WO 2012/170640 Al 13 December 2012 (13.12.2012) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2012/170640 Al 13 December 2012 (13.12.2012) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/170640 Al 13 December 2012 (13.12.2012) P O P C T (51) International Patent Classification: (74) Agent: BOCK, Joel N. /Joel N. Bock, Reg. No. 36456/; C12Q 1/68 (2006.01) SNR DENTON US LLP, P.O. Box 061080, Wacker Drive Station, Willis Tower, Chicago, Illinois 60606 (US). (21) International Application Number: PCT/US20 12/04 1267 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) Date: International Filing AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, 7 June 2012 (07.06.2012) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (26) Publication Language: English KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/494,183 7 June 201 1 (07.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (71) Applicant (for all designated States except US): THE TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK [US/US]; 412 Low Library, Mail (84) Designated States (unless otherwise indicated, for every Code 4308, 535 West 116th Street, New York, New York kind of regional protection available): ARIPO (BW, GH, 10027 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors; and TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (75) Inventors/Applicants (for US only): VUNDAVALLI, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, Murty [US/US]; 560 Riverside Drive, Apartment 10H, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, New York, New York 10027 (US). XIE, Dongxu TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, [US/US]; 3475 Greystone Avenue, Apartment 2B, Bronx, ML, MR, NE, SN, TD, TG). New York 10463 (US). BHAGAT, Govind [US/US]; 250 Cabrini Boulevard, Apartment 7A, New York, New York Published: 10033 (US). — with international search report (Art. 21(3)) (54) Title: METHODS AND COMPOSITIONS FOR TRAIL-DRUG COMBINATION THERAPY (57) Abstract: Provided are methods for diagnosing conditions, such as cervical cancer, T-cell hematologic malignancies, B-cell NHL or breast cancer, susceptible to increased TRAIL-mediated apoptosis. Diagnosis can include the presence of one or more of an 8p chromosomal deletion, methylation-associated decoy receptor inactivation, or decreased decoy receptor expression. Also provided are methods of treatment and compound screening related to TRAIL-mediated apoptosis. Also provided are methods of treatment and compound screening related to cervical cancer, T-cell hematologic malignancies, B-cell NHL or breast cancer. METHODS AND COMPOSITIONS FOR TRAIL-DRUG COMBINATION THERAPY CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of priority to U.S. Provisional Application Serial No. 61/494,183, filed on June 7, 201 1, which is incorporated herein by reference in its entirety. STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT This invention was made with government support under grant number CA095647 awarded by National Institutes of Health. The government has certain rights in the invention. MATERIAL INCORPORATED-BY-REFERENCE The Sequence Listing, which is a part of the present disclosure, includes a computer readable form comprising nucleotide and/or amino acid sequences of the present invention. The subject matter of the Sequence Listing is incorporated herein by reference in its entirety. BACKGROUND OF THE INVENTION Cervical Cancer (CC) affects over 0.5 million women worldwide. When invasive cancer is diagnosed the cure rate is low resulting in high mortality and the treatment response remains unpredictable. Over 90% of invasive cervical cancer and Cervical Intraepithelial Neoplasia (CIN) contain human papilloma virus (HPV) DNA sequences. The high-risk HPV (hrHPV) type E6 and E7 proteins interact with critical cell cycle checkpoint genes p53 and pRb, respectively, interfere with the DNA repair mechanisms, as a consequence accelerate the accumulation of genetic alterations and immortalization (1). Conventional treatment of cervical cancer often employs chemotherapy using platinum based derivatives followed by radiation. But cervical cancer as a single diagnostic entity exhibits differences in clinical behavior and response to therapy, where advanced tumors remain unresponsive to chemo-radiotherapy. Cisplatin is used as the most effective agent in advanced stages of cervical cancer where most patients exhibit acquired resistance or progressive disease after initial response (2). B-cell Non-Hodgkin Lymphoma (B-NHL) subtypes exhibit complex genetic changes that include characteristic chromosome translocations. Although recent molecular studies have identified certain prognostic markers, the low (<50%) progression- free survival achieved currently in high grade lymphomas such as diffuse large-B-cell lymphoma (DLBCL) is primarily due to lack of understanding of the complex genetic and epigenetic lesions in these subtypes of B-NHL. Moreover, the yield of potential therapeutic targets discovered to date has been limited. Although overall survival has been significantly improved for B-cell lymphomas by the addition of rituximab, a large proportion of B-NHL patients still exhibit resistance to the existing treatments [34]. Therefore, there is a need for developing new therapies and biomarker of response to stratify patients that benefit specific treatments such as TRAIL combination drugs. A majority of breast cancer patients exhibit resistance to either recombinant TRAIL or antibodies targeting TRAIL-R1/TRAIL-R2 despite the expression of death receptors on the cell surface [35]. The exact mechanisms of resistance in breast cancer patients are not well understood. Breast cancer is one of the top 3 cancers that exhibit 8p21 .3 region deletions (at a proportion of 0.59) and exhibit frequent promoter methylation of either DcR1 or DcR2 genes [16, 36]. Although breast cancer as a group exhibits resistance to commonly used chemotherapy drugs such as doxorubicin and tomoxifen, patients with ER+ phenotype are the most resistant [37]. The underlying genetic determinants of TRAIL resistance/sensitivity in breast cancer cells are not known. We hypothesize that 8p deletion and decoy receptor inactivation may play a role in sensitizing breast cancer cells to TRAIL combination drug therapy. Therefore, these suboptimal outcomes of conventional treatments in breast cancer patients warrants an urgent need for the development of new therapies and identify biomarker to stratify patients that predict response to specific drug therapy. T-cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) and Peripheral T-cell lymphoma (PTCL) are a heterogeneous group of disorders committed to the T-cell lineage and represent distinct clinico-pathologic entities. Although chromosome abnormalities that generate fusion genes and alter genetic pathways e.g. INK4, NOTCH1, WT1, PTEN, PHF6 have been identified in a proportion of cases, their relationship with outcome is unclear [3-7]. Despite intensive risk-adopted chemotherapy protocols, the majority of T- cell leukemia/lymphoma (TCL) as a group exhibit resistance to therapy and shorter long- term disease-free survival with the exception of ALK-positive anaplastic large cell lymphoma (ALK+ ALCL) that exhibit high cure rates with CHOP-like therapy. For example, studies using anthracycline-containing regimens PTCL show only 32% cases with 5-year overall survival [5, 8]. The suboptimal outcome using intensive therapies for newly diagnosed TCL patients suggest that the current standard therapies are not effective and, therefore there is an urgent need for the development of new therapies. It has been recited in the art that "[m]uch effort has been devoted but failed to identify the biomarker(s) that can predict the sensitivity of human cancers to TRAIL-based therapies" and "it may be difficult if not impossible to identify the biomarkers that could predict the drug responsiveness in such genetically diversified [cancer]" (Bellail et al. 2009 4, 34-41, at 38). Death receptor ligands, Fas and tumor necrosis factor (TNF)-related apoptosis- inducing ligand (TRAIL), play a role in cytotoxic T cell (CTC) and natural killer (NK) cell- mediated anti-tumor immunity. TCL cells acquire mechanisms to escape the host immune surveillance [9]. Despite the availability of novel genomic data and alterations of the associated genetic pathways, stratification of T-cell malignancies into subclasses responsive to specific treatment regimens is not feasible with agents currently being used [2, 10]. Tumor necrosis factor related super family (TNFRSF) of death receptors DR4 and DR5 express on the cell surface and are critical regulators of the extrinsic apoptotic pathway in TRAIL/AP02L-mediated cell death. Binding of TRAIL to their cognate DRs results in death inducing signaling complex (DISC) formation and DISC initiates activation of proteases caspase 8 and 10, thereby driving downstream effector caspase activation and apoptosis. TRAIL as a soluble zinc -coordinated homotrimeric protein triggers apoptosis only in cancer cells without affecting normal cells. Despite this specificity, many human cancers exhibit resistance to TRAIL [ 1 1, 12]. Since decoy receptors DcR1 and DcR2 compete with death receptors DR4 and DR5 in binding with TRAIL, over expression of DcR1 and DcR2 protects tumor cells from TRAIL-induced apoptosis. Efforts to identify differences in TRAIL responsiveness in tumor cells has identified decreased stimulation of TRAILR1 or R2 by DcRs, suppression of the intracellular signaling cascade genes, and post-translational modifications as important predictors [12, 22].
