DNA Barcoding and Phylogeography of Brown Seaweeds of Coasts of Indian Subcontinent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Checklist of the Marine Macroalgae of Vietnam
DOI 10.1515/bot-2013-0010 Botanica Marina 2013; 56(3): 207–227 Tu Van Nguyen * , Nhu Hau Le, Showe-Mei Lin , Frederique Steen and Olivier De Clerck Checklist of the marine macroalgae of Vietnam Abstract: Despite a rich seaweed flora, information about in approximately 1,000,000 sq km of sea area. The primar- Vietnamese seaweeds is scattered throughout a large number ily north-south orientation of the coastline spans two cli- of often regional publications and, hence, difficult to access. matic zones with a subtropical climate at higher latitudes This paper presents an up-to-date checklist of the marine and a tropical climate in the south. A diverse variety of macroalgae of Vietnam, compiled by means of an exhaustive ecosystems, ranging from extensive lagoons and man- bibliographical search and revision of taxon names. A total groves to rocky shores and coral reefs, provide suitable of 827 species are reported, of which the Rhodophyta show habitats for luxuriant seaweed growth. Marine macroalgae the highest species number (412 species), followed by the play an important role in the everyday lives of the people Chlorophyta (180 species), Phaeophyceae (147 species) and of Vietnam. Several species are used as food (humans and Cyanobacteria (88 species). This species richness is compa- livestock), for the extraction of agar and carrageenan, rable to that of the Philippines and considerably higher than in traditional medicine or as biofertilizer (Huynh and Taiwan, Thailand or Malaysia, which indicates that Vietnam Nguyen H. Dinh 1998, Dang et al. 2007 ). Yet knowledge possibly represents a diversity hotspot for macroalgae. -
The Comparison of Total Phenolics, Total Antioxidant, and Anti-Tyrosinase Activities of Korean Sargassum Species
Hindawi Journal of Food Quality Volume 2021, Article ID 6640789, 7 pages https://doi.org/10.1155/2021/6640789 Research Article The Comparison of Total Phenolics, Total Antioxidant, and Anti-Tyrosinase Activities of Korean Sargassum Species Su Hyeon Baek,1 Lei Cao,1 Seung Jin Jeong,2 Hyeung-Rak Kim,1,2 Taek Jeung Nam,3 and Sang Gil Lee 1 1Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-Ro, Nam-Gu Busan 48513, Republic of Korea 2Department of Smart Green Technology Engineering, Pukyong National University, 45 Yongso-Ro, Nam-Gu Busan 48513, Republic of Korea 3,e Future Fishers Food Research Center, Institute of Fisheries Sciences, Pukyong National University, 45 Yongso-Ro, Nam-Gu Busan 48513, Republic of Korea Correspondence should be addressed to Sang Gil Lee; [email protected] Received 4 November 2020; Revised 21 December 2020; Accepted 6 January 2021; Published 18 January 2021 Academic Editor: Muhammad H. Alu’datt Copyright © 2021 Su Hyeon Baek et al. .is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Sargassum species, a group of marine brown algae consumed in Asian countries, have shown various health benefits, such as improving the conditions of cardiovascular disease, osteoarthritis, and hypopigmentation. Also, these benefits are associated with their phenolic content and strong antioxidant capacities. However, the antioxidant capacities of different Sargassum species had not been thoroughly explored and compared. .us, this study aimed to compare the total phenolic contents, total flavonoid contents, total antioxidant capacities, and anti-tyrosine activity of eleven Sargassum species harvested off the Korean coast. -
Extraction Assistée Par Enzyme De Phlorotannins Provenant D'algues
Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maya Puspita To cite this version: Maya Puspita. Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques. Biotechnologie. Université de Bretagne Sud; Universitas Diponegoro (Semarang), 2017. Français. NNT : 2017LORIS440. tel-01630154v2 HAL Id: tel-01630154 https://hal.archives-ouvertes.fr/tel-01630154v2 Submitted on 9 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Enzyme-assisted extraction of phlorotannins from Sargassum and biological activities by: Maya Puspita 26010112510005 Doctoral Program of Coastal Resources Managment Diponegoro University Semarang 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques Maria Puspita 2017 Extraction assistée par enzyme de phlorotannins provenant d’algues brunes du genre Sargassum et les activités biologiques par: Maya Puspita Ecole Doctorale -
