Ophiocordyceps Unilateralis: a Keystone Species for Unraveling Ecosystem Functioning and Biodiversity of Fungi in Tropical Forests?

Total Page:16

File Type:pdf, Size:1020Kb

Ophiocordyceps Unilateralis: a Keystone Species for Unraveling Ecosystem Functioning and Biodiversity of Fungi in Tropical Forests? Communicative & Integrative Biology ISSN: (Print) 1942-0889 (Online) Journal homepage: https://www.tandfonline.com/loi/kcib20 Ophiocordyceps unilateralis: A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests? Harry C. Evans, Simon L. Elliot & David P. Hughes To cite this article: Harry C. Evans, Simon L. Elliot & David P. Hughes (2011) Ophiocordyceps unilateralis: A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests?, Communicative & Integrative Biology, 4:5, 598-602, DOI: 10.4161/cib.16721 To link to this article: https://doi.org/10.4161/cib.16721 Copyright © 2011 Landes Bioscience Published online: 01 Sep 2011. Submit your article to this journal Article views: 1907 View related articles Citing articles: 23 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=kcib20 Communicative & Integrative Biology 4:5, 598-602; September/October 2011; ©2011 Landes Bioscience Ophiocordyceps unilateralis A keystone species for unraveling ecosystem functioning and biodiversity of fungi in tropical forests? Harry C. Evans,1,* Simon L. Elliot1 and David P. Hughes2 1Department of Entomology; Universidade Federal de Viçosa (UFV); Viçosa; Minas Gerais, Brazil; 2Department of Entomology and Department of Biology; Penn State University; University Park; PA USA phiocordyceps unilateralis (Ascomy- thus far4—this group of organisms still O cota: Hypocreales) is a specialized receives relatively little press in terms of parasite that infects, manipulates and its biodiversity and the pivotal role it plays kills formicine ants, predominantly in ecosystem functioning. Recently, how- in tropical forest ecosystems. We have ever, the subject has been revisited within reported previously, based on a prelimi- the context of microbes associated with nary study in remnant Atlantic Forest beetles.5 Of the near one million species ©2011 Landesin Minas Gerais (Brazil), thatBioscience. O. uni- of insects that have been described, beetles lateralis represents a species complex. are by far the most numerous. However, in On each of the four species of infected terms of overall biodiversity, “beetles may carpenter ant (Camponotus) collected, represent just the tip of the iceberg,”5 since the fungus—characterized macroscopi- “A single beetle species itself can house Do notcally by a singledistribute. stalk arising from the an entire community of associated [pre- dorsal neck region on which the sexual dominantly fungal] species.”5 The prem- structures (stromatal plates) are borne ise put forward is that microbial diversity laterally—can readily be distinguished and ecology have been neglected in favor both microscopically and functionally. of other disciplines, especially in the area Here, we describe and discuss the biol- of biological mutualisms and antagonisms ogy, life cycle and infection strategies of between macro- and micro-organisms.1,5 O. unilateralis s.l. and hypothesize that An illustration of Ophiocordyceps unilate- there may be hundreds of species within ralis on its ant host was chosen by the the complex parasitizing formicine ants latter authors to emphasize their point, worldwide. We then address the diversity that—for most of the insect-microbial within related hypocrealean fungi, with interactions—the ecology and, more Key words: zombie ants, particular reference to symbionts (mutu- pragmatically, the pharmacological prop- Ophiocordyceps, Hypocreales, tropical alists through to parasites), and argue erties of the microbes involved remain forests, fungal diversity, symbionts that the widely-quoted