Recommended publications
  • A Phase II Study of the Novel Proteasome Inhibitor Bortezomib In
    Memorial Sloan-Kettering Cance r Center IRB Protocol IRB#: 05-103 A(14) A Phase II Study of the Novel Proteas ome Inhibitor Bortezomib in Combination with Rituximab, Cyclophosphamide and Prednisone in Patients with Relapsed/Refractory I Indolent B-cell Lymphoproliferative Disorders and Mantle Cell Lymphoma (MCL) MSKCC THERAPEUTIC/DIAGNOSTIC PROTOCOL Principal Investigator: John Gerecitano, M.D., Ph.D. Co-Principal Carol Portlock, M.D. Investigator(s): IFormerly: A Phase I/II Study of the Nove l Proteasome Inhibitor Bortezomib in Combinati on with Rituximab, Cyclophosphamide and Prednisone in Patients with Relapsed/Refractory Indolent B-cell Lymphoproliferative Disorders and Mantle Cell Lymphoma (MCL) Amended: 07/25/12 Memorial Sloan-Kettering Cance r Center IRB Protocol IRB#: 05-103 A(14) Investigator(s): Paul Hamlin, M.D. Commack, NY Steven B. Horwitz, M.D. Philip Schulman, M.D. Alison Moskowitz, M.D. Stuart Lichtman, M.D Craig H. Moskowitz, M.D. Stefan Berger, M.D. Ariela Noy, M.D. Julie Fasano, M.D. M. Lia Palomba, M.D., Ph.D. John Fiore, M.D. Jonathan Schatz, M.D. Steven Sugarman, M.D David Straus, M.D. Frank Y. Tsai, M.D. Andrew D. Zelenetz, M.D., Ph.D. Matthew Matasar, M.D Rockville Center, NY Mark L. Heaney, M.D., Ph.D. Pamela Drullinksy, M.D Nicole Lamanna, M.D. Arlyn Apollo, M.D. Zoe Goldberg, M.D. Radiology Kenneth Ng, M.D. Otilia Dumitrescu, M.D. Tiffany Troso-Sandoval, M.D. Andrei Holodny, M.D. Sleepy Hollow, NY Nuclear Medicine Philip Caron, M.D. Heiko Schoder, M.D. Michelle Boyar, M.D.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,580,814 B2 Adelman Et Al
    USOO858O814B2 (12) United States Patent (10) Patent No.: US 8,580,814 B2 Adelman et al. (45) Date of Patent: *Nov. 12, 2013 (54) METHODS OF USING 5,528,823. A 6/1996 Rudy, Jr. et al. (+)-1,4-DIHYDRO-7-(3S4S)-3-METHOXY-4- 3.43wk A E. E. St.Ola tala (METHYLAMINO)-1-PYRROLIDINYL-4- 6,171,857 B1 1/2001 Hendrickson OXO-1-(2-THIAZOLYL)-1.8- 6,291643 B1 9/2001 Zou et al. NAPHTHYRIDNE-3-CARBOXYLIC ACID 6,570,002 B1 5/2003 Hardwicket al. FORTREATMENT OF CANCER 6,641,810 B2 11/2003 Gold 6,641,833 B2 * 1 1/2003 Dang ............................ 424/426 (75) Inventors: Daniel CAdelman, Redwood City, CA 6,696,4836,670,144 B2B1 12/20032/2004 CraigSingh et al. (US); Jeffrey A. Silverman, 6,723,734 B2 4/2004 Kim et al. Burlingame, CA (US) 7,211,562 B2 5/2007 Rosen et al. 7.989,468 B2 * 8/2011 Adelman et al. .............. 514,300 (73) Assignee: Sunesis Pharmaceuticals, Inc., South 3.9. A. S. idaran-Ghera Gh et al.1 San Francisco, CA (US) 2003/0232334 A1* 12/2003 Morris et al. ..................... 435/6 c - r 2004/0106605 A1 6/2004 Carboni et al. .... 514/226.8 (*) Notice: Subject to any disclaimer, the term of this 2004/0132825 A1* 7/2004 Bacopoulos et al. ......... 514/575 patent is extended or adjusted under 35 2005/0203120 A1 9, 2005 Adelman et al. U.S.C. 154(b) by 201 days. 2005/0215583 A1 9, 2005 Arkin et al. 2006, OO25437 A1 2/2006 Adelman et al.
