSZLÓ RÁKOSY and WILHELM WEBER. This lepidopterological material is recorded from different hillocky and mountainous regions of Romania. Rare species of Romanian fauna are: Proserpinus proserpina, Heteropterus morpheus morpheus, Zerynthia polyxena, Orthostixis cribraria, Coscinia cribraria pannonica, Lycophotia porphyrea, Hyppa rectilinea, Cryphia muralis, Gortyna borelii lunata, Catocala hymenea and Pseudochropleura musiva. Endemic taxa, especially endemic Carpathian subspecies are: Parnassius mnemosyne transsylvanica, Boloria pales carpathomeridionalis, Euphydryas maturna partiensis, Coenonympha rhodopensis, Erebia epiphron transsylvanica, Erebia cassioides neleus, Erebia pandrose roberti, Erebia gorge fridericikoenigi, Erebia pronoë regalis, Erebia melas runcensis, Psodos coracina dioszeghyi, Photedes captiuncula delattini, Apamea maillardi carpatobrunnea and Apamea zeta carpatodistincta. For each taxon, data about the geographical spreading, habitat, flight period and larval food are given. -
How Much Biodiversity Is in Natura 2000?
Alterra Wageningen UR Alterra Wageningen UR is the research institute for our green living environment. P.O. Box 47 We off er a combination of practical and scientifi c research in a multitude of How much Biodiversity is in Natura 2000? 6700 AA Wageningen disciplines related to the green world around us and the sustainable use of our living The Netherlands environment, such as fl ora and fauna, soil, water, the environment, geo-information The “Umbrella Eff ect” of the European Natura 2000 protected area network T +31 (0) 317 48 07 00 and remote sensing, landscape and spatial planning, man and society. www.wageningenUR.nl/en/alterra The mission of Wageningen UR (University & Research centre) is ‘To explore Technical report Alterra Report 2730B the potential of nature to improve the quality of life’. Within Wageningen UR, ISSN 1566-7197 nine specialised research institutes of the DLO Foundation have joined forces with Wageningen University to help answer the most important questions in the Theo van der Sluis, Ruud Foppen, Simon Gillings, Thomas Groen, René Henkens, Stephan Hennekens, domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading Kim Huskens, David Noble, Fabrice Ottburg, Luca Santini, Henk Sierdsema, Andre van Kleunen, organisations in its domain worldwide. The integral approach to problems and Joop Schaminee, Chris van Swaay, Bert Toxopeus, Michiel Wallis de Vries and Lawrence Jones-Walters the cooperation between the various disciplines -
Bulgaria, Species List and Trip Report, 28 June to 5 July 2019
Bulgaria, species list and trip report, 28 June to 5 July 2019 WILDLIFE TRAVEL Bulgaria 2019 v Bulgaria, species list and trip report, 28 June to 5 July 2019 # DATE LOCATIONS AND NOTES 1 28 June Flew from the UK to Sofia and drove to Devin stopping on the way in the Besapari Hills. 2 29 June Trigrad Gorge and Buinovo Gorge. 3 30 June Solishta, Gela, Stoykite and Prevala Pass. 4 1 July Satovcha and Ilinden. 5 2 July Rila National Park. 6 3 July Pirin National Park. 7 4 July Kresna Gorge, Eleshnitsa (Rilska River), Rila Monastery. 8 5 July Return to Sofia, flight back to the UK. Above - Buinovo Gorge. Front cover - Lilium rhodopeum Bulgaria, species list and trip report, 28 June to 5 July 2019 Day One: 28 June. Arrival in Sofia, Besapari Hills and transfer to Devin. Following an early departure from London we landed in a sultry Sofia and quickly met up with our guides for the week Mladen and Vladimir. Our journey took us south-east from Sofia, between the Balkan Mountains Stara Planina to our north and Rila to the south. Stopping for lunch along the way we got to appreciate our first Bulgarian plant, Hungarian Mullein Verbascum speciosum, one of a great many mullein species in the Balkans. House Martins were busy restocking hungry chicks in nests as we tucked into traditional Bulgarian banitsa, and as we made our way back to the bus, a Montagu's Harrier soaring over high above in the blue sky. We passed through fields filled with vibrant Sunflowers before we turned off the main highway and struck out towards the Besapari Hills with their occasional vineyards. -
Central Place Foraging in the European Bee-Eater, Merops Apiaster Author(S): J
Central Place Foraging in the European Bee-Eater, Merops apiaster Author(s): J. R. Krebs and M. I. Avery Source: Journal of Animal Ecology, Vol. 54, No. 2 (Jun., 1985), pp. 459-472 Published by: British Ecological Society Stable URL: http://www.jstor.org/stable/4491 Accessed: 06-09-2016 11:09 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms Wiley, British Ecological Society are collaborating with JSTOR to digitize, preserve and extend access to Journal of Animal Ecology This content downloaded from 129.67.26.153 on Tue, 06 Sep 2016 11:09:51 UTC All use subject to http://about.jstor.org/terms Journal of Animal Ecology (1985), 54, 459-472 CENTRAL PLACE FORAGING IN THE EUROPEAN BEE-EATER, MEROPS APIASTER BY J. R. KREBS AND M. I. AVERY* Edward Grey Institute of Field Ornithology, South Parks Road, Oxford OXI 3PS SUMMARY (1) The purpose of this investigation was to discover if variation in the size of prey fed by parent bee-eaters to nestlings could be explained by a model of central-place foraging. The model predicted that selectivity for large prey should increase with distance travelled by the parents from the nest to the feeding site. -
Phylogeny and Biogeography of Coenonympha Butterflies (Nymphalidae: Satyrinae) – Patterns of Colonization in the Holarctic
Systematic Entomology Systematic Entomology (2009), 34, 315–323 DOI: 10.1111/j.1365-3113.2008.00453.x Phylogeny and biogeography of Coenonympha butterflies (Nymphalidae: Satyrinae) – patterns of colonization in the Holarctic ULLASA KODANDARAMAIAH1 andNIKLAS WAHLBERG1,2 1Department of Zoology, Stockholm University, Stockholm, Sweden and 2Laboratory of Genetics, Department of Biology, University of Turku, Turku, Finland Abstract. We studied the historical biogeography of a group of butterflies in the Holarctic region belonging to the genus Coenonympha (Nymphalidae: Satyrinae: Coenonymphina), based on a phylogenetic hypothesis estimated from three genes. The genus is distributed mainly in the Palaearctic region, with two species extending into the Nearctic region. The tree is generally well supported and shows that Coenonympha is paraphyletic with respect to Lyela (syn.n.) and Triphysa (syn.n.), and we hence synonymize the latter two with Coenonympha. Within Coenonympha we identify three species groups, the tullia, glycerion and hero groups. The North American tullia exemplars are not sister to the Eurasian ones. A DIVA analysis indicates that the ancestor of the group was present in the Central Palaearctic or Central Palaeartic þ Western Palaearctic or Central Palaearctic þ Eastern Palaearctic. We conclude that the most likely origin of extant members of Coenonympha was in the Central Asian mountains. The tullia and hero groups started diverging in Europe following dispersal into the region. There have been two independent colonizations into Africa. The drying up of the Mediterranean during the Messinian period probably played an important role, allowing colonization into the Mediterranean islands and Africa. Introduction examples include Euphydryas (Nymphalidae; Zimmermann et al., 2000), Pararge (Nymphalidae; Weingartner et al., The inference of the origins and spatio-temporal dynamics 2006) and Parnassiinae (Papilionidae; Nazari et al., 2007).