Review Article Seaweed As a Source of Natural Antioxidants: Therapeutic Activity and Food Applications
Hindawi Journal of Food Quality Volume 2021, Article ID 5753391, 17 pages https://doi.org/10.1155/2021/5753391 Review Article Seaweed as a Source of Natural Antioxidants: Therapeutic Activity and Food Applications Yogesh Kumar ,1 Ayon Tarafdar ,2,3 and Prarabdh C. Badgujar 1 1Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India 2Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India 3Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243 122, Uttar Pradesh, India Correspondence should be addressed to Prarabdh C. Badgujar; [email protected] Received 11 May 2021; Revised 16 June 2021; Accepted 18 June 2021; Published 28 June 2021 Academic Editor: Sobhy El-Sohaimy Copyright © 2021 Yogesh Kumar et al. +is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Seaweed is a valuable source of bioactive compounds, polysaccharides, antioxidants, minerals, and essential nutrients such as fatty acids, amino acids, and vitamins that could be used as a functional ingredient. +e variation in the composition of biologically active compounds in seaweeds depends on the environmental growth factors that make seaweed of the same species compo- sitionally different across the globe. Nevertheless, all seaweeds exhibit extraordinary antioxidant potential which can be harnessed for a broad variety of food applications such as in preparation of soups, pasta, salads, noodles, and other country specific dishes. +is review highlights the nutritional and bioactive compounds occurring in different classes of seaweeds while focusing on their therapeutic activities including but not limited to blood cell aggregation, antiviral, antitumor, anti-inflammatory, and anticancer properties. -
Thesis MILADI Final Defense
Administrative Seat: University of Sfax, Tunisia University of Messina, Italy National School of Engineers of Sfax Department of Chemical, Biological, Biological Engineering Department Pharmaceutical and Environmental Sciences Unité de Biotechnologie des Algues Doctorate in Applied Biology and Doctorate in Biological Engineering Experimental Medicine – XXIX Cycle DNA barcoding identification of the macroalgal flora of Tunisia Ramzi MILADI Doctoral Thesis 2018 S.S.D. BIO/01 Supervisor at the University of Sfax Supervisor at the University of Messina Prof. Slim ABDELKAFI Prof. Marina MORABITO TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................... 3 ABSTRACT ..................................................................................................................... 6 1. INTRODUCTION ...................................................................................................... 8 1.1. SPECIES CONCEPT IN ALGAE ..................................................................................... 9 1.2. WHAT ARE ALGAE? ................................................................................................. 11 1.2.1. CHLOROPHYTA ....................................................................................................... 12 1.2.2. RHODOPHYTA ........................................................................................................ 13 1.3. CLASSIFICATION OF ALGAE .................................................................................... -
Seasonal Variation in Content and Quality of Kappa-Carrageenan from Hypnea Musciformis (Gigartinales : Rhodophyta)