    [Show full text]
  • Preclinical Pharmacologic Evaluation of Pralatrexate and Romidepsin
    Published OnlineFirst February 12, 2015; DOI: 10.1158/1078-0432.CCR-14-2249 Cancer Therapy: Preclinical Clinical Cancer Research Preclinical Pharmacologic Evaluation of Pralatrexate and Romidepsin Confirms Potent Synergy of the Combination in a Murine Model of Human T-cell Lymphoma Salvia Jain1, Xavier Jirau-Serrano2, Kelly M. Zullo2, Luigi Scotto2, Carmine F. Palermo3,4, Stephen A. Sastra3,4,5, Kenneth P. Olive3,4,5, Serge Cremers3, Tiffany Thomas3,YingWei6, Yuan Zhang6, Govind Bhagat3, Jennifer E. Amengual2, Changchun Deng2, Charles Karan8, Ronald Realubit8, Susan E. Bates9, and Owen A. O'Connor2 Abstract Purpose: T-cell lymphomas (TCL) are aggressive diseases, NOG mouse model of TCL were used to explore the in vitro and in which carry a poor prognosis. The emergence of new drugs for vivo activity of pralatrexate and romidepsin in combination. TCL has created a need to survey these agents in a rapid and Corresponding mass spectrometry–based pharmacokinetic and reproducible fashion, to prioritize combinations which should be immunohistochemistry-based pharmacodynamic analyses of prioritized for clinical study. Mouse models of TCL that can be xenograft tumors were performed to better understand a mech- used for screening novel agents and their combinations are anistic basis for the drug:drug interaction. lacking. Developments in noninvasive imaging modalities, such Results: In vitro, pralatrexate and romidepsin exhibited con- as surface bioluminescence (SBL) and three-dimensional ultra- centration-dependent synergism in combination against a panel sound (3D-US), are challenging conventional approaches in of TCL cell lines. In a NOG murine model of TCL, the combination xenograft modeling relying on caliper measurements. The recent of pralatrexate and romidepsin exhibited enhanced efficacy com- approval of pralatrexate and romidepsin creates an obvious pared with either drug alone across a spectrum of tumors using combination that could produce meaningful activity in TCL, complementary imaging modalities, such as SBL and 3D-US.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases
    International Journal of Molecular Sciences Review Aptamers and Antisense Oligonucleotides for Diagnosis and Treatment of Hematological Diseases Valentina Giudice 1,2,* , Francesca Mensitieri 1, Viviana Izzo 1,2 , Amelia Filippelli 1,2 and Carmine Selleri 1 1 Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; [email protected] (F.M.); [email protected] (V.I.); afi[email protected] (A.F.); [email protected] (C.S.) 2 Unit of Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy * Correspondence: [email protected]; Tel.: +39-(0)-89965116 Received: 30 March 2020; Accepted: 2 May 2020; Published: 4 May 2020 Abstract: Aptamers or chemical antibodies are single-stranded DNA or RNA oligonucleotides that bind proteins and small molecules with high affinity and specificity by recognizing tertiary or quaternary structures as antibodies. Aptamers can be easily produced in vitro through a process known as systemic evolution of ligands by exponential enrichment (SELEX) or a cell-based SELEX procedure. Aptamers and modified aptamers, such as slow, off-rate, modified aptamers (SOMAmers), can bind to target molecules with less polar and more hydrophobic interactions showing slower dissociation rates, higher stability, and resistance to nuclease degradation. Aptamers and SOMAmers are largely employed for multiplex high-throughput proteomics analysis with high reproducibility and reliability, for tumor cell detection by flow cytometry or microscopy for research and clinical purposes. In addition, aptamers are increasingly used for novel drug delivery systems specifically targeting tumor cells, and as new anticancer molecules. In this review, we summarize current preclinical and clinical applications of aptamers in malignant and non-malignant hematological diseases.
