The Brain and Crime

Total Page:16

File Type:pdf, Size:1020Kb

The Brain and Crime Guy Sutton The brain and crime Are criminals ‘born or made’? Does brain Brain anatomy and function Key words damage result in criminal behaviour or do some The brain controls all thoughts and actions. The two brain individuals have a genetic predisposition to crime? cerebral hemispheres are divided into four lobes. crime Or is criminality more likely to be influenced by The frontal lobes, comprising around one third of brain damage social factors? Recent research suggests that the the brain’s hemispheres, are involved in mental and genetics social world influences the activity of our genes, in behaviour functions such as thinking, personality and control of emotional expression. turn affecting brain function. Neuroscientists are • The temporal lobes are involved in memory, now beginning to explore how the brain might be together with hearing, smell, and recognising linked to certain criminal behaviours. objects and faces. • The parietal lobes integrate sensory information. • The occipital lobe is responsible for vision. Beneath the surface of the brain, complex brain regions exist such as the limbic system. This includes the two amygdalae; one in each parietal lobe hemisphere and involved in emotion, memory, frontal lobe aggression and fear. The hippocampus curves back from the amygdala in each hemisphere and is involved in emotion and memory. temporal lobe occipital The damaged brain and altered lobe behaviour Brain damage could potentially influence behaviour in many ways, for example, by impairing learning or judgement. There is a growing amount of evidence brain stem cerebellum linking brain injury to criminality. Compared with the general population, there is a higher rate of brain damage amongst offenders in custody. The major regions of the human brain Brain damage in childhood and early adulthood may increase the likelihood of criminal behaviour. 6 Catalyst February 2016 www.catalyststudent.org.uk Phineas Gage Donta Page In 1848, Phineas Gage, a US construction In Denver, USA, Donta Page was convicted of foreman, was involved in a work-related the brutal murder of Peyton Tuthill in 1999. accident. A three and a half foot long, Subsequent brain scans found decreased thirteen pound iron rod was blown into brain activity in Page’s ventral prefrontal his head, travelling behind his eye and out cortex. It was argued that a catalogue through the top of his skull, resulting in of childhood problems, including poor the loss of much left frontal lobe tissue. nutrition, parental neglect, physical and Gage survived the accident and his doctor sexual abuse and head injuries, together with documented his subsequent personality, a family history of mental illness, had left him cognitive and emotional changes. He was unable to control his behaviour. On the basis recorded as losing his inhibitions, behaving of his brain pathology, Page’s death sentence inappropriately and violently, even reportedly was reduced to life imprisonment. molesting his children. Phineas Gage, seen holding the tamping iron which passed through his skull. From the collection of Jack and Beverly Wilgus Donta Page Scans of Donta Page’s brain (left) and a normal The skull of brain. The images show decreased activity in Phineas Gage Page’s pre-frontal cortex. The orbitofrontal cortex (OFC) is involved in the regulation of social behaviour and, in one Frontal lobe damage infamous case, displacement of this structure in This damage typically lowers inhibitions or the right hemisphere by a brain tumour was linked emotional control, affecting the way we respond with an individual’s ‘acquired paedophilia’. After to triggers in the environmental. the tumour was surgically removed, behaviour However the frontal lobe is a complex structure returned to normal. A change in behaviour and can be divided into sub-regions. The indicated the tumour had regrown. When it was prefrontal cortex (PFC), for example, is important removed for a second time, behaviour once again in judgement, decision-making and impulse returned to normal. control (sometimes described as the ‘crowning achievement’ of the human brain, it is one of Limbic region damage the slowest brain regions to mature). If damage Damage to the amygdala and alterations to its occurs in childhood, problems developing an function have been linked to aggressive behaviour. understanding of moral behaviour can arise; in