Precision Pressure Measurement Guide

Total Page:16

File Type:pdf, Size:1020Kb

Precision Pressure Measurement Guide Precision Pressure Measurement User Guide to Pressure Measurement P-CP-2010-0200 October 2016 Table of Contents Chapter 1—Fundamentals of Pressure Measurement 1.1 Gauge Versus Absolute Pressure ...........................................................................................4 1.2 Nominal Versus Actual Pressure..............................................................................................4 1.3 Units of Pressure Measurement ...............................................................................................4 1.4 Units of Mass Measurement ......................................................................................................5 1.5 Gravity ........................................................................................................................................ 5 1.6 Primary and Secondary Pressure Standards ..........................................................................5 Chapter 2—Deadweight Pressure Testers 2.1 Piston Gauge Type Deadweight Testers ..................................................................................6 2.1.1 Simple Piston & Cylinder ....................................................................................................6 2.1.2 Re-entrant Piston & Cylinder .............................................................................................6 2.1.3 Controlled Clearance Piston & Cyl. ...................................................................................7 2.2 Floating Ball Type Deadweight Testers ....................................................................................7 2.3 Other Types of Deadweight Testers ........................................................................................8 2.4 Intrinsic Pressure Correction Terms .........................................................................................8 2.4.1 Air Buoyancy .....................................................................................................................9 2.4.2 Thermal Expansion ............................................................................................................9 2.4.3 Surface Tension ................................................................................................................9 2.4.4 Tare Force .........................................................................................................................9 2.4.5 Area ................................................................................................................................... 9 2.4.6 Pressure Coefficient .........................................................................................................9 2.5 Site Location Correction Factors ............................................................................................10 2.5.1 Gravity ..............................................................................................................................1 0 2.5.2 Temperature ....................................................................................................................10 2.5.3 Test Level ........................................................................................................................11 2.6 Traceability and Uncertainty ....................................................................................................11 2.6.1 Traceability ......................................................................................................................11 2.6.2 Laboratory Uncertainty ...................................................................................................12 Chapter 3—Calibration of Deadweight Testers 3.1 Methods of Calibration .............................................................................................................13 3.1.1 Fundamental Characterization ........................................................................................13 3.1.2 Calibrated Characterization ............................................................................................13 3.2 Test Equipment for a Pressure Standards Lab ......................................................................13 3.2.1 Introduction ......................................................................................................................13 3.2.2 Hydraulic Piston & Cylinder Type Testers .....................................................................14 3.2.3 Pneumatic Floating Ball Type Testers ............................................................................15 3.3 Frequency of Calibration .........................................................................................................16 3.3.1 Piston & Cylinder Hydraulic Deadweight Testers ......................................................... 16 3.3.2 Floating Ball Pneumatic Deadweight Testers .................................................................16 Chapter 4—AMETEK Deadweight Testers 4.1 Deadweight Testers and Deadweight Gauges .....................................................................18 4.2 Features of AMETEK Hydraulic Deadweight Testers............................................................ 18 4.2.1 Model T & R Hydraulic Testers .......................................................................................20 4.2.2 Model 10 Hydraulic Testers ............................................................................................21 4.2.3 Model HL Hydraulic Testers ............................................................................................22 4.2.4 Dual Column Hydraulic Testers ......................................................................................22 4.3 Features of AMETEK Deadweight Gauges ............................................................................22 4.3.1 Model HLG Deadweight Gauge ......................................................................................23 4.4 Features of AMETEK Pneumatic Deadweight Testers .......................................................... 24 2 Table of Contents 4.4.1 Model PK II Pneumatic Tester .......................................................................................... 26 4.4.2 Model RK Pneumatic Deadweight Tester ....................................................................... 27 4.4.3 Model HK Pneumatic Deadweight Tester ....................................................................... 27 4.4.4 Model PK Medical Pneu. Deadweight Tester ................................................................. 