    [Show full text]
  • UCSD Moores Cancer Center Neuro-Oncology Program
    UCSD Moores Cancer Center Neuro-Oncology Program Recent Progress in Brain Tumors 6DQWRVK.HVDUL0'3K' 'LUHFWRU1HXUR2QFRORJ\ 3URIHVVRURI1HXURVFLHQFHV 0RRUHV&DQFHU&HQWHU 8QLYHUVLW\RI&DOLIRUQLD6DQ'LHJR “Brain Cancer for Life” Juvenile Pilocytic Astrocytoma Metastatic Brain Cancer Glioblastoma Multiforme Glioblastoma Multiforme Desmoplastic Infantile Ganglioglioma Desmoplastic Variant Astrocytoma Medulloblastoma Atypical Teratoid Rhabdoid Tumor Diffuse Intrinsic Pontine Glioma -Mutational analysis, microarray expression, epigenetic phenomenology -Age-specific biology of brain cancer -Is there an overlap? ? Neuroimmunology ? Stem cell hypothesis Courtesy of Dr. John Crawford Late Effects Long term effect of chemotherapy and radiation on neurocognition Risks of secondary malignancy secondary to chemotherapy and/or radiation Neurovascular long term effects: stroke, moya moya Courtesy of Dr. John Crawford Importance Increase in aging population with increased incidence of cancer Patients with cancer living longer and developing neurologic disorders due to nervous system relapse or toxicity from treatments Overview Introduction Clinical Presentation Primary Brain Tumors Metastatic Brain Tumors Leptomeningeal Metastases Primary CNS Lymphoma Paraneoplastic Syndromes Classification of Brain Tumors Tumors of Neuroepithelial Tissue Glial tumors (astrocytic, oligodendroglial, mixed) Neuronal and mixed neuronal-glial tumors Neuroblastic tumors Pineal parenchymal tumors Embryonal tumors Tumors of Peripheral Nerves Shwannoma Neurofibroma
    [Show full text]
  • Mitochondria in Hematopoiesis and Hematological Diseases
    Oncogene (2006) 25, 4757–4767 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc REVIEW Mitochondria in hematopoiesis and hematological diseases M Fontenay1, S Cathelin2, M Amiot3, E Gyan1 and E Solary2 1Inserm U567, Institut Cochin, Department of Hematology, Paris, Cedex, France; 2Inserm U601, Biology Institute, Nantes, Cedex, France and 3Inserm U517, Faculty of Medicine, Dijon, France Mitochondria are involved in hematopoietic cell homeo- Introduction stasis through multiple ways such as oxidative phosphor- ylation, various metabolic processes and the release of As in other tissues, mitochondria play many important cytochrome c in the cytosol to trigger caspase activation roles in hematopoietic cell homeostasis, including the and cell death. In erythroid cells, the mitochondrial steps production of adenosine triphosphate (ATP) by the in heme synthesis, iron (Fe) metabolism and Fe-sulfur process of oxidative phosphorylation, the release of (Fe-S) cluster biogenesis are of particular importance. death-promoting factors upon apoptotic stimuli and a Mutations in the specific d-aminolevulinic acid synthase variety of metabolic pathways such as heme synthesis. (ALAS) 2 isoform that catalyses the first and rate-limiting Mitochondria could also play a role in specific pathways step in heme synthesis pathway in the mitochondrial of hematopoietic cell differentiation through caspase matrix, lead to ineffective erythropoiesis that charac- activation.Alterations of these mitochondrial functions terizes X-linked
    [Show full text]
  • 5 Combinations of Hypoxia-Targeting Compounds and Radiation-Activated Prodrugs with Ionizing Radiation
    Combinations of Hypoxia-Targeting Compounds and Radiation-Activated Prodrugs with Ionizing Radiation 67 5 Combinations of Hypoxia-Targeting Compounds and Radiation-Activated Prodrugs with Ionizing Radiation G-One Ahn and J. Martin Brown CONTENTS 5.1 Targeting Tumor Hypoxia 5.1 Targeting Tumor Hypoxia 67 5.2 Oxygen-Level Enhancers 68 5.3 Hypoxia-Selective Radiosensitizers 69 Tumor hypoxia was first postulated from histo- 5.3.1 Nitroimidazoles 69 logical studies of human lung adenocarcinomas by 5.3.2 Mixed-Function Radiosensitizers 69 Thomlinson and Gray (1955). They reasoned that, 5.3.3 DNA-Affinic Radiosensitizers 71 because of unrestrained growth, tumor cells are 5.3.4 Limitations of HSR 71 forced away from blood vessels beyond the effec- 5.4 Hypoxic Cytotoxins 72 5.4.1 Introduction 72 tive diffusion distance of oxygen (O2) in respiring 5.4.2 Combination of Hypoxic Cytotoxins with Ionizing tissues, hence becoming hypoxic and eventually Radiation 72 necrotic (Fig. 5.1a). Given the typical values for 5.4.3 Nitroimidazoles 73 intracapillary O2 tensions and consumption rates, 5.4.4 Other Nitroaromatics 73 they calculated that O diffusion distances would 5.4.4.1 CB 1954 73 2 be approximately 150 Pm and this was consistent 5.4.4.2 SN 23862 and PR-104 74 Thomlinson 5.4.4.3 RSU 1069 and RB 6145 74 with their histological observations ( 5.4.5 Quinones 75 and Gray 1955). This type of hypoxia has come to be 5.4.5.1 Mitomycin C 75 termed “chronic,” or “diffusion-limited,” hypoxia. 