total of extant unknown. Submitted: 05/30/11 fungi (1.5 million species) may be grossly We have now shown6 that the inter- underestimated. actions between and its Accepted: 05/31/11 O. unilateralis Camponotus hosts are much more com- DOI: 10.4161/cib.4.5.16721 “How many species?” has been the ral- plex than has previously been supposed.7-10 *Correspondence to: Harry C. Evans; lying cry for systematists and ecologists, It had been posited that the morphologi- Email: [email protected] championing the interests of their partic- cal variation noted in global collections ular organismic group, since the question of this fungus from formicine ants “is Addendum to: Evans HC, Elliot SL, Hughes DP. was posed over 30 years ago.1,2 Although it undoubtedly a consequence of its wide geo- Hidden diversity behind the zombie-ant fungus 8 Ophiocordyceps unilateralis: four new species was answered soon after for the Kingdom graphic range,” and that this would best described from carpenter ants in Minas Gerais, Fungi3—with an estimated total in the be resolved at the varietal level, as with the Brazil. PLoS One 2011; 6:17024, PMID: 21399679; region of 1.5 million species, of which, less Ophiocordyceps species complexes associ- DOI: 0.1371/journal.pone than 100,000 (~7%) have been described, ated with myrmicine and ponerine ants.11,12 598 Communicative & Integrative Biology Volume 4 Issue 5 ARTICLE ADDENDUM ©2011 Landes Bioscience. Do not distribute. Figure 1. Most common carpenter ant species infected with Ophiocordyceps s.l. in Atlantic rain forest in Minas Gerais, Brazil. (A) Sample area, Mata do Paraíso, near Viçosa, a small (300 ha) reserve of remnant forest; (B) Camponotus rufipes showing early stage in development of Ophiocordyceps camponoti-rufipedis with a single asexual synnema arising from the dorsal pronotum, the ant had died biting into a plastic label identifying a disease- outbreak site, (bar = 1.5 mm); (C) Camponotus balzani with mature Ophiocordyceps camponoti-balzani, showing the elaborate, branching, antler-like synnema/clava bearing scattered ascostromata with prominent semi-erumpent ascomata (compare E, bar = 1.0 mm); (D) Camponotus rufipes in more typical death position biting into leaf margin, with unbranched synnema/clava producing groups of stromata (arrow, bar = 4 mm); (E) inset, shows the ascomatal necks with the ascomata buried within the stroma (bar = 0.4 mm). However, working in remnant fragments of arthropod population dynamics and, holis- fungal pathogen must attach securely Atlantic Forest (Mata Atlántica) in Minas tically, in ecosystem functioning. to the arthropod exoskeleton and pen- Gerais, Brazil,6 we discovered a far more etrate it—avoiding or suppressing host complex scenario: one that will necessitate The Host-Pathogen System: defences—then, control the behavior of a re-evaluation of the diversity of species A Diversity of Interactions the host before killing it; and finally, it within Ophiocordyceps unilateralis s.l., as must protect the cadaver from microbial well as in the genus Ophiocordyceps and As has been emphasized previously in and scavenger attack. What is not gener- related genera of Hypocreales—and, eventu- reference 2 and 5, insect-microbial asso- ally realized—certainly not by drug com- ally, within the kingdom fungi—with par- ciations have been a source of useful panies—is that such coevolved fungi are ticular reference to tropical forests. These drugs: although, “The pharmacologi- pleiomorphic, with well-defined parasitic, ecosystems harbor a hyperdiversity of cal properties of the ant-infesting fun- necrotrophic and saprophytic phases: fungi, especially when we consider they are gus [O. unilateralis s.l.] have yet to be each one morphologically, genetically found as symbionts (ranging from mutual- investigated.”5 What can we expect from