28 4.5 Care of AMETEK Deadweight Testers ................................................................................... 28 4.5.1 Hydraulic Deadweight Testers ....................................................................................... 28 4.5.2 Floating Ball Pneumatic Testers ...................................................................................... 30 4.6 Procedures for the Use of AMETEK Testers ......................................................................... 31 4.6.1 Procedures for Cleaning Hydraulic Piston & Cylinder ................................................... 31 4.6.2 Procedures for Use of Hydraulic Deadweight Testers ................................................ 32 4.6.3 Procedures for Use of Hydraulic Deadweight Gauges ................................................ 33 4.6.4 Procedures for Use of Pneumatic Deadweight Testers ............................................... 34 Chapter 5—Manometers 5.0 Principle of Operation .............................................................................................................. 36 5.1 Types of Manometers .............................................................................................................. 36 5.1.1 U Tube Manometers......................................................................................................... 36 5.1.2 Inclined Tube Manometers .............................................................................................. 36 5.1.3 Well Type Manometers .................................................................................................... 37 5.2 Intrinsic Correction Factors ..................................................................................................... 37 5.2.1 Fluid Density Correction .................................................................................................. 37 5.2.2 Gravity Correction ........................................................................................................... 38 5.2.3 Pressure Medium Head Correction ................................................................................. 39 5.2.4 Scale Correction .............................................................................................................. 40 5.2.5 Compressability, Absorbed Gases and Capillary Considerations................................ 40 5.2.6 Parallax (Readability) ...................................................................................................... 41 Chapter 6—Secondary Comparison Pressure Standards 6.1 Types of Secondary Comparison Pressure Stds. ................................................................. 42 6.1.1 Mechanical Pressure Gauges ........................................................................................ 42 6.1.2 Electronic Pressure Gauges ........................................................................................... 42 6.2 Overall Application
Recommended publications
  • Simple Experiment Confirming the Negative Temperature Dependence of Gravity Force
    SIMPLE EXPERIMENT CONFIRMING THE NEGATIVE TEMPERATURE DEPENDENCE OF GRAVITY FORCE Alexander L. Dmitriev St-Petersburg National Research University of Information Technologies, Mechanics and Optics, 49 Kronverksky Prospect, St-Petersburg, 197101, Russia Results of weighing of the tight vessel containing a thermo-isolated copper sample heated by a tungstic spiral are submitted. The increase of temperature of a sample with masse of 28 g for about 10 0 С causes a reduction of its apparent weight for 0.7 mg. The basic sources of measurement errors are briefly considered, the expediency of researches of temperature dependence of gravity is recognized. Key words: gravity force, weight, temperature, gravity mass. PACS: 04.80-y. Introduction The question on influence of temperature of bodies on the force of their gravitational interaction was already raised from the times when the law of gravitation was formulated. The first exact experiments in this area were carried out at the end of XIXth - the beginning of XXth century with the purpose of checking the consequences of various electromagnetic theories of gravitation (Mi, Weber, Morozov) according to which the force of a gravitational attraction of bodies is increased with the growth of their absolute temperature [1-3]. That period of experimental researches was completed in 1923 by the publication of Shaw and Davy’s work who concluded that the temperature dependence of gravitation forces does not exceed relative value of 2⋅10 −6 K −1 and can be is equal to zero [4]. Actually, as shown in [5], those authors confidently registered the negative temperature dependence of gravitation force.
    [Show full text]
  • 11 Fluid Statics
    CHAPTER 11 | FLUID STATICS 357 11 FLUID STATICS Figure 11.1 The fluid essential to all life has a beauty of its own. It also helps support the weight of this swimmer. (credit: Terren, Wikimedia Commons) Learning Objectives 11.1. What Is a Fluid? • State the common phases of matter. • Explain the physical characteristics of solids, liquids, and gases. • Describe the arrangement of atoms in solids, liquids, and gases. 11.2. Density • Define density. • Calculate the mass of a reservoir from its density. • Compare and contrast the densities of various substances. 11.3. Pressure • Define pressure. • Explain the relationship between pressure and force. • Calculate force given pressure and area. 11.4. Variation of Pressure with Depth in a Fluid • Define pressure in terms of weight. • Explain the variation of pressure with depth in a fluid. • Calculate density given pressure and altitude. 11.5. Pascal’s Principle • Define pressure. • State Pascal’s principle. • Understand applications of Pascal’s principle. • Derive relationships between forces in a hydraulic system. 11.6. Gauge Pressure, Absolute Pressure, and Pressure Measurement • Define gauge pressure and absolute pressure. • Understand the working of aneroid and open-tube barometers. 11.7. Archimedes’ Principle • Define buoyant force. • State Archimedes’ principle. • Understand why objects float or sink. • Understand the relationship between density and Archimedes’ principle. 11.8. Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action • Understand cohesive and adhesive forces. • Define surface tension. • Understand capillary action. 11.9. Pressures in the Body • Explain the concept of pressure the in human body. • Explain systolic and diastolic blood pressures. • Describe pressures in the eye, lungs, spinal column, bladder, and skeletal system.