5.4.5.2 Porfiromycin 75 Acute hypoxia also develops in tumors through 5.4.5.3 EO9 75 temporal (reversible) cessation or reduction of 5.4.6 Benzotriene di-N-Oxides 76 5.4.7 Tertiary Amine N-Oxides 78 tumor blood flow resulting from highly disorga- 5.4.7.1 Nitracrine N-Oxides 78 nized tumor vasculature (Fig.
    [Show full text]
  • Modifications to the Harmonized Tariff Schedule of the United States To
    U.S. International Trade Commission COMMISSIONERS Shara L. Aranoff, Chairman Daniel R. Pearson, Vice Chairman Deanna Tanner Okun Charlotte R. Lane Irving A. Williamson Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement the Dominican Republic- Central America-United States Free Trade Agreement With Respect to Costa Rica Publication 4038 December 2008 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 18, 2008, set forth in the Appendix hereto, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement the Dominican Republic- Central America-United States Free Trade Agreement, as approved in the Dominican Republic-Central America- United States Free Trade Agreement Implementation Act, with respect to Costa Rica. (This page is intentionally blank) Annex I Effective with respect to goods that are entered, or withdrawn from warehouse for consumption, on or after January 1, 2009, the Harmonized Tariff Schedule of the United States (HTS) is modified as provided herein, with bracketed matter included to assist in the understanding of proclaimed modifications. The following supersedes matter now in the HTS. (1). General note 4 is modified as follows: (a). by deleting from subdivision (a) the following country from the enumeration of independent beneficiary developing countries: Costa Rica (b).
    [Show full text]
  • The Oxygen Effect in the Development of Radiosensitizers
    Translational Oncology Volume 4 Number 4 August 2011 pp. 189–198 189 www.transonc.com Six Degrees of Separation: Bryan T. Oronsky*, Susan J. Knox† and Jan Scicinski* The Oxygen Effect *RadioRx, Inc, Mountain View, CA, USA; †Department in the Development of Radiation Oncology, Stanford University Medical of Radiosensitizers Center, Stanford, CA, USA Abstract The popular theory six degrees of separation is used in this review as an analogy to relate all radiosensitization to oxygen. As the prime mover of all radiosensitizers, the pervasive influence of oxygen has consciously or uncon- sciously influenced the direction of research and development and provided the benchmark against which all other compounds and approaches are measured. It is the aim of this review to develop the six degrees of separation from oxygen analogy as a unifying framework for conceptually organizing the field and for giving context to its varied subspecializations and theories. Under such a framework, it would become possible for one area to consider ques- tions and problems found in other areas of radiosensitization, using a common analogy, that would allow for further development and unification of this multifaceted discipline. In this review, approaches to the development of radio- sensitizers and the current state of research in this field are discussed, including promising new agents in various stages of clinical development. Translational Oncology (2011) 4, 189–198 Introduction support metabolic pathways. The ability of more aggressive cancer The view that everything is connected to everything else according to cells to survive hypoxic conditions leads to selection against apoptosis the popular six degrees of separation theory finds corroboration on a and an increased resistance to chemotherapy, as well as a propensity therapeutic level in the field of radiosensitization.