For example, epilepsy, localised to the amygdala, adulthood, this damage may be associated with an may be associated with episodes of aggression inability to control inappropriate behaviour. in some patients. Brain tumours affecting limbic Reduced activity of the PFC has been implicated system function have also been linked to aggressive in aggression and violence, as exemplified by the behaviour, and even to murder such as in the case case of Donta Page. of Charles Whitman. Catalyst February 2016 www.catalyststudent.org.uk 7 when we say that a given behaviour is genetically Charles Whitman influenced, this is not to say that it is inevitable or Charles Whitman was an engineering student ‘determined’. Predisposition is not predestination. at the University of Texas. In 1966 he killed 16 Second, when we say that genes influence criminal people, including his wife and mother. During behaviours, this does not mean that genetics can the post-mortem examination of his brain a explain why certain individuals commit crime. tumour was found near to the right amygdala, which some scientists think might have led to Whitman’s inability to control his emotions and actions. A doctor examines a CAT scan of a patient’s brain. Epigenetics is an exciting new development in our understanding of how the environment is involved in the expression of genes and linked to antisocial behaviours. The term is used to describe how environmental factors such as stress, diet and drugs can ‘switch on’ (express) and ‘switch off’ (silence) genes. Scientists are trying to understand how early life experiences can alter gene expression patterns in the developing brain, altering development and function of areas such as the hippocampus and Charles Whitman frontal lobes. It is possible that there will come a time when, as part of an offender’s defence, their legal team argues absence of parental interaction In studies of otherwise untreatable aggression, the and moral teaching has altered gene expression surgical removal of the amygdala on both sides of leading to frontal lobe impairment and an inability the brain is reported to have resulted in moderate to to control behaviour? excellent improvement of aggressive in about 75% of patients. There is even evidence to suggest that What can we conclude? amygdala dysfunction may also lead to poor fear conditioning which may predispose an individual Criminal behaviours and their causes are diverse, to crime. One study reported that a failure to form leading some philosophers and scientists to an association between a loud noise and fear at comment that it is unlikely we will ever find a brain the age of three years appeared to precede criminal ‘signature’. However, certain types of traumatic activity in adulthood. brain injury seem to increase the risk of offending behaviour and there is increasing evidence that Genes and behaviour: nature, brain tumours, epilepsy, levels of chemical nurture or both? neurotransmitters in the brain and many other biological factors can increase antisocial behaviour Many researchers over the years have reasoned that and criminality. criminality may be genetically determined, that Human behaviours are complex in their origins, there might be a gene or set of genes running in arising from an interaction of genes, environment, families and predisposing to deviant behaviour. developmental history, and the evolutionary Behaviours such as impulsivity, which is processes which have shaped brain structure and correlated with antisocial behaviour, appear to be function. In the years to come, we will inevitably heritable. However, the contribution of any single learn more about how these factors interact, gene to antisocial and aggressive behaviour is most influencing criminal behaviours, but at present likely to be very small, with several genetic variants we must be careful not to misinterpret our limited incrementally increasing the risk of antisocial findings and make generalisations about criminal behaviour. Genes interact with clusters of genes, behaviour without supporting evidence. which interact with networks of genes that in turn interact with the environment. Further, when Dr Guy Sutton is Director of Medical Biology Interactive and considering the relationship between genes and Honorary (Consultant) Assistant Professor at University of crime, two important points must be noted. First, Nottingham Medical School. 8 Catalyst February 2016 www.catalyststudent.org.uk.
