Weed-Insect Pollinator Networks As Bio-Indicators of Ecological Sustainability in Agriculture

Total Page:16

File Type:pdf, Size:1020Kb

Weed-Insect Pollinator Networks As Bio-Indicators of Ecological Sustainability in Agriculture Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review Orianne Rollin, Giovanni Benelli, Stefano Benvenuti, Axel Decourtye, Steve D. Wratten, Angelo Canale, Nicolas Desneux To cite this version: Orianne Rollin, Giovanni Benelli, Stefano Benvenuti, Axel Decourtye, Steve D. Wratten, et al.. Weed- insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review. Agronomy for Sustainable Development, Springer Verlag/EDP Sciences/INRA, 2016, 36 (1), pp.8. 10.1007/s13593-015-0342-x. hal-01532374 HAL Id: hal-01532374 https://hal.archives-ouvertes.fr/hal-01532374 Submitted on 2 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Agron. Sustain. Dev. (2016) 36: 8 DOI 10.1007/s13593-015-0342-x REVIEW ARTICLE Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review Orianne Rollin1,2 & Giovanni Benelli3 & Stefano Benvenuti 4 & Axel Decourtye1,2,5 & Steve D. Wratten6 & Angelo Canale3 & Nicolas Desneux7 Accepted: 12 November 2015 /Published online: 11 January 2016 # INRA and Springer-Verlag France 2016. This article is published with open access at Springerlink.com Abstract The intensification of agricultural practices contrib- by insects has a key role in maintaining weed communities in utes to the decline of many taxa such as insects and wild arable lands; (2) weed-insect pollinator interactions are mod- plants. Weeds are serious competitors for crop production ulated by the flowers’ features and their quality which are and are thus controlled. Nonetheless, weeds enhance floral attracting insects; (3) most weeds are associated with general- diversity in agricultural landscapes. Weeds provide food for ist insect pollinators; and (4) even if weed-pollinator networks insects in exchange for pollination. The stability of mutualistic are largely mutualistic, some antagonist networks can be ob- interactions in pollination networks depends on conservation served when deception occurs. We propose three weed-insect of insect pollinator and weed communities. Some agricultural pollinator networks as potential bio-indicators to evaluate the practices can destabilize interactions and thus modify the sta- ecological sustainability of arable land management strategies bility of pollination networks. Therefore, more knowledge on in temperate areas: (1) Geometridae and Bombyliidae species weed-insect networks is needed. Here, we review the interac- visiting Caryophyllaceae, (2) Papilionidae foraging on tions involved in insect visits to weed flowers in temperate Apiaceae, and (3) Syrphidae visiting Asteraceae. arable lands. Our main findings are that (1) weed pollination Keywords Arthropods . Biodiversity . Pollination . Weed management . Wildflowers * Giovanni Benelli [email protected]; [email protected] Contents * Nicolas Desneux 1. Introduction [email protected] 2. Pollination strategies of weeds in temperate arable lands: the key role of insects 1 French National Institute for Beekeeping and Pollination 3. Insect-pollinated plants: “attract and reward” mechanisms (ITSAP-Institut de l’abeille), Avignon, France 4. Do generalist insect pollinators serve weeds better? Not 2 UMT PrADE, Avignon, France always 3 Department of Agriculture, Food and Environment, Insect Behaviour 5. Diversity and stability of weed-insect pollinator networks: a Group, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy bio-indicator of the arable land health? 4 Department of Agriculture, Food and Environment, Agronomy and 6. Agricultural practices affecting the stability of weed-insect Agro-ecosystem Management Section, University of Pisa, via del pollinator networks Borghetto 80, 56124 Pisa, Italy 6.1. The spatiotemporal dynamic in agricultural land- 5 ACTA, 228 route de l’aérodrome, Site Agroparc, scapes: the importance of a heterogeneous mosaic 84914 Avignon, France 6.2. The key role of the untilled areas for weed-insect pol- 6 Bio-Protection Research Centre, Lincoln University, PO Box 84, linator networks Lincoln 7647, New Zealand 6.3. Reduce external inputs to increase biodiversity 7 INRA, UMR 1355 ISA Institut Sophia Agrobiotech, 400 route des 6.4. No tillage: an efficient practice to associate with other Chappes, BP 167, F-06903 Sophia Antipolis, France environmental strategies 8 Page 2 of 22 Agron. Sustain. Dev. (2016) 36: 8 7. Conclusions 2003). In addition, several concerns have been raised regard- Acknowledgements ing the decreased plant and pollinator biodiversity in different References ecosystems, focusing on the possible relation between the rarefaction of some plants and their dependence on particular insect pollinators (Benvenuti 2004;Gibsonetal.2006; 1 Introduction Nicholls and Altieri 2012; Grass et al. 2013). The decline in wild bee diversity has been strongly correlated with the de- Agricultural ecosystems are the dominant landscapes through- cline in wildflowers (Biesmeijer et al. 2006; Bretagnolle and out Western Europe and worldwide (Robinson and Sutherland Gaba 2015 for a recent review). 2002; Scheper et al. 2013). Due to the continuous increase of On this basis, the aims of this review are to (i) examine the the world human population, “cropland”, “arable land”, key role of insects in the pollination strategies of weeds in “farmland” or “agricultural land” have considerably increased temperate arable lands, (ii) highlight the mechanisms involved (Matson et al. 1997; Tscharntke et al. 2005), by conversion of in insect visits to weed flowers in arable lands, (iii) provide a natural and semi-natural areas. These changes have accelerat- focus on the ecological importance of generalized interactions ed especially in the post-war period characterized by increased in insect pollinator-weed dynamics, (iv) highlight the diversity external inputs such as fertilizers and pesticides (Tscharntke of weed-insect pollinator interactions and their potential as et al. 2005). This agricultural intensification had led to a de- bio-indicators to evaluate the health of temperate arable lands, cline of landscape diversity and a loss of biodiversity observed and (v) analyze sustainable farming practices designed to part- in many taxa, especially for insects and plants (Sotherton ly maintain weed-insect pollinator interactions. 1998; Chamberlain et al. 2000; Benton et al. 2002; Kleijn and Sutherland 2003; Thomas et al. 2004; Tscharntke et al. 2005; Flynn et al. 2009; Brückmann et al. 2010). Weeds are 2 Pollination strategies of weeds in temperate arable particularly affected due to their contentious relationship with lands: the key role of insects crop production. Indeed, they are historically considered as a serious competitor for crop plants and therefore for crop pro- Not all flowering plants have the same pollination require- duction (Oerke 2006; Meiss et al. 2008; Fried et al. 2008). ments. Plants can use different mechanisms to realize self- However, weeds are a significant part of the floral diversity pollination, which is pollination of a flower by pollen from in agricultural landscapes. They play major functional roles the same flower or flower on the same plant (Pesson and for agricultural ecosystems and their biodiversity and thus Louveaux 1984). In agreement with the time limitation hy- have several consequences on ecosystem services, especially pothesis, self-pollination is crucial for rapid seed formation pollination (Biesmeijer et al. 2006; Bretagnolle and Gaba (Aarssen 2000). Due to this rapid seed set, arable land weeds 2015). Increasing weed abundance can (i) maintain pollinator can persist despite the vast range of agronomic disturbances populations, (ii) ensure pollination services, (iii) increase hon- (Sutherland 2004). For instance, Amaranthus retroflexus L. ey yields and therefore be a benefit for beekeepers, and (iv) (Amaranthaceae) is characterized by unattractive flowers, al- improve the sociocultural value of landscape by ensuring the most total self-pollination (Brenner et al. 2000), and produces persistence and survival of wild flora (Bretagnolle and Gaba mature seeds just a few weeks after emergence (Costea et al. 2015). For instance, some studies have showed the importance 2004). This reproductive strategy is an advantage if pollina- of weeds as food resource for insect pollinators, especially tors are in decline or absent (Barbier 1986). For instance, if bees (Rollin et al. 2013; Requier et al. 2014). cross-pollination by insects does not occur, dandelion Weed-insect pollinator interactions are also very important (Taraxacum ssp.) and plants of the thistle family (Carthamus to maintain weeds in agricultural landscapes. Even if weeds ssp.) ensure their reproduction by a mechanical self- are predominantly self-pollinating (Sutherland 2004), wind- pollination within the flower, through contact between the ripe and insect-pollinated species are also typical of agricultural stigma and pollen grains of anthers (Barbier
Recommended publications
  • BGBM Annual Report 2017–2019
    NETWORKING FOR DIVERSITY Annual Report 2017 – 2019 2017 – BGBM BGBM Annual Report 2017 – 2019 Cover image: Research into global biodiversity and its significance for humanity is impossible without networks. The topic of networking can be understood in different ways: in the natural world, with the life processes within an organism – visible in the network of the veins of a leaf or in the genetic diversity in populations of plants – networking takes place by means of pollen, via pollinators or the wind. In the world of research, individual objects, such as a particular plant, are networked with the data obtained from them. Networking is also crucial if this data is to be effective as a knowledge base for solving global issues of the future: collaboration between scientific experts within and across disciplines and with stakeholders at regional, national and international level. Contents Foreword 5 Organisation 56 A network for plants 6 Facts and figures 57 Staff, visiting scientists, doctoral students 57 Key events of 2017 – 2019 10 Affiliated and unsalaried scientists, volunteers 58 BGBM publications 59 When diversity goes online 16 Species newly described by BGBM authors 78 Families and genera newly described by BGBM authors 82 On the quest for diversity 20 Online resources and databases 83 Externally funded projects 87 Invisible diversity 24 Hosted scientific events 2017 – 2019 92 Collections 93 Humboldt 2.0 30 Library 96 BGBM Press: publications 97 Between East and West 36 Botanical Museum 99 Press and public relations 101 At the service of science 40 Visitor numbers 102 Budget 103 A research museum 44 Publication information 104 Hands-on science 50 Our symbol, the corncockle 52 4 5 Foreword BGBM Annual Report 2017 – 2019 We are facing vital challenges.
    [Show full text]
  • Smith, Darrell (2014) a Values-Based Wood-Fuel Landscape Evaluation: Building a Fuzzy Logic Framework to Integrate Socio-Cultural, Ecological, and Economic Value
    Smith, Darrell (2014) A values-based wood-fuel landscape evaluation: building a fuzzy logic framework to integrate socio-cultural, ecological, and economic value. Doctoral thesis, Lancaster University. Downloaded from: http://insight.cumbria.ac.uk/id/eprint/3191/ Usage of any items from the University of Cumbria’s institutional repository ‘Insight’ must conform to the following fair usage guidelines. Any item and its associated metadata held in the University of Cumbria’s institutional repository Insight (unless stated otherwise on the metadata record) may be copied, displayed or performed, and stored in line with the JISC fair dealing guidelines (available here) for educational and not-for-profit activities provided that • the authors, title and full bibliographic details of the item are cited clearly when any part of the work is referred to verbally or in the written form • a hyperlink/URL to the original Insight record of that item is included in any citations of the work • the content is not changed in any way • all files required for usage of the item are kept together with the main item file. You may not • sell any part of an item • refer to any part of an item without citation • amend any item or contextualise it in a way that will impugn the creator’s reputation • remove or alter the copyright statement on an item. The full policy can be found here. Alternatively contact the University of Cumbria Repository Editor by emailing [email protected]. A values-based wood-fuel landscape evaluation: building a fuzzy logic framework to integrate socio- cultural, ecological, and economic value by Darrell Jon Smith BSc (Hons.) Lancaster University 2014 This thesis is submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy.
    [Show full text]
  • New Approaches to the Conservation of Rare Arable Plants in Germany
    26. Deutsche Arbeitsbesprechung über Fragen der Unkrautbiologie und -bekämpfung, 11.-13. März 2014 in Braunschweig New approaches to the conservation of rare arable plants in Germany Neue Ansätze zum Artenschutz gefährdeter Ackerwildpflanzen in Deutschland Harald Albrecht1*, Julia Prestele2, Sara Altenfelder1, Klaus Wiesinger2 and Johannes Kollmann1 1Lehrstuhl für Renaturierungsökologie, Emil-Ramann-Str. 6, Technische Universität München, 85354 Freising, Deutschland 2Institut für Ökologischen Landbau, Bodenkultur und Ressourcenschutz, Bayerische Landesanstalt für Landwirtschaft (LfL), Lange Point 12, 85354 Freising, Deutschland *Korrespondierender Autor, [email protected] DOI 10.5073/jka.2014.443.021 Zusammenfassung Der rasante technische Fortschritt der Landwirtschaft während der letzten Jahrzehnte hat einen dramatischen Rückgang seltener Ackerwildpflanzen verursacht. Um diesem Rückgang Einhalt zu gebieten, wurden verschiedene Artenschutzkonzepte wie das Ackerrandstreifenprogramm oder das aktuelle Programm ‘100 Äcker für die Vielfalt’ entwickelt. Für Sand- und Kalkäcker sind geeignete Bewirtschaftungsmethoden zur Erhaltung seltener Arten inzwischen gut erforscht. Für saisonal vernässte Ackerflächen, die ebenfalls viele seltene Arten aufweisen können, ist dagegen wenig über naturschutzfachlich geeignet Standortfaktoren und Bewirtschaftungsmethoden bekannt. Untersuchungen an sieben zeitweise überstauten Ackersenken bei Parstein (Brandenburg) zeigten, dass das Überstauungsregime und insbesondere die Dauer der Überstauung die Artenzusammensetzung
    [Show full text]
  • The Vascular Plants of Massachusetts
    The Vascular Plants of Massachusetts: The Vascular Plants of Massachusetts: A County Checklist • First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Somers Bruce Sorrie and Paul Connolly, Bryan Cullina, Melissa Dow Revision • First A County Checklist Plants of Massachusetts: Vascular The A County Checklist First Revision Melissa Dow Cullina, Bryan Connolly, Bruce Sorrie and Paul Somers Massachusetts Natural Heritage & Endangered Species Program Massachusetts Division of Fisheries and Wildlife Natural Heritage & Endangered Species Program The Natural Heritage & Endangered Species Program (NHESP), part of the Massachusetts Division of Fisheries and Wildlife, is one of the programs forming the Natural Heritage network. NHESP is responsible for the conservation and protection of hundreds of species that are not hunted, fished, trapped, or commercially harvested in the state. The Program's highest priority is protecting the 176 species of vertebrate and invertebrate animals and 259 species of native plants that are officially listed as Endangered, Threatened or of Special Concern in Massachusetts. Endangered species conservation in Massachusetts depends on you! A major source of funding for the protection of rare and endangered species comes from voluntary donations on state income tax forms. Contributions go to the Natural Heritage & Endangered Species Fund, which provides a portion of the operating budget for the Natural Heritage & Endangered Species Program. NHESP protects rare species through biological inventory,
    [Show full text]
  • Lepidoptera of North America 5
    Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Lepidoptera of North America 5. Contributions to the Knowledge of Southern West Virginia Lepidoptera by Valerio Albu, 1411 E. Sweetbriar Drive Fresno, CA 93720 and Eric Metzler, 1241 Kildale Square North Columbus, OH 43229 April 30, 2004 Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University Cover illustration: Blueberry Sphinx (Paonias astylus (Drury)], an eastern endemic. Photo by Valeriu Albu. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523 Abstract A list of 1531 species ofLepidoptera is presented, collected over 15 years (1988 to 2002), in eleven southern West Virginia counties. A variety of collecting methods was used, including netting, light attracting, light trapping and pheromone trapping. The specimens were identified by the currently available pictorial sources and determination keys. Many were also sent to specialists for confirmation or identification. The majority of the data was from Kanawha County, reflecting the area of more intensive sampling effort by the senior author. This imbalance of data between Kanawha County and other counties should even out with further sampling of the area. Key Words: Appalachian Mountains,
    [Show full text]
  • List of Animal Species with Ranks October 2017
    Washington Natural Heritage Program List of Animal Species with Ranks October 2017 The following list of animals known from Washington is complete for resident and transient vertebrates and several groups of invertebrates, including odonates, branchipods, tiger beetles, butterflies, gastropods, freshwater bivalves and bumble bees. Some species from other groups are included, especially where there are conservation concerns. Among these are the Palouse giant earthworm, a few moths and some of our mayflies and grasshoppers. Currently 857 vertebrate and 1,100 invertebrate taxa are included. Conservation status, in the form of range-wide, national and state ranks are assigned to each taxon. Information on species range and distribution, number of individuals, population trends and threats is collected into a ranking form, analyzed, and used to assign ranks. Ranks are updated periodically, as new information is collected. We welcome new information for any species on our list. Common Name Scientific Name Class Global Rank State Rank State Status Federal Status Northwestern Salamander Ambystoma gracile Amphibia G5 S5 Long-toed Salamander Ambystoma macrodactylum Amphibia G5 S5 Tiger Salamander Ambystoma tigrinum Amphibia G5 S3 Ensatina Ensatina eschscholtzii Amphibia G5 S5 Dunn's Salamander Plethodon dunni Amphibia G4 S3 C Larch Mountain Salamander Plethodon larselli Amphibia G3 S3 S Van Dyke's Salamander Plethodon vandykei Amphibia G3 S3 C Western Red-backed Salamander Plethodon vehiculum Amphibia G5 S5 Rough-skinned Newt Taricha granulosa
    [Show full text]
  • Untangling Phylogenetic Patterns and Taxonomic Confusion in Tribe Caryophylleae (Caryophyllaceae) with Special Focus on Generic
    TAXON 67 (1) • February 2018: 83–112 Madhani & al. • Phylogeny and taxonomy of Caryophylleae (Caryophyllaceae) Untangling phylogenetic patterns and taxonomic confusion in tribe Caryophylleae (Caryophyllaceae) with special focus on generic boundaries Hossein Madhani,1 Richard Rabeler,2 Atefeh Pirani,3 Bengt Oxelman,4 Guenther Heubl5 & Shahin Zarre1 1 Department of Plant Science, Center of Excellence in Phylogeny of Living Organisms, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran 2 University of Michigan Herbarium-EEB, 3600 Varsity Drive, Ann Arbor, Michigan 48108-2228, U.S.A. 3 Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran 4 Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden 5 Biodiversity Research – Systematic Botany, Department of Biology I, Ludwig-Maximilians-Universität München, Menzinger Str. 67, 80638 München, Germany; and GeoBio Center LMU Author for correspondence: Shahin Zarre, [email protected] DOI https://doi.org/10.12705/671.6 Abstract Assigning correct names to taxa is a challenging goal in the taxonomy of many groups within the Caryophyllaceae. This challenge is most serious in tribe Caryophylleae since the supposed genera seem to be highly artificial, and the available morphological evidence cannot effectively be used for delimitation and exact determination of taxa. The main goal of the present study was to re-assess the monophyly of the genera currently recognized in this tribe using molecular phylogenetic data. We used the sequences of nuclear ribosomal internal transcribed spacer (ITS) and the chloroplast gene rps16 for 135 and 94 accessions, respectively, representing all 16 genera currently recognized in the tribe Caryophylleae, with a rich sampling of Gypsophila as one of the most heterogeneous groups in the tribe.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Weed-Insect Pollinator Networks As Bio-Indicators of Ecological Sustainability in Agriculture
    Agron. Sustain. Dev. DOI 10.1007/s13593-015-0342-x REVIEW ARTICLE Weed-insect pollinator networks as bio-indicators of ecological sustainability in agriculture. A review Orianne Rollin1,2 & Giovanni Benelli3 & Stefano Benvenuti 4 & Axel Decourtye1,2,5 & Steve D. Wratten6 & Angelo Canale3 & Nicolas Desneux7 Accepted: 12 November 2015 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The intensification of agricultural practices contrib- arable lands; (2) weed-insect pollinator interactions are mod- utes to the decline of many taxa such as insects and wild ulated by the flowers’ features and their quality which are plants. Weeds are serious competitors for crop production attracting insects; (3) most weeds are associated with general- and are thus controlled. Nonetheless, weeds enhance floral ist insect pollinators; and (4) even if weed-pollinator networks diversity in agricultural landscapes. Weeds provide food for are largely mutualistic, some antagonist networks can be ob- insects in exchange for pollination. The stability of mutualistic served when deception occurs. We propose three weed-insect interactions in pollination networks depends on conservation pollinator networks as potential bio-indicators to evaluate the of insect pollinator and weed communities. Some agricultural ecological sustainability of arable land management strategies practices can destabilize interactions and thus modify the sta- in temperate areas: (1) Geometridae and Bombyliidae species bility of pollination networks. Therefore, more knowledge on visiting Caryophyllaceae, (2) Papilionidae foraging on weed-insect networks is needed. Here, we review the interac- Apiaceae, and (3) Syrphidae visiting Asteraceae. tions involved in insect visits to weed flowers in temperate arable lands.
    [Show full text]
  • Echter's Nursery & Garden Center Flashing Light Maiden Pinks
    5150 Garrison St. Echter's Nursery & Garden Center Arvada, CO, 80002 phone: 303-424-7979 [email protected] Flashing Light Maiden Pinks www.echters.com Flashing Light Maiden Pinks Dianthus deltoides 'Flashing Light' Plant Height: 6 inches Flower Height: 8 inches Spread: 18 inches Spacing: 14 inches Sunlight: Hardiness Zone: 2a Description: Vigorous and free flowering, this selection features lovely frilly crimson blooms with deep red center rings, spreading across a low growing mat of green foliage; drought tolerant and easy to grow, ideal for rock Flashing Light Maiden Pinks flowers gardens, borders or used as groundcover Photo courtesy of NetPS Plant Finder Ornamental Features Flashing Light Maiden Pinks has masses of beautiful fragrant crimson frilly flowers with a dark red ring at the ends of the stems from late spring to mid summer, which are most effective when planted in groupings. The flowers are excellent for cutting. Its attractive narrow leaves remain dark green in color throughout the year. The fruit is not ornamentally significant. Landscape Attributes Flashing Light Maiden Pinks is an herbaceous evergreen perennial with a mounded form. It brings an extremely fine and delicate texture to the garden composition and should be used to full effect. This plant will require occasional maintenance and upkeep, and is best cleaned up in early spring before it resumes active growth for the season. It is a good choice for attracting bees and butterflies to your yard, but is not particularly attractive to deer who tend to leave it alone in favor of tastier treats. Gardeners should be aware of the following characteristic(s) that may warrant special consideration; - Self-Seeding Flashing Light Maiden Pinks is recommended for the following landscape applications; - Mass Planting - Rock/Alpine Gardens - Border Edging - General Garden Use - Container Planting 5150 Garrison St.