    [Show full text]
  • Venetoclax for the Treatment of Mantle Cell Lymphoma
    Review Article Page 1 of 11 Venetoclax for the treatment of mantle cell lymphoma Victor S. Lin1, Mary Ann Anderson2,3, David C. S. Huang3, Andrew W. Roberts1,2,3, John F. Seymour1,2, Constantine S. L. Tam1,2,4 1Department of Medicine, The University of Melbourne, Parkville, Australia; 2Department of Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Australia; 3Division of Cancer and Haematology, The Walter and Eliza Hall Institute, Parkville, Australia; 4Department of Haematology, St Vincent’s Hospital, Fitzroy, Australia Contributions: (I) Conception and design: All authors; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Mary Ann Anderson. 1G, Royal Parade, Parkville, 3052 Victoria, Australia. Email: [email protected]. Abstract: While the last decade has seen an explosion in improved therapies for mantle cell lymphoma (MCL), the outlook for patients with relapsed or refractory MCL (R/R MCL) remains poor, especially for those who are older with comorbidities or harbour dysfunction in the TP53 pathway. MCL is one of the B cell malignancies in which there is a high frequency of BCL2 overexpression, and the selective BCL2 inhibitor venetoclax has shown particular promise in the treatment of patients with R/R MCL. As a single agent, the drug is associated with a close to 80% response rate in early phase studies. However, secondary progression due to the development of resistance remains a limiting factor in the usefulness of this agent.
    [Show full text]
  • Original Article Doi:10.1093/Annonc/Mdn280 Published Online 13 May 2008
    Annals of Oncology 19: 1698–1705, 2008 original article doi:10.1093/annonc/mdn280 Published online 13 May 2008 Oblimersen combined with docetaxel, adriamycin and cyclophosphamide as neo-adjuvant systemic treatment in primary breast cancer: final results of a multicentric phase I study J. Rom1*, G. von Minckwitz2,5, W. Eiermann3, M. Sievert4, B. Schlehe1, F. Marme´ 1, F. Schuetz1, A. Scharf1, M. Eichbaum1, H.-P. Sinn5, M. Kaufmann6, C. Sohn1 & A. Schneeweiss1 1Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg; 2German Breast Group, Neu Isenburg; 3Frauenklinik vom Roten Kreuz, Mu¨nchen; 4Sanofi-Aventis GmbH, Berlin; 5Department of Pathology, University of Heidelberg, Heidelberg; 6University of Frankfurt, Department of Gynecology and Obstetrics, Frankfurt, Germany Downloaded from Received 23 January 2008; revised 6 April 2008; accepted 7 April 2008 Background: Combining the Bcl-2 down-regulator oblimersen with cytotoxic treatment leads to synergistic antitumor effects in preclinical trials. This multicentric phase I study was carried out to evaluate maximum tolerated dose (MTD), safety and preliminary efficacy of oblimersen in combination with docetaxel, adriamycin and annonc.oxfordjournals.org cyclophosphamide as neo-adjuvant systemic treatment (NST) in primary breast cancer (PBC). Methods: Previously untreated patients with PBC T2–4a–c N0–3 M0 received one cycle of docetaxel 75 mg/m2, adriamycin 50 mg/m2 and cyclophosphamide 500 mg/m2 administered on day 5 combined with escalating doses of oblimersen as a 24-h continuous infusion on days 1–7 followed by five cycles of combination of docetaxel, adriamycin and cyclophosphamide (TAC) without oblimersen every 3 weeks. Prophylactic antibiotic therapy and granulocyte article original colony-stimulating factor administration were used in all six cycles.
    [Show full text]