Recommended publications
  • What to Expect After Having a Subarachnoid Hemorrhage (SAH) Information for Patients and Families Table of Contents
    What to expect after having a subarachnoid hemorrhage (SAH) Information for patients and families Table of contents What is a subarachnoid hemorrhage (SAH)? .......................................... 3 What are the signs that I may have had an SAH? .................................. 4 How did I get this aneurysm? ..................................................................... 4 Why do aneurysms need to be treated?.................................................... 4 What is an angiogram? .................................................................................. 5 How are aneurysms repaired? ..................................................................... 6 What are common complications after having an SAH? ..................... 8 What is vasospasm? ...................................................................................... 8 What is hydrocephalus? ............................................................................... 10 What is hyponatremia? ................................................................................ 12 What happens as I begin to get better? .................................................... 13 What can I expect after I leave the hospital? .......................................... 13 How will the SAH change my health? ........................................................ 14 Will the SAH cause any long-term effects? ............................................. 14 How will my emotions be affected? .......................................................... 15 When should
    [Show full text]
  • What%Is%Epilepsy?%
    What%is%Epilepsy?% Epilepsy(is(a(brain(disorder(in(which(a(person(has(repeated(seizures((convulsions)(over(time.(Seizures(are( episodes(of(disturbed(brain(activity(that(cause(changes(in(attention(or(behavior.( Causes( Epilepsy(occurs(when(permanent(changes(in(brain(tissue(cause(the(brain(to(be(too(excitable(or(jumpy.( The(brain(sends(out(abnormal(signals.(This(results(in(repeated,(unpredictable(seizures.((A(single(seizure( that(does(not(happen(again(is(not(epilepsy.)( Epilepsy(may(be(due(to(a(medical(condition(or(injury(that(affects(the(brain,(or(the(cause(may(be( unknown((idiopathic).( Common(causes(of(epilepsy(include:( •Stroke(or(transient(ischemic(attack((TIA)( •Dementia,(such(as(Alzheimer's(disease( •Traumatic(brain(injury( •Infections,(including(brain(abscess,(meningitis,(encephalitis,(and(AIDS( •Brain(problems(that(are(present(at(birth((congenital(brain(defect)( •Brain(injury(that(occurs(during(or(near(birth( •Metabolism(disorders(present(at(birth((such(as(phenylketonuria)( •Brain(tumor( •Abnormal(blood(vessels(in(the(brain( •Other(illness(that(damage(or(destroy(brain(tissue( •Use(of(certain(medications,(including(antidepressants,(tramadol,(cocaine,(and(amphetamines( Epilepsy(seizures(usually(begin(between(ages(5(and(20,(but(they(can(happen(at(any(age.(There(may(be(a( family(history(of(seizures(or(epilepsy.( Symptoms( Symptoms(vary(from(person(to(person.(Some(people(may(have(simple(staring(spells,(while(others(have( violent(shaking(and(loss(of(alertness.(The(type(of(seizure(depends(on(the(part(of(the(brain(affected(and( cause(of(epilepsy.(
    [Show full text]
  • Brain Injury and Opioid Overdose
    Brain Injury and Opioid Overdose: Acquired Brain Injury is damage to the brain 2.8 million brain injury related occurring after birth and is not related to congenital or degenerative disease. This includes anoxia and hospital stays/deaths in 2013 hypoxia, impairment (lack of oxygen), a condition consistent with drug overdose. 70-80% of hospitalized patients are discharged with an opioid Rx Opioid Use Disorder, as defined in DSM 5, is a problematic pattern of opioid use leading to clinically significant impairment, manifested by meaningful risk 63,000+ drug overdose-related factors occurring within a 12-month period. deaths in 2016 Overdose is injury to the body (poisoning) that happens when a drug is taken in excessive amounts “As the number of drug overdoses continues to rise, and can be fatal. Opioid overdose induces respiratory doctors are struggling to cope with the increasing number depression that can lead to anoxic or hypoxic brain of patients facing irreversible brain damage and other long injury. term health issues.” Substance Use and Misuse is: The frontal lobe is • Often a contributing factor to brain injury. History of highly susceptible abuse/misuse is common among individuals who to brain oxygen have sustained a brain injury. loss, and damage • Likely to increase for individuals who have misused leads to potential substances prior to and post-injury. loss of executive Acute or chronic pain is a common result after brain function. injury due to: • Headaches, back or neck pain and other musculo- Sources: Stojanovic et al 2016; Melton, C. Nov. 15,2017; Devi E. skeletal conditions commonly reported by veterans Nampiaparampil, M.D., 2008; Seal K.H., Bertenthal D., Barnes D.E., et al 2017; with a history of brain injury.