    [Show full text]
  • Functional Ecology Published by John Wiley & Sons Ltd on Behalf of British Ecological Society
    Received: 22 June 2017 | Accepted: 14 February 2018 DOI: 10.1111/1365-2435.13085 RESEARCH ARTICLE Insular woody daisies (Argyranthemum, Asteraceae) are more resistant to drought- induced hydraulic failure than their herbaceous relatives Larissa C. Dória1 | Diego S. Podadera2 | Marcelino del Arco3 | Thibaud Chauvin4,5 | Erik Smets1 | Sylvain Delzon6 | Frederic Lens1 1Naturalis Biodiversity Center, Leiden University, Leiden, The Netherlands; 2Programa de Pós-Graduação em Ecologia, UNICAMP, Campinas, São Paulo, Brazil; 3Department of Plant Biology (Botany), La Laguna University, La Laguna, Tenerife, Spain; 4PIAF, INRA, University of Clermont Auvergne, Clermont-Ferrand, France; 5AGPF, INRA Orléans, Olivet Cedex, France and 6BIOGECO INRA, University of Bordeaux, Cestas, France Correspondence Frederic Lens Abstract Email: [email protected] 1. Insular woodiness refers to the evolutionary transition from herbaceousness to- Funding information wards derived woodiness on (sub)tropical islands and leads to island floras that have Conselho Nacional de Desenvolvimento a higher proportion of woody species compared to floras of nearby continents. Científico e Tecnológico, Grant/Award Number: 206433/2014-0; French National 2. Several hypotheses have tried to explain insular woodiness since Darwin’s original Agency for Research, Grant/Award Number: observations, but experimental evidence why plants became woody on islands is ANR-10-EQPX-16 and ANR-10-LABX-45; Alberta Mennega Stichting scarce at best. 3. Here, we combine experimental measurements of hydraulic failure in stems (as a Handling Editor: Rafael Oliveira proxy for drought stress resistance) with stem anatomical observations in the daisy lineage (Asteraceae), including insular woody Argyranthemum species from the Canary Islands and their herbaceous continental relatives. 4. Our results show that stems of insular woody daisies are more resistant to drought- induced hydraulic failure than the stems of their herbaceous counterparts.
    [Show full text]
  • Agri-Environment Nectar Chemistry Suppresses Parasite Social Epidemiology in an 2 Important Pollinator
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.30.428928; this version posted February 1, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Agri-environment nectar chemistry suppresses parasite social epidemiology in an 2 important pollinator (1,#) (2) (2) (2,3) (1) 3 Arran J. Folly* , Hauke Koch , Iain W. Farrell , Philip C. Stevenson , Mark J.F. Brown 4 (1) Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal 5 Holloway University of London, Egham, UK (2) Royal Botanic Gardens, Kew, UK (3) Natural Resources Institute, University of Greenwich, 6 Kent, UK 7 8 *Corresponding author: Arran J. Folly: [email protected] 9 #Current address: Virology Department, Animal and Plant Health Agency, Surrey, UK 10 11 Emergent infectious diseases are a principal driver of biodiversity loss globally. The population 12 and range declines of a suite of North American bumblebees, a group of important pollinators, 13 have been linked to emergent infection with the microsporidian Nosema bombi. Previous work 14 has shown that phytochemicals in pollen and nectar can negatively impact parasites in individual 15 bumblebees, but how this relates to social epidemiology and by extension whether plants can be 16 effectively used as disease management strategies remains unexplored. Here we show that 17 caffeine, identified in the nectar of Sainfoin, a constituent of agri-environment schemes, 18 significantly reduced N.
    [Show full text]