    [Show full text]
  • Pressure, Its Units of Measure and Pressure References
    _______________ White Paper Pressure, Its Units of Measure and Pressure References Viatran Phone: 1‐716‐629‐3800 3829 Forest Parkway Fax: 1‐716‐693‐9162 Suite 500 [email protected] Wheatfield, NY 14120 www.viatran.com This technical note is a summary reference on the nature of pressure, some common units of measure and pressure references. Read this and you won’t have to wait for the movie! PRESSURE Gas and liquid molecules are in constant, random motion called “Brownian” motion. The average speed of these molecules increases with increasing temperature. When a gas or liquid molecule collides with a surface, momentum is imparted into the surface. If the molecule is heavy or moving fast, more momentum is imparted. All of the collisions that occur over a given area combine to result in a force. The force per unit area defines the pressure of the gas or liquid. If we add more gas or liquid to a constant volume, then the number of collisions must increase, and therefore pressure must increase. If the gas inside the chamber is heated, the gas molecules will speed up, impact with more momentum and pressure increases. Pressure and temperature therefore are related (see table at right). The lowest pressure possible in nature occurs when there are no molecules at all. At this point, no collisions exist. This condition is known as a pure vacuum, or the absence of all matter. It is also possible to cool a liquid or gas until all molecular motion ceases. This extremely cold temperature is called “absolute zero”, which is -459.4° F.
    [Show full text]
  • Weight and Lifestyle Inventory (Wali)
    WEIGHT AND LIFESTYLE INVENTORY (Bariatric Surgery Version) © 2015 Thomas A. Wadden, Ph.D. and Gary D. Foster, Ph.D. 1 The Weight and Lifestyle Inventory (WALI) is designed to obtain information about your weight and dieting histories, your eating and exercise habits, and your relationships with family and friends. Please complete the questionnaire carefully and make your best guess when unsure of the answer. You will have an opportunity to review your answers with a member of our professional staff. Please allow 30-60 minutes to complete this questionnaire. Your answers will help us better identify problem areas and plan your treatment accordingly. The information you provide will become part of your medical record at Penn Medicine and may be shared with members of our treatment team. Thank you for taking the time to complete this questionnaire. SECTION A: IDENTIFYING INFORMATION ______________________________________________________________________________ 1 Name _________________________ __________ _______lbs. ________ft. ______inches 2 Date of Birth 3 Age 4 Weight 5 Height ______________________________________________________________________________ 6 Address ____________________ ________________________ ______________________/_______ yrs. 7 Phone: Cell 8 Phone: Home 9 Occupation/# of yrs. at job __________________________ 10 Today’s Date 11 Highest year of school completed: (Check one.) □ 6 □ 7 □ 8 □ 9 □ 10 □ 11 □ 12 □ 13 □ 14 □ 15 □ 16 □ Masters □ Doctorate Middle School High School College 12 Race (Check all that apply): □ American Indian □ Asian □ African American/Black □ Pacific Islander □White □ Other: ______________ 13 Are you Latino, Hispanic, or of Spanish origin? □ Yes □ No SECTION B: WEIGHT HISTORY 1. At what age were you first overweight by 10 lbs. or more? _______ yrs. old 2. What has been your highest weight after age 21? _______ lbs.
    [Show full text]
  • Pressure Measuring Instruments
    testo-312-2-3-4-P01 21.08.2012 08:49 Seite 1 We measure it. Pressure measuring instruments For gas and water installers testo 312-2 HPA testo 312-3 testo 312-4 BAR °C www.testo.com testo-312-2-3-4-P02 23.11.2011 14:37 Seite 2 testo 312-2 / testo 312-3 We measure it. Pressure meters for gas and water fitters Use the testo 312-2 fine pressure measuring instrument to testo 312-2 check flue gas draught, differential pressure in the combustion chamber compared with ambient pressure testo 312-2, fine pressure measuring or gas flow pressure with high instrument up to 40/200 hPa, DVGW approval, incl. alarm display, battery and resolution. Fine pressures with a resolution of 0.01 hPa can calibration protocol be measured in the range from 0 to 40 hPa. Part no. 0632 0313 DVGW approval according to TRGI for pressure settings and pressure tests on a gas boiler. • Switchable precision range with a high resolution • Alarm display when user-defined limit values are • Compensation of measurement fluctuations caused by exceeded temperature • Clear display with time The versatile pressure measuring instrument testo 312-3 testo 312-3 supports load and gas-rightness tests on gas and water pipelines up to 6000 hPa (6 bar) quickly and reliably. testo 312-3 versatile pressure meter up to Everything you need to inspect gas and water pipe 300/600 hPa, DVGW approval, incl. alarm display, battery and calibration protocol installations: with the electronic pressure measuring instrument testo 312-3, pressure- and gas-tightness can be tested.
    [Show full text]
  • Surface Tension Measurement." Copyright 2000 CRC Press LLC
    David B. Thiessen, et. al.. "Surface Tension Measurement." Copyright 2000 CRC Press LLC. <http://www.engnetbase.com>. Surface Tension Measurement 31.1 Mechanics of Fluid Surfaces 31.2 Standard Methods and Instrumentation Capillary Rise Method • Wilhelmy Plate and du Noüy Ring Methods • Maximum Bubble Pressure Method • Pendant Drop and Sessile Drop Methods • Drop Weight or Volume David B. Thiessen Method • Spinning Drop Method California Institute of Technology 31.3 Specialized Methods Dynamic Surface Tension • Surface Viscoelasticity • Kin F. Man Measurements at Extremes of Temperature and Pressure • California Institute of Technology Interfacial Tension The effect of surface tension is observed in many everyday situations. For example, a slowly leaking faucet drips because the force of surface tension allows the water to cling to it until a sufficient mass of water is accumulated to break free. Surface tension can cause a steel needle to “float” on the surface of water although its density is much higher than that of water. The surface of a liquid can be thought of as having a skin that is under tension. A liquid droplet is somewhat analogous to a balloon filled with air. The elastic skin of the balloon contains the air inside at a slightly higher pressure than the surrounding air. The surface of a liquid droplet likewise contains the liquid in the droplet at a pressure that is slightly higher than ambient. A clean liquid surface, however, is not elastic like a rubber skin. The tension in a piece of rubber increases as it is stretched and will eventually rupture. A clean liquid surface can be expanded indefinitely without changing the surface tension.
    [Show full text]
  • Lecture # 04 Pressure Measurement Techniques and Instrumentation
    AerE 344 class notes LectureLecture ## 0404 PressurePressure MeasurementMeasurement TechniquesTechniques andand InstrumentationInstrumentation Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved! MeasurementMeasurement TechniquesTechniques forfor ThermalThermal--FluidsFluids StudiesStudies Velocity, temperature, density (concentration), etc.. • Pitot probe • hotwire, hot film Intrusive • thermocouples techniques • etc ... Thermal-Fluids measurement techniques • Laser Doppler Velocimetry (LDV) particle-based • Planar Doppler Velocimetry (PDV) techniques • Particle Image Velocimetry (PIV) • etc… Non-intrusive techniques • Laser Induced Fluorescence (LIF) • Molecular Tagging Velocimetry (MTV) molecule-based • Molecular Tagging Therometry (MTT) techniques • Pressure Sensitive Paint (PSP) • Temperature Sensitive Paint (TSP) • Quantum Dot Imaging • etc … Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved! Pressure measurements • Pressure is defined as the amount of force that presses on a certain area. – The pressure on the surface will increase if you make the force on an area bigger. – Making the area smaller and keeping the force the same also increase the pressure. – Pressure is a scalar F dF P = n = n A dA nˆ dFn dA τˆ Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved! Pressure measurements Pgauge = Pabsolute − Pamb Manometer Copyright © by Dr. Hui Hu @ Iowa State University. All Rights Reserved!
    [Show full text]
  • Pressure Calibration
    Pressure Calibration APPLICATIONS AND SOLUTIONS INTRODUCTION Process pressure devices provide critical process measurement information to process plant’s control systems. The performance of process pressure instruments are often critical to optimizing operation of the plant or proper functioning of the plant’s safety systems. Process pressure instruments are often installed in harsh operating environments causing their performance to shift or change over time. To keep these devices operating within expected limits requires periodic verification, maintenance and calibration. There is no one size fits all pressure test tool that meets the requirements of all users performing pressure instrument maintenance. This brochure illustrates a number of methods and differentiated tools for calibrating and testing the most common process pressure instruments. APPLICATION SELECTION GUIDE Dead- 721/ 719 weight Model number 754 721Ex Pro 719 718 717 700G 3130 2700G Testers Application Calibrating pressure transmitters • • Ideal • • • • (field) Calibrating pressure transmitters • • • • • • Ideal • (bench) Calibrating HART Smart transmitters Ideal Documenting pressure transmitter Ideal calibrations Testing pressure switches Ideal • • • • • • in the field Testing pressure switches • • • • • • Ideal on the bench Documenting pressure switch tests Ideal Testing pressure switches Ideal with live (voltage) contacts Gas custody transfer computer tests • Ideal • Verifying process pressure gauges Ideal • • • • • • (field) Verifying process pressure gauges • • • • • • • • Ideal (bench) Logging pressure measurements • Ideal • Testing pressure devices Ideal using a reference gauge Hydrostatic vessel testing Ideal Leak testing • Ideal (pressure measurement logging) Products noted as “Ideal” are those best suited to a specific task. Model 754 requires the correct range 750P pressure module for pressure testing. Model 753 can be used for the same applications as model 754 except for HART device calibration.
    [Show full text]
  • Role of Measurement and Calibration in the Manufacture of Products for the Global Market a Guide for Small and Medium-Sized Enterprises
    Working paper Role of measurement and calibration in the manufacture of products for the global market A guide for small and medium-sized enterprises UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Role of measurement and calibration in the manufacture of products for the global market A guide for small and medium-sized enterprises Working paper UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna, 2006 This publication is one of a series of guides resulting from the work of the United Nations Industrial Development Organization (UNIDO) under its project entitled “Market access and trade facilitation support for South Asian least developed countries, through strengthening institutional and national capacities related to standards, metrology, testing and quality” (US/RAS/03/043 and TF/RAS/03/001). It is based on the work of UNIDO consultant S. C. Arora. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of UNIDO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The opinions, fig- ures and estimates set forth are the responsibility of the authors and should not necessarily be considered as reflect- ing the views or carrying the endorsement of UNIDO. The mention of firm names or commercial products does not imply endorsement by UNIDO. PREFACE In the globalized marketplace following the creation of the World Trade Organization, a key challenge facing developing countries is a lack of national capacity to overcome technical bar- riers to trade and to comply with the requirements of agreements on sanitary and phytosani- tary conditions, which are now basic prerequisites for market access embedded in the global trading system.
    [Show full text]
  • Ideal Gasses Is Known As the Ideal Gas Law
    ESCI 341 – Atmospheric Thermodynamics Lesson 4 –Ideal Gases References: An Introduction to Atmospheric Thermodynamics, Tsonis Introduction to Theoretical Meteorology, Hess Physical Chemistry (4th edition), Levine Thermodynamics and an Introduction to Thermostatistics, Callen IDEAL GASES An ideal gas is a gas with the following properties: There are no intermolecular forces, except during collisions. All collisions are elastic. The individual gas molecules have no volume (they behave like point masses). The equation of state for ideal gasses is known as the ideal gas law. The ideal gas law was discovered empirically, but can also be derived theoretically. The form we are most familiar with, pV nRT . Ideal Gas Law (1) R has a value of 8.3145 J-mol1-K1, and n is the number of moles (not molecules). A true ideal gas would be monatomic, meaning each molecule is comprised of a single atom. Real gasses in the atmosphere, such as O2 and N2, are diatomic, and some gasses such as CO2 and O3 are triatomic. Real atmospheric gasses have rotational and vibrational kinetic energy, in addition to translational kinetic energy. Even though the gasses that make up the atmosphere aren’t monatomic, they still closely obey the ideal gas law at the pressures and temperatures encountered in the atmosphere, so we can still use the ideal gas law. FORM OF IDEAL GAS LAW MOST USED BY METEOROLOGISTS In meteorology we use a modified form of the ideal gas law. We first divide (1) by volume to get n p RT . V we then multiply the RHS top and bottom by the molecular weight of the gas, M, to get Mn R p T .
    [Show full text]
  • MAXIMUM METABOLISM FOOD METABOLISM PLAN the MAXIMUM Hreshold Spinach Salad: 1 Cup Spinach, 1/2 Cup Mixed 6 Oz
    THE MAXIMUM METABOLISM FOOD PLAN™ WEEK ONE SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY Breakfast 3/4 oz. multi-grain cereal 1/2 cup oatmeal 2 lite pancakes (4” diameter); use non-stick 1 slice of wheat toast; top with 1/2 cup 1 1/2 oz. low fat granola Apple cinnamon crepe: 1 wheat tortilla, Omelet: 3 egg whites, 1 cup mixed zucchini, 1/2 sliced banana or 3/4 cup sliced 1/2 tbs. raisins pan; top with 1/2 cup peaches or 1/2 banana nonfat cottage cheese and 1/2 sliced 1 cup nonfat milk 1/3 cup nonfat ricotta cheese, 1 apple green peppers, onions, and tomatoes, 12 oz. of water before breakfast strawberries 1/2 cup nonfat milk 1 tbs. reduced calorie syrup apple; sprinkle with 1 tsp. cinnamon 1/2 medium banana (sliced), 1 tsp. cinnamon, 1/2 tsp. vanilla 2 oz. reduced calorie cheese, and salsa 1/2 cup nonfat milk 1 medium apple 1/2 cup low fat maple yogurt extract; heat in skillet over low flame 1 slice wheat toast 1/2 cup nonfat milk 1 tsp. butter Mid-Morning Snack 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 12 oz. water 1/2 bagel 1/2 cup nonfat yogurt 1/2 cup low fat cottage cheese 1 cup nonfat flavored yogurt with 1 tsp. 1 cup flavored nonfat yogurt 1 cup flavored nonfat yogurt 1 cup flavored nonfat yogurt 1 tbs. nonfat cream cheese 1/2 cup pineapple chunks sliced almonds 1 tbs.
    [Show full text]
  • The Relation of Metabolic Rate to Body Weight and Organ Size
    Pediat.Res. 1: 185-195 (1967) Metabolism basal metabolic rate growth REVIEW kidney glomerular filtration rate body surface area body weight oxygen consumption organ growth The Relation of Metabolic Rate to Body Weight and Organ Size A Review M.A. HOLLIDAY[54J, D. POTTER, A.JARRAH and S.BEARG Department of Pediatrics, University of California, San Francisco Medical Center, San Francisco, California, and the Children's Hospital Medical Center, Oakland, California, USA Introduction Historical Background The relation of metabolic rate to body size has been a The measurement of metabolic rate was first achieved subject of continuing interest to physicians, especially by LAVOISIER in 1780. By 1839 enough measurements pediatricians. It has been learned that many quanti- had been accumulated among subjects of different tative functions vary during growth in relation to sizes that it was suggested in a paper read before the metabolic rate, rather than body size. Examples of Royal Academy of France (co-authored by a professor these are cardiac output, glomerular filtration rate, of mathematics and a professor of medicine and oxygen consumption and drug dose. This phenomenon science) that BMR did not increase as body weight may reflect a direct cause and effect relation or may be increased but, rather, as surface area increased [42]. a fortuitous parallel between the relatively slower in- In 1889, RICHET [38] observed that BMR/kg in rab- crease in metabolic rate compared to body size and the bits of varying size decreased as body weight increased; function in question. RUBNER [41] made a similar observation in dogs. Both The fact that a decrease in metabolism and many noted that relating BMR to surface area provided re- other measures of physiological function in relation to a sults that did not vary significantly with size.
    [Show full text]