    [Show full text]
  • Traumatic Brain Injury and Domestic Violence
    TRAUMATIC BRAIN INJURY AND DOMESTIC VIOLENCE Women who are abused often suffer injury to their head, neck, and face. The high potential for women who are abused to have mild to severe Traumatic Brain Injury (TBI) is a growing concern, since the effects can cause irreversible psychological and physical harm. Women who are abused are more likely to have repeated injuries to the head. As injuries accumulate, likelihood of recovery dramatically decreases. In addition, sustaining another head trauma prior to the complete healing of the initial injury may be fatal. Severe, obvious trauma does not have to occur for brain injury to exist. A woman can sustain a blow to the head without any loss of consciousness or apparent reason to seek medical assistance, yet display symptoms of TBI. (NOTE: While loss of consciousness can be significant in helping to determine the extent of the injury, people with minor TBI often do not lose consciousness, yet still have difficulties as a result of their injury). Many women suffer from a TBI unknowingly and misdiagnosis is common since symptoms may not be immediately apparent and may mirror those of mental health diagnoses. In addition, subtle injuries that are not identifiable through MRIs or CT scans may still lead to cognitive symptoms. What is Traumatic Brain Injury? Traumatic brain injury (TBI) is defined as an injury to the brain that is caused by external physical force and is not present at birth or degenerative. TBI can be caused by: • A blow to the head, o e.g., being hit on the head forcefully with object or fist, having one’s head smashed against object/wall, falling and hitting head, gunshot to head.
    [Show full text]
  • Traumatic Brain Injury (TBI)
    Traumatic Brain Injury (TBI) Carol A. Waldmann, MD raumatic brain injury (TBI), caused either by blunt force or acceleration/ deceleration forces, is common in the general population. Homeless persons Tare at particularly high risk of head trauma and adverse outcomes to TBI. Even mild traumatic brain injury can lead to persistent symptoms including cognitive, physical, and behavioral problems. It is important to understand brain injury in the homeless population so that appropriate referrals to specialists and supportive services can be made. Understanding the symptoms and syndromes caused by brain injury sheds light on some of the difficult behavior observed in some homeless persons. This understanding can help clinicians facilitate and guide the care of these individuals. Prevalence and Distribution recover fully, but up to 15% of patients diagnosed TBI and Mood Every year in the USA, approximately 1.5 with MTBI by a physician experience persistent Swings. million people sustain traumatic brain injury disabling problems. Up to 75% of brain injuries This man suffered (TBI), 230,000 people are hospitalized due to TBI are classified as MTBI. These injuries cost the US a gunshot wound and survive, over 50,000 people die from TBI, and almost $17 billion per year. The groups most at risk to the head and many subsequent more than 1 million people are treated in emergency for TBI are those aged 15-24 years and those aged traumatic brain rooms for TBI. In persons under the age of 45 years, 65 years and older. Men are twice as likely to sustain injuries while TBI is the leading cause of death.
    [Show full text]
  • Rapidly Progressive Tetraplegia and Cognitive Deterioration During Rehabilitation: a Case of Neurodegenerative Disease
    J Surg Med. 2019;3(1):100-102. Case report DOI: 10.28982/josam.454181 Olgu sunumu Rapidly progressive tetraplegia and cognitive deterioration during rehabilitation: A case of neurodegenerative disease Rehabilitasyon sırasında hızlı ilerleyen tetrapleji ve bilişsel bozulma: Bir nörodejeneratif hastalık olgusu Sevgi İkbali Afşar 1, Oya Ümit Yemişçi 1 1 Department of Physical Medicine and Abstract Rehabilitation, Baskent University, Human prion diseases are fatal, progressive neurodegenerative disorders caused by neurolytic pathogen proteins, called Faculty of Medicine, Ankara, Turkey prions. The most common human prion disease is sporadic Creutzfeldt-Jakob disease, with an approximate annual prevalence of 0.5-1 per million. The symptoms and signs include rapidly progressive dementia, ataxia, myoclonic ORCID ID of the authors SİA: 0000-0002-4003-3646 seizures, akinetic mutism and other neurological and neurobehavioral disorders. The clinical spectrum of Creutzfeldt- OÜY: 0000-0002-0501-5127 Jakob disease is highly variable; therefore it can be difficult to diagnose premortem. This article describes a 78-year- old woman who initially presented with difficulty walking and balance disorder. As a result of the evaluation, the patient was transferred to rehabilitation clinic, with a diagnosis of cervical spinal stenosis. During hospitalization, she showed progressive decline in gait and balance and deteriorated rapidly. The patient was considered to be probable sporadic Creutzfeldt-Jakob disease after further investigations. Keywords: Neurodegenerative disease, Creutzfeldt-Jakob disease, Rehabilitation Öz Corresponding author / Sorumlu yazar: İnsan prion hastalıkları, prionlar olarak adlandırılan nörolitik patojen proteinlerin neden olduğu ilerleyici Sevgi İkbali Afşar Address / Adres: Fevzi Cakmak Cad. 5. Sokak nörodejeneratif hastalıklardır. En yaygın insan prion hastalığı sporadik Creutzfeldt-Jakob hastalığı olup, yıllık No: 48, 06490, Ankara, Türkiye prevalansı yaklaşık milyonda 0.5-1'dir.