Western Indian Ocean J. Mar. KAPPA-CARRAGEENAN Sci. Vol. 3, No. 1, pp. FROM 43–49, TANZANIAN 2004 HYPNEA MUSCIFORMIS 43 © 2004 WIOMSA Studies on Tanzanian Hypneaceae: Seasonal Variation in Content and Quality of Kappa-Carrageenan from Hypnea musciformis (Gigartinales : Rhodophyta) M. S. P. Mtolera1 and A. S. Buriyo2 1Institute of Marine Sciences, University of Dar es Salaam, P. O. Box 668, Zanzibar, Tanzania; 2Botany Department, University of Dar es Salaam, P. O. Box 35060, Dar es Salaam, Tanzania Key words: Hypneaceae, Hypnea musciformis, kappa-carrageenan, seasonal variation Abstract—Seasonal effects on yield and quality of kappa-carrageenan from the red alga Hypnea musciformis were investigated in samples collected from natural populations in Oyster Bay, Dar es Salaam during June 1996–May 1997. The mean annual carrageenan yield, gel strength (after treatment with 0.1 M KCl) gelling and melting temperature (± standard deviation) were 25.24 ± 4.44 % dry weight, 171.72 ± 41.42 g/cm2, 54.66 ± 3.12 ºC and 68.62 ± 0.60 ºC, respectively. Carrageenan yield and quality (gel strength) during the SE and NE monsoon seasons were not significantly different (t = 0.55, p > 0.05) and (t = 1.91, p > 0.05), respectively. The reported carrageenan yield and gel strength values were, respectively, about 50% and 40% those of carrageenan from Kappaphycus alvarezii. Although the carrageenan properties from H. musciformis were promising, its natural populations are generally insufficient to sustain the pressure of economic harvesting. Moreover, the extent to which its carrageenan yield and properties could be improved is not known. Suitable methods for mariculture are therefore needed before the resource can be exploited economically. -
Fiji Islands, and Their History of Early Early of History Their and Islands, Fiji the of Position Strategic the Despite
Micronesica 25(1): 41-70, 1992 A Preliminary Checklist of the Benthic Marine Algae of the Fiji Islands, South Pacific G. ROBIN SOUTH The University of the South Pacific , P.O. Box 1168, Suva, Republic of Fiji and HITOSHI KASAHARA Shizuoka-ken Kama-gun, Matsuzaki-cha Sakurada 47, 410-36 Japan Abstract-A preliminary checklist of 314 taxa of benthic marine algae is provided for the Fiji Islands, South Pacific, comprising 11 Cyano phyceae, 99 Chlorophyceae, 36 Phaeophyceae and 168 Rhodophyceae. Included are all previously published records, with the systematic ar rangement and nomenclature brought up to date. The flora is relatively poorly known, and many areas have yet to be phycologically studied, such as Rotuma, much of the Lau Group, most of Vanua Levu and Kandavu. Introduction The Fiji Islands occupy a central position in Oceania, spanning the 180th meridian and lying between 177 E and 178 W, and 16 to 20 S (Fig. 1 ). A land of area of some 18,276 sq. km is scattered over 332 islands, occupying 260,000 sq km of ocean (Fig. 1). There are four main islands in the group, Viti Levu, Vanua Levu, Taveuni and Kadavu, and three smaller island groups, the Yasawas, the Lomaiviti Group and the Lau Group. The small island ofRotuma is isolated from the rest of the Fiji group, some 300 km north of Viti Levu. Most of the islands are high islands of volcanic origin, although some low atolls are found in the east in the Lau Group. The islands are surrounded by barrier reefs, and there are many patch reefs throughout; the most significant barrier reef is the Great Astrolabe Reef, which occurs around the Kadavu Islands. -
Eucheuma Denticulatum (Rhodophyceae) Cultivated on Horizontal Net 1Ma’Ruf Kasim, 1Abdul M
The diversity and species composition of epiphytes on Eucheuma denticulatum (Rhodophyceae) cultivated on horizontal net 1Ma’ruf Kasim, 1Abdul M. Balubi, 1Hamsia, 1Sarini Y. Abadi, 2Wardha Jalil 1 Faculty of fisheries and Marine Sciences, Halu Oleo University, Kendari, Southeast Sulawesi, Indonesia; 2 Faculty of Fisheries, Dayanu Iksanuddin University, Betoambari, Kota Baubau, Southeast Sulawesi, Indonesia. Corresponding author: M. Kasim, [email protected] Abstract. Eucheuma denticulatum is one of the species of seaweed cultivated in Indonesia. On its development, there were problems regarding epiphytes attaching to the seaweed thallus and cultivation tools. This research aims to analyze the diversity and species composition of the epiphytes attach on thallus of E. denticulatum. The cultivation of E. denticulatum utilizes horizontal net cages in order to avoid herbivorous graze on samples. The epiphyte samples (sized >1 mm) were randomly obtained from the thalli of E. denticulatum. The species composition of the attained epiphyte consisted of 14 species, including 2 species of the Phaeophyceae class, 4 species of the Clorophyceae class, and 8 species of Rhodophyceae. Several species were very dominant on thallus of E. denticulatum, such as Neosiphonia sp., Polysiphonia sp. and Ulva clathrata. The percentage of the presence of Neosiphonia sp. was 57-95%, Polysiphonia sp. ranged from 6 to 19% and U. clathrata was 42%. Water parameter measurement results showed temperatures between 25 and 26ºC, 30-32‰ salinity levels, and a current velocity between 0.0175 and 0.0676 m s-1. The nitrate levels measured were between 0.0142-0.0296 mg L-1 inside the cages. Phosphate levels measured inside the cages was 0.0011-0.0086 mg L-1. -
Studies on Phylogeography of Sargassum Polycystum C. Agardh In
Studies on phylogeography of Sargassum polycystum C. Agardh in waters of Southeast Asia and Japan (東南アジアおよび日本周辺海域におけるコバモクの系統地理学に関する研究) Attachai Kantachumpoo アタチャイ カンタチュンポー 2013 Contents Chapter 1 General Introduction 1 1.1 Genus Sargassum of brown alga 1 1.2 Traditional classification of genus Sargassum 2 1.3 Development of culture method of Sargassum in Thailand 4 1.4 Application of molecular tools in biodiversity 4 and biogeography of marine brown seaweed 1.5 Aims and scopes of this thesis 6 Chapter 2 Systematics of genus Sargassum from Thailand based on morphological data and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences 2.1 Introduction 7 2.2 Materials and methods 9 2.2.1Sampling 9 2.2.2 DNA extraction, PCR and sequencing 10 2.2.3 Data analyses 11 2.3 Results 18 2.3.1 Morphological description 18 2.3.2 Genetic analyses 22 2.4 Discussion 27 Chapter 3 Distribution and connectivity of populations of Sargassum polycystum C Agardh analyzed with mitochondrial DNA genes 3.1 Introduction 31 3.2 Materials and Methods 33 3.2.1 Sampling 33 3.2.2 DNA extraction, PCR and sequencing 35 3.2.3 Data analyses 36 3.3 Results 37 3.3.1 Phylogenetic analyses of cox1 37 3.3.2 Genetic structure of cox1 37 3.3.3 Phylogenetic analyses of cox3 43 3.3.4 Genetic structure of cox3 43 3.3.5 Phylogenetic analyses of the concatenated cox1+cox3 48 3.3.6 Genetic structure of the concatenated cox1+cox3 49 3.4 Discussion 55 Chapter 4 Intraspecific genetic diversity of S. -
"Red Algae". In: Encyclopedia of Life Sciences (ELS)
Red Algae Introductory article Article Contents Carlos Frederico Deluqui Gurgel, Smithsonian Marine Station, Fort Pierce, . Florida, USA Introduction: Definition and Characterization . Sexual Reproduction University of Alabama, Tuscaloosa, Alabama, USA Juan Lopez-Bautista, . Vegetative Reproduction . Major Groups Red algae are ancient aquatic plants with simple organization, noteworthy colour . Ecological Importance variation, vast morphological plasticity, challenging taxonomy and most extant species . Economical Importance (about 6000 worldwide) are marine. They include species with complex life cycles, significant ecological importance and extensive economical applications. doi: 10.1002/9780470015902.a0000335 Introduction: Definition and carrageenan. Some taxa present calcium carbonate depos- Characterization its whose crystal state can be found in two forms, either calcite or aragonite. See also: Algal Calcification and Red algae (Rhodophyta) are a widespread group of uni- to Silification; Algal Cell Walls multicellular aquatic photoautotrophic plants. They ex- Red algae are one of the oldest eukaryotic groups in the hibit a broad range of morphologies, simple anatomy and world, with fossil evidence dating back from the late Pre- display a wide array of life cycles. About 98% of the species Cambrian, about 2 billion years ago (Tappan, 1976). The are marine, 2% freshwater and a few rare terrestrial/sub- oldest multicellular eukaryotic fossil record is of a red alga aerial representatives. Planktonic unicellular species have dated 1.8 billion years ago. We also know that red algae simple life cycles characterized by regular binary cell divi- share a single common ancestor with green algae (Chloro- sion. Advanced macroscopic species exhibit the character- phyta) and the land plants (Embryophyta), and these three istic trichogamy, triphasic, haplo-diplobiontic life cycle, groups, together with the Glaucophytes define the current with one haploid (gametophytic) and two diploid (carp- Plant Kingdom (Keeling, 2004). -
Molecular Analyses and Reproductive Structure to Verify the Generic Relationships of Hypnea and Calliblepharis (Cystocloniaceae, Gigartinales), with Proposal of C
Research Article Algae 2017, 32(2): 87-100 https://doi.org/10.4490/algae.2017.32.5.15 Open Access Molecular analyses and reproductive structure to verify the generic relationships of Hypnea and Calliblepharis (Cystocloniaceae, Gigartinales), with proposal of C. saidana comb. nov. Mi Yeon Yang and Myung Sook Kim* Department of Biology, Jeju National University, Jeju 63243, Korea The genera Hypnea and Calliblepharis of the family Cystocloniaceae are discriminated by their female reproductive structure, especially in the formation of carposporangia and gonimoblasts. Hypnea saidana, once classified based on obsolete evidence, has not been studied phylogenetically using molecular analysis and detailed reproductive structure though it shares many morphologic features with the genus Calliblepharis. To provide better understanding of generic relationship of H. saidana with Hypnea and Calliblepharis, we carried out molecular analyses using the nuclear-encoded small subunit ribosomal DNA (SSU) and chloroplast-encoded large subunit of the RuBisCO (rbcL), and exact morpho- logical observations focusing on the reproductive structures of wild specimens. Our molecular phylogeny showed that H. saidana is closely related to Calliblepharis, but distinct from the clade of Hypnea. Female reproductive structure of H. saidana characterized by upwardly developing chains of carposporangia, central reticulum of cell, and gonimoblast filaments not connected to the pericarp provides definite evidence to assign the taxonomic position of this species to Calliblepharis. Based on our combined molecular and morphological analyses, we have proposed Calliblepharis saidana comb. nov., expanding the distribution of Calliblepharis habitat from the eastern Atlantic South Africa, the northern In- dian Ocean, Australasia, and Brazil to the western Pacific Ocean. -
Steps Toward Nation-Wide Monitoring of Non-Indigenous Species In
RAPPORT L.NR. 7022-2016 DK3 Denmark UDBUD/TENDER UDBUD/TENDER Denmark Steps toward nation-wide Danmarksmonitoring havstrategi of – non-indigenous Danmarksikke-hjemmehørendespecies havstrategi in Danish – arter: marine waters ikke-hjemmehørendeArtsbestemmelseunder af the arter: Marine Strategy Artsbestemmelse af ikke-hjemmehørendeFramework arter Directive ikke-hjemmehørendeved hjælp af eDNA arter ved hjælp af eDNA Klient: Naturstyrelsen Klient: Naturstyrelsen © NIVA Denmark Water Research, Ørestads Boulevard 73, 2300 Copenhagen S, Denmark. Doc.no./rev.code/rev.date: 100061-eng/6c/30.06.2014 Page: 1 of 2 © NIVA Denmark Water Research, Ørestads Boulevard 73, 2300 Copenhagen S, Denmark. Doc.no./rev.code/rev.date: 100061-eng/6c/30.06.2014 Page: 1 of 2 NIVA Denmark Water Research – a subsidiary of the Norwegian Institute for Water Research REPORT Main Office NIVA Region South NIVA Region East NIVA Region West NIVA Denmark Gaustadalléen 21 Jon Lilletuns vei 3 Sandvikaveien 59 Thormøhlens gate 53 D Ørestads Boulevard 73 NO-0349 Oslo, Norway NO-4879 Grimstad, Norway NO-2312 Ottestad, Norway NO-5006 Bergen Norway 2300 Copenhagen S Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phone (47) 22 18 51 00 Phose (45) 88 96 96 70 Telefax (47) 22 18 52 00 Telefax (47) 37 04 45 13 Telefax (47) 62 57 66 53 Telefax (47) 55 31 22 14 www.niva-danmark.dk Internet: www.niva.no Title Report No.. Date Steps toward nation-wide monitoring of non-indigenous species in 7022-2016-DK3 7 April 2016 Danish marine waters under the Marine Strategy Framework Directive Project No.