and physiologically distinct. Only now, ists to parasites) of the extremely diverse such specialized fungi, and from related are we beginning to try to understand the flora and entomofauna, and even of other entomopathogenic Hypocreales, in gen- mechanisms and the biochemical path- fungi. Based on such studies, it may also eral? Throughout the life cycle, there are ways that drive these systems. be possible to better interpret their role in unique challenges that must be met by Our initial studies are focused on equally unique metabolic activities. The investigating the form and function of www.landesbioscience.com Communicative & Integrative Biology 599 ©2011 Landes Bioscience. Do not distribute. Figure 2. Variations on a theme. (A) Ascospore of Ophiocordyceps camponoti-rufipedis germinating to produce secondary spores (capilliconidia) on needle-like capilliconidiophores (bar = 30 μ); (B) Ascospore of O. camponoti-melanotici producing true Hirsutella phialide with swollen base tapering to a needle-like neck (bar = 15 μm); (C) Ascospore of O. camponoti-balzani becoming swollen with bead-like cells and the formation centrally of an appressorial-like structure (bar = 30 μm); (D) Ascospore of an un-named Ophiocordyceps sp. from Camponotus atriceps producing numerous swollen side branches of unknown function (bar = 30 μm); (E and F) Two undescribed, specialized mycoparasites on Ophiocordyceps illustrating the biodiver- sity and complexity associated with the system (E, bar = 2 mm; F, bar = 2 mm). the weaponry deployed by the pathogen ant activity is at its peak and the potential as the ecological significance of the world- (O. unilateralis s.l.) to breach the ant host’s targets are in range and, therefore, that wide collections of the zombie-ant fun- formidable defenses. We suppose that the microclimatic factors (light, temperature, gus, especially of the somewhat bizarre, heavy armament “of choice” is the stroma- humidity) will play a crucial role. What we multiple asexual stages (synanamorphs) tal
Recommended publications
  • Vol1art2.Pdf
    VOLUME 1 JUNE 2018 Fungal Systematics and Evolution PAGES 13–22 doi.org/10.3114/fuse.2018.01.02 Epitypification and re-description of the zombie-ant fungus, Ophiocordyceps unilateralis (Ophiocordycipitaceae) H.C. Evans1,2*, J.P.M. Araújo3, V.R. Halfeld4, D.P. Hughes3 1CAB International, UK Centre, Egham, Surrey, UK 2Departamentos de Entomologia e Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil 3Departments of Entomology and Biology, Penn State University, University Park, Pennsylvania, USA 4Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil *Corresponding author: [email protected] Key words: Abstract: The type of Ophiocordyceps unilateralis (Ophiocordycipitaceae, Hypocreales, Ascomycota) is based on an Atlantic rainforest immature specimen collected on an ant in Brazil. The host was identified initially as a leaf-cutting ant (Atta cephalotes, Camponotus sericeiventris Attini, Myrmicinae). However, a critical examination of the original illustration reveals that the host is the golden carpenter ants carpenter ant, Camponotus sericeiventris (Camponotini, Formicinae). Because the holotype is no longer extant and epitype the original diagnosis lacks critical taxonomic information – specifically, on ascus and ascospore morphology – a new Ophiocordyceps type from Minas Gerais State of south-east Brazil is designated herein. A re-description of the fungus is provided and phylogeny a new phylogenetic tree of the O. unilateralis clade is presented. It is predicted that many more species of zombie- ant fungi remain to be delimited within the O. unilateralis complex worldwide, on ants of the tribe Camponotini. Published online: 15 December 2017. Editor-in-Chief INTRODUCTIONProf. dr P.W. Crous, Westerdijk Fungal Biodiversity Institute, P.O.
    [Show full text]
  • Unravelling the Diversity Behind the Ophiocordyceps Unilateralis (Ophiocordycipitaceae) Complex: Three New Species of Zombie-Ant Fungi from the Brazilian Amazon
    Phytotaxa 220 (3): 224–238 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.220.3.2 Unravelling the diversity behind the Ophiocordyceps unilateralis (Ophiocordycipitaceae) complex: Three new species of zombie-ant fungi from the Brazilian Amazon JOÃO P. M. ARAÚJO1*, HARRY C. EVANS2, DAVID M. GEISER3, WILLIAM P. MACKAY4 & DAVID P. HUGHES1, 5* 1 Department of Biology, Penn State University, University Park, Pennsylvania, United States of America. 2 CAB International, E-UK, Egham, Surrey, United Kingdom 3 Department of Plant Pathology, Penn State University, University Park, Pennsylvania, United States of America. 4 Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas, United States of America. 5 Department of Entomology, Penn State University, University Park, Pennsylvania, United States of America. * email: [email protected]; [email protected] Abstract In tropical forests, one of the most commonly encountered relationships between parasites and insects is that between the fungus Ophiocordyceps (Ophiocordycipitaceae, Hypocreales, Ascomycota) and ants, especially within the tribe Campono- tini. Here, we describe three newly discovered host-specific species, Ophiocordyceps camponoti-atricipis, O. camponoti- bispinosi and O. camponoti-indiani, on Camponotus ants from the central Amazonian region of Brazil, which can readily be separated using morphological traits, in particular the shape and behavior of the ascospores. DNA sequence data support inclusion of these species within the Ophiocordyceps unilateralis complex. Introduction In tropical forests, social insects (ants, bees, termites and wasps) are the most abundant land-dwelling arthropods.
    [Show full text]
  • Standardized Nuclear Markers Advance Metazoan Taxonomy
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.07.443120; this version posted May 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Standardized nuclear markers advance metazoan taxonomy Lars Dietz1, Jonas Eberle1,2, Christoph Mayer1, Sandra Kukowka1, Claudia Bohacz1, Hannes Baur3, Marianne Espeland1, Bernhard A. Huber1, Carl Hutter4, Ximo Mengual1, Ralph S. Peters1, Miguel Vences5, Thomas Wesener1, Keith Willmott6, Bernhard Misof1,7, Oliver Niehuis8, Dirk Ahrens*1 1Zoological Research Museum Alexander Koenig, Bonn, Germany 2Paris-Lodron-University, Salzburg, Austria 3Naturhistorisches Museum Bern/ Institute of Ecology and Evolution, University of Bern, Switzerland 4Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University, Baton Rouge, USA 5Technische Universität Braunschweig, Germany 6Florida Museum of Natural History, University of Florida, Gainesville, USA 7Rheinische Friedrich-Wilhelms-Universität Bonn, Germany 8Abt. Evolutionsbiologie und Ökologie, Institut für Biologie I, Albert-Ludwigs-Universität Freiburg, Germany *Corresponding author. Email: [email protected] Abstract Species are the fundamental units of life and their recognition is essential for science and society. DNA barcoding, the use of a single and often mitochondrial gene, has been increasingly employed as a universal approach for the identification of animal species. However, this approach faces several challenges. Here, we demonstrate with empirical data from a number of metazoan animal lineages that multiple nuclear-encoded markers, so called universal single-copy orthologs (USCOs) performs much better than the single barcode gene to discriminate closely related species. Overcoming the general shortcomings of mitochondrial DNA barcodes, USCOs also accurately assign samples to higher taxonomic levels.
    [Show full text]
  • What Can the Bacterial Community of Atta Sexdens (Linnaeus, 1758) Tell Us About the Habitats in Which This Ant Species Evolves?
    insects Article What Can the Bacterial Community of Atta sexdens (Linnaeus, 1758) Tell Us about the Habitats in Which This Ant Species Evolves? Manuela de Oliveira Ramalho 1,2,*, Cintia Martins 3, Maria Santina Castro Morini 4 and Odair Correa Bueno 1 1 Centro de Estudos de Insetos Sociais—CEIS, Instituto de Biociências, Universidade Estadual Paulista, UNESP, Campus Rio Claro, Avenida 24A, 1515, Bela Vista, Rio Claro 13506-900, SP, Brazil; [email protected] 2 Department of Entomology, Cornell University, 129 Garden Ave, Ithaca, NY 14850, USA 3 Campus Ministro Reis Velloso, Universidade Federal do Piauí, Av. São Sebastião, 2819, Parnaíba, Piauí 64202-020, Brazil; [email protected] 4 Núcleo de Ciências Ambientais, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida e Souza, 200, Centro Cívico, Mogi das Cruzes 08780-911, SP, Brazil; [email protected] * Correspondence: [email protected] Received: 5 March 2020; Accepted: 22 May 2020; Published: 28 May 2020 Abstract: Studies of bacterial communities can reveal the evolutionary significance of symbiotic interactions between hosts and their associated bacteria, as well as identify environmental factors that may influence host biology. Atta sexdens is an ant species native to Brazil that can act as an agricultural pest due to its intense behavior of cutting plants. Despite being extensively studied, certain aspects of the general biology of this species remain unclear, such as the evolutionary implications of the symbiotic relationships it forms with bacteria. Using high-throughput amplicon sequencing of 16S rRNA genes, we compared for the first time the bacterial community of A.
    [Show full text]
  • 11 the Evolutionary Strategy of Claviceps
    Pažoutová S. (2002) Evolutionary strategy of Claviceps. In: Clavicipitalean Fungi: Evolutionary Biology, Chemistry, Biocontrol and Cultural Impacts. White JF, Bacon CW, Hywel-Jones NL (Eds.) Marcel Dekker, New York, Basel, pp.329-354. 11 The Evolutionary Strategy of Claviceps Sylvie Pažoutová Institute of Microbiology, Czech Academy of Sciences Vídeòská 1083, 142 20 Prague, Czech Republic 1. INTRODUCTION Members of the genus Claviceps are specialized parasites of grasses, rushes and sedges that specifically infect florets. The host reproductive organs are replaced with a sclerotium. However, it has been shown that after artificial inoculation, C. purpurea can grow and form sclerotia on stem meristems (Lewis, 1956) so that there is a capacity for epiphytic and endophytic growth. C. phalaridis, an Australian endemite, colonizes whole plants of pooid hosts in a way similar to Epichloë and it forms sclerotia in all florets of the infected plant, rendering it sterile (Walker, 1957; 1970). Until now, about 45 teleomorph species of Claviceps have been described, but presumably many species may exist only in anamorphic (sphacelial) stage and therefore go unnoticed. Although C. purpurea is type species for the genus, it is in many aspects untypical, because most Claviceps species originate from tropical regions, colonize panicoid grasses, produce macroconidia and microconidia in their sphacelial stage and are able of microcyclic conidiation from macroconidia. Species on panicoid hosts with monogeneric to polygeneric host ranges predominate. 329 2. PHYLOGENETIC TREE We compared sequences of ITS1-5.8S-ITS2 rDNA region for 19 species of Claviceps, Database sequences of Myrothecium atroviride (AJ302002) (outgroup from Bionectriaceae), Epichloe amarillans (L07141), Atkinsonella hypoxylon (U57405) and Myriogenospora atramentosa (U57407) were included to root the tree among other related genera.
    [Show full text]
  • (Hypocreales) Proposed for Acceptance Or Rejection
    IMA FUNGUS · VOLUME 4 · no 1: 41–51 doi:10.5598/imafungus.2013.04.01.05 Genera in Bionectriaceae, Hypocreaceae, and Nectriaceae (Hypocreales) ARTICLE proposed for acceptance or rejection Amy Y. Rossman1, Keith A. Seifert2, Gary J. Samuels3, Andrew M. Minnis4, Hans-Josef Schroers5, Lorenzo Lombard6, Pedro W. Crous6, Kadri Põldmaa7, Paul F. Cannon8, Richard C. Summerbell9, David M. Geiser10, Wen-ying Zhuang11, Yuuri Hirooka12, Cesar Herrera13, Catalina Salgado-Salazar13, and Priscila Chaverri13 1Systematic Mycology & Microbiology Laboratory, USDA-ARS, Beltsville, Maryland 20705, USA; corresponding author e-mail: Amy.Rossman@ ars.usda.gov 2Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada 3321 Hedgehog Mt. Rd., Deering, NH 03244, USA 4Center for Forest Mycology Research, Northern Research Station, USDA-U.S. Forest Service, One Gifford Pincheot Dr., Madison, WI 53726, USA 5Agricultural Institute of Slovenia, Hacquetova 17, 1000 Ljubljana, Slovenia 6CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands 7Institute of Ecology and Earth Sciences and Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 8Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK 9Sporometrics, Inc., 219 Dufferin Street, Suite 20C, Toronto, Ontario, Canada M6K 1Y9 10Department of Plant Pathology and Environmental Microbiology, 121 Buckhout Laboratory, The Pennsylvania State University, University Park, PA 16802 USA 11State
    [Show full text]
  • The Stipitate Species of Hypocrea (Hypocreales, Hypocreaceae) Including Podostroma
    Karstenia 44: 1- 24, 2004 The stipitate species of Hypocrea (Hypocreales, Hypocreaceae) including Podostroma HOLLY L. CHAMBERLAIN, AMY Y. ROSSMAN, ELWIN L. STEWART, TAUNO ULVINEN and GARY J. SAMUELS CHAMBERLAIN, H. L.,ROSSMAN,A. Y.,STEWART,E.L., ULVINEN, T. &SAMUELS, G. J. 2004: The stipitate species ofHypocrea (Hypocreales, Hypocreaceae) including Podostroma.- Karstenia44: 1- 24. 2004. Helsinki. ISSN 0453-3402. Stipitate species of Hypocrea have traditionally been segregated as the genus Podo­ stroma. The type species of Podostroma is P. leucopus for which P. alutaceum has been considered an earlier synonym. Study of the type and existing specimens suggests that these two taxa can be distinguished based on morphology and biology. Podo­ stroma leucopus is herein recognized as Hypocrea leucopus (P. Karst.) H. Chamb., comb. nov. , thus Podostroma is a synonym of Hypocrea. The genus Podocrea, long considered a synonym of Podostroma, is based on Sphaeria alutacea, a species that is recognized as H. alutacea. A neotype is designated for Sphaeria alutacea. Both H. alutacea and H. leucopus are redescribed and illustrated. The ne\ species H. nyber­ giana T. Ulvinen & H. Chamb., spec. nov. is described and illustrated. In addition to H. leucopus, seven species of Podostroma are transferred to Hypocrea, viz. H. africa­ na (Boedijn) H. Chamb., comb. no ., H. cordyceps (Penz. & Sacc.) H. Chamb., comb. nov., H. daisenensis (Yoshim. Doi & Uchiy.) H. Chamb., comb. nov., H. eperuae (Rogerson & Samuels) H. Chamb., comb. nov., H. gigantea (lmai) H. Chamb., comb. nov., H. sumatrana (Boedijn) H. Chamb., comb. nov. , and H. truncata (Imai) H. Chamb., comb. nov. A key to the 17 species of stipitate Hypocrea including ? ado­ stroma and Podocrea is presented.
    [Show full text]
  • Zombie Ant Fungus
    Beneficial Species Profile Photo credit: Dr. David P. Hughes; Hughes Lab, Penn State University Common Name: Zombie Ant Fungus Scientific Name: Ophiocordyceps unilateralis Order and Family: Hypocreales; Ophiocordycipitaceae Size and Appearance: Length (mm) Appearance Egg Larva/Nymph Spores are found on the ground waiting to be picked up by ants Adult The stalk is wiry and flexible; darkly pigmented and extends the length of the ant’s head; close to the tip there is a small flask-shaped fruiting body that releases spores Pupa (if applicable) Type of feeder (Chewing, sucking, etc.): Spores that release a chemical Host/s: Carpenter Ants Description of Benefits (predator, parasitoid, pollinator, etc.): This fungus releases spores that drop to the rainforest floor and then attach onto unsuspecting ants. Once the spores are attached, they inject a chemical into the ant’s brain, making it become disoriented and move to certain locations on plants. There the ant uses its mandibles to affix itself to a leaf or branch and eventually dies. Once the ant is dead, the fungus rapidly grows and starts to form a fruiting body that extrudes from the ant’s head. If the ant is not removed from the colony, then the whole colony can become infected. References: Araujo, J. P., Evans, H. C., Geiser, D. M., Mackay, W. P., & Hughes, D. P. (2014, April 3). Unravelling the diversity behind the Ophiocordyceps unilateral complex: Three new species of zombie-ant fungi from the Brazilian Amazon. Retrieved April 11, 2016, from http://biorxiv.org/content/biorxiv/early/2014/09/29/003806.full.pdf Andersen, S.
    [Show full text]
  • Multigene Phylogeny and Morphology Reveal a New Species, Ophiocordyceps Vespulae, from Jilin Province, China
    Phytotaxa 478 (1): 033–048 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.478.1.2 Multigene phylogeny and morphology reveal a new species, Ophiocordyceps vespulae, from Jilin Province, China FENG-YAO LONG1, 2, 6, LI-WU QIN3, 7, YUAN-PIN XIAO2, 4, 8, KEVIN D. HYDE4, 9, SHAO-XIAN WANG3, 10* & TING-CHI WEN1, 2, 5, 11* 1 School of Pharmacy, Guizhou University, Guiyang 550025, Guizhou, China. 2 The Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China. 3 Changbai Mountain Academy of Sciences, Jilin Provincial Joint Key Laboratory of Changbai Mountains Biocoenosis & Biodiversity, Erdaobaihe 133613, Jilin, China. 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand. 5Mushroom Research Institute,Guizhou University,Guiyang,550025,China 6 [email protected]; https://orcid.org/0000-0002-5818-694X 7 [email protected]; https://orcid.org/0000-0002-5586-2885 8 [email protected]; https://orcid.org/0000-0003-1730-3545 9 [email protected]; https://orcid.org/0000-0002-2191-0762 10 [email protected]; https://orcid.org/0000-0002-0921-1790 11 [email protected]; https://orcid.org/0000-0003-1744-5869 *Corresponding author Abstract Ophiocordyceps is entomopathogenic and is the best studied genus in Ophiocordycipitaceae. Members of Ophiocordyceps and ants form sophisticated interactions. However, taxonomy and evolutionary relationships of this group of pathogens remain unclear. During a survey in Changbai Mountains, Jiling Province, China, a new entomogenous species, Ophiocordyceps vespulae sp.
    [Show full text]
  • Hirsutella Sinensis
    Jin et al. AMB Expr (2020) 10:105 https://doi.org/10.1186/s13568-020-01039-x ORIGINAL ARTICLE Open Access Genome sequencing and analysis of fungus Hirsutella sinensis isolated from Ophiocordyceps sinensis Li‑Qun Jin1, Zhe‑Wen Xu1, Bo Zhang1, Ming Yi1, Chun‑Yue Weng1, Shan Lin1, Hui Wu2,3, Xiang‑Tian Qin2,3, Feng Xu2,3, Yi Teng2,3, Shui‑Jin Yuan2,3, Zhi‑Qiang Liu1* and Yu‑Guo Zheng1 Abstract Ophiocordyceps sinensis has been used as a traditional medicine or healthy food in China for thousands of years. Hirsutella sinensis was reported as the only correct anamorph of O. sinensis. It is reported that the laboratory‑grown H. sinensis mycelium has similar clinical efcacy and less associated toxicity compared to the wild O. sinensis. The research of the H. sinensis is becoming more and more important and urgent. To gain deeper insight into the biological and pharmacological mechanisms, we sequenced the genome of H. sinensis. The genome of H. sinensis (102.72 Mb) was obtained for the frst time, with > 99% coverage. 10,200 protein‑encoding genes were predicted based on the genome sequence. A detailed secondary metabolism analysis and structure verifcation of the main ingredients were performed, and the biosynthesis pathways of seven ingredients (mannitol, cordycepin, purine nucleotides, pyrimi‑ dine nucleotides, unsaturated fatty acid, cordyceps polysaccharide and sphingolipid) were predicted and drawn. Furthermore, infection process and mechanism of H. sinensis were studied and elaborated in this article. The enzymes involved in the infection mechanism were also predicted, cloned and expressed to verify the mechanism. The genes and proteins were predicted and annotated based on the genome sequence.
    [Show full text]
  • Unravelling the Diversity Behind the Ophiocordyceps Unilateralis Complex: Three New Species of Zombie-Ant Fungi from the Brazilian Amazon
    bioRxiv preprint doi: https://doi.org/10.1101/003806; this version posted September 29, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Unravelling the diversity behind the Ophiocordyceps unilateralis complex: Three new species of zombie-ant fungi from the Brazilian Amazon João P. M. Araújoa, Harry C. Evansb, David M. Geiserc, William P. Mackayd ae & David P. Hughes aDepartment of Biology, Penn State University, University Park, Pennsylvania, United States of America. bCAB International, E-UK, Egham, Surrey, United Kingdom cDepartment of Plant Pathology, Penn State University, University Park, Pennsylvania, United States of America. dDepartment of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968 eDepartment of Entomology, Penn State University, University Park, Pennsylvania, United States of America. Correspondence authors: [email protected]; [email protected] Abstract In tropical forests, one of the most common relationships between parasites and insects is that between the fungus Ophiocordyceps (Ophiocordycipitaceae, Hypocreales, Ascomycota) and ants, especially within the tribe Camponotini. Here, we describe three new and host-specific species of the genus Ophiocordyceps on Camponotus ants from the central Amazonian region of Brazil, which can readily be separated using morphological traits, in particular, ascospore form and function. In addition, we use sequence data to infer phylogenetic relationships between these taxa and closely related species within the Ophiocordyceps unilateralis complex, as well as with other members of the family Ophiocordycipitaceae.
    [Show full text]
  • Collecting and Recording Fungi
    British Mycological Society Recording Network Guidance Notes COLLECTING AND RECORDING FUNGI A revision of the Guide to Recording Fungi previously issued (1994) in the BMS Guides for the Amateur Mycologist series. Edited by Richard Iliffe June 2004 (updated August 2006) © British Mycological Society 2006 Table of contents Foreword 2 Introduction 3 Recording 4 Collecting fungi 4 Access to foray sites and the country code 5 Spore prints 6 Field books 7 Index cards 7 Computers 8 Foray Record Sheets 9 Literature for the identification of fungi 9 Help with identification 9 Drying specimens for a herbarium 10 Taxonomy and nomenclature 12 Recent changes in plant taxonomy 12 Recent changes in fungal taxonomy 13 Orders of fungi 14 Nomenclature 15 Synonymy 16 Morph 16 The spore stages of rust fungi 17 A brief history of fungus recording 19 The BMS Fungal Records Database (BMSFRD) 20 Field definitions 20 Entering records in BMSFRD format 22 Locality 22 Associated organism, substrate and ecosystem 22 Ecosystem descriptors 23 Recommended terms for the substrate field 23 Fungi on dung 24 Examples of database field entries 24 Doubtful identifications 25 MycoRec 25 Recording using other programs 25 Manuscript or typescript records 26 Sending records electronically 26 Saving and back-up 27 Viruses 28 Making data available - Intellectual property rights 28 APPENDICES 1 Other relevant publications 30 2 BMS foray record sheet 31 3 NCC ecosystem codes 32 4 Table of orders of fungi 34 5 Herbaria in UK and Europe 35 6 Help with identification 36 7 Useful contacts 39 8 List of Fungus Recording Groups 40 9 BMS Keys – list of contents 42 10 The BMS website 43 11 Copyright licence form 45 12 Guidelines for field mycologists: the practical interpretation of Section 21 of the Drugs Act 2005 46 1 Foreword In June 2000 the British Mycological Society Recording Network (BMSRN), as it is now known, held its Annual Group Leaders’ Meeting at Littledean, Gloucestershire.
    [Show full text]