    [Show full text]
  • Guidelines for the Management of Severe Traumatic Brain Injury 4Th Edition
    Guidelines for the Management of Severe Traumatic Brain Injury 4th Edition Nancy Carney, PhD Oregon Health & Science University, Portland, OR Annette M. Totten, PhD Oregon Health & Science University, Portland, OR Cindy O'Reilly, BS Oregon Health & Science University, Portland, OR Jamie S. Ullman, MD Hofstra North Shore-LIJ School of Medicine, Hempstead, NY Gregory W. J. Hawryluk, MD, PhD University of Utah, Salt Lake City, UT Michael J. Bell, MD University of Pittsburgh, Pittsburgh, PA Susan L. Bratton, MD University of Utah, Salt Lake City, UT Randall Chesnut, MD University of Washington, Seattle, WA Odette A. Harris, MD, MPH Stanford University, Stanford, CA Niranjan Kissoon, MD University of British Columbia, Vancouver, BC Andres M. Rubiano, MD El Bosque University, Bogota, Colombia; MEDITECH Foundation, Neiva, Colombia Lori Shutter, MD University of Pittsburgh, Pittsburgh, PA Robert C. Tasker, MBBS, MD Harvard Medical School & Boston Children’s Hospital, Boston, MA Monica S. Vavilala, MD University of Washington, Seattle, WA Jack Wilberger, MD Drexel University, Pittsburgh, PA David W. Wright, MD Emory University, Atlanta, GA Jamshid Ghajar, MD, PhD Stanford University, Stanford, CA Reviewed for evidence-based integrity and endorsed by the American Association of Neurological Surgeons and the Congress of Neurological Surgeons. September 2016 TABLE OF CONTENTS PREFACE ...................................................................................................................................... 5 ACKNOWLEDGEMENTS .............................................................................................................................................
    [Show full text]
  • Influence of Mild Hypothermia on Hypoxic- Ischemic Brain Damage in the Immature Rat
    003 I-399X/s 113404-0525$03.00/0 PEDIATRIC RESEARCH Vol. 34. No. 4. 1993 Copyright fc 1993 lnternat~onalPedlatnc Research Foundat~on.Inc. Prrt~rc~drn Lr.S..4. Influence of Mild Hypothermia on Hypoxic- Ischemic Brain Damage in the Immature Rat J. YAGER. J. TOWFIGHI. AND R. C. VANNUCCl Di,puritno~ic~l'Pi~cliciirii~.s /J. Y/. Roj.ul L'nivcrsii! IIo.spiiul. L'ni~~c,r.sii!*c~f'Su.sX.uic~lrc~~~~ut~, Su.skuioot~. Su.sku~chc~c~ut~,C'ut~udu. S7N 0x0: and D(~purrtnenrc~f'Purhol~~s.!~ (Nnrroputllok~g~ /J. T.1 und Pc~diuiricA'~,r~ro/ox~~ /R.('. I,./. 7%i, .l/iliot~S. Ilcr.sl~c,!~hI(~dicu1 ('cwrc~r. Tlli. Pi~t~n.s~-l~~unicrSiurc Crni~~c,r.vit!~. IIi~r.s/rc~~~.Pc~t~t~.s~~/vut~iu 17033 ABSTRACT. Recent studies in adult animals have shown mia also is protective (8. 9). Conversely. hyperthermia either that even small decreases in brain or core temperature during or after an hypoxic-ischemic insult worsens ultimate brain ameliorate the damage resulting from hypoxic-ischemic damage (lo, l I). insults. To determine the effect of minor reductions in In contrast to the adult. the human term infant. under physi- ambient temperature either during or after an hypoxic- ologic circumstances can maintain thermal neutrality only over ischemic insult on the brain of the immature rat, 7-d- a severely restricted range of environmental temperatures ( 12- postnatal rat pups underwent unilateral common carotid 15). Infants, who are frequently exposed to a variety of "stresses" artery ligation followed by exposure to hypoxia in 8% (birth asphyxia.
    [Show full text]
  • Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives
    International Journal of Molecular Sciences Review Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives Diji Kuriakose and Zhicheng Xiao * Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia; [email protected] * Correspondence: [email protected] Received: 29 September 2020; Accepted: 13 October 2020; Published: 15 October 2020 Abstract: Stroke is the second leading cause of death and a major contributor to disability worldwide. The prevalence of stroke is highest in developing countries, with ischemic stroke being the most common type. Considerable progress has been made in our understanding of the pathophysiology of stroke and the underlying mechanisms leading to ischemic insult. Stroke therapy primarily focuses on restoring blood flow to the brain and treating stroke-induced neurological damage. Lack of success in recent clinical trials has led to significant refinement of animal models, focus-driven study design and use of new technologies in stroke research. Simultaneously, despite progress in stroke management, post-stroke care exerts a substantial impact on families, the healthcare system and the economy. Improvements in pre-clinical and clinical care are likely to underpin successful stroke treatment, recovery, rehabilitation and prevention. In this review, we focus on the pathophysiology of stroke, major advances in the identification of therapeutic targets and recent trends in stroke research. Keywords: stroke; pathophysiology; treatment; neurological deficit; recovery; rehabilitation 1. Introduction Stroke is a neurological disorder characterized by blockage of blood vessels. Clots form in the brain and interrupt blood flow, clogging arteries and causing blood vessels to break, leading to bleeding.
    [Show full text]
  • Understanding Seizures and Epilepsy
    Understanding Sei zures & Epilepsy Selim R. Benbadis, MD Leanne Heriaud, RN Comprehensive Epilepsy Program Table of Contents * What is a seizure and what is epilepsy?....................................... 3 * Who is affected by epilepsy? ......................................................... 3 * Types of seizures ............................................................................. 3 * Types of epilepsy ............................................................................. 6 * How is epilepsy diagnosed? .......................................................... 9 * How is epilepsy treated? .............................................................. 10 Drug therapy ......................................................................... 10 How medication is prescribed ............................................ 12 Will treatment work?............................................................ 12 How long will treatment last?............................................. 12 Other treatment options....................................................... 13 * First aid for a person having a seizure ....................................... 13 * Safety and epilepsy ....................................................................... 14 * Epilepsy and driving..................................................................... 15 * Epilepsy and pregnancy ............................................................... 15 * More Information .......................................................................... 16 Comprehensive
    [Show full text]
  • Bleeding in the Brain: Haemorrhagic Stroke
    Call the Stroke Helpline: 0303 3033 100 or email: [email protected] Bleeding in the brain: haemorrhagic stroke A stroke due to bleeding in or around the brain is known as a haemorrhagic stroke. This guide explains the different types of stroke caused by bleeding, and how they are diagnosed and treated. What is a haemorrhagic stroke? 1. Bleeding within the brain If blood leaks from a blood vessel in When an artery inside the brain bursts it is or around the brain, this is called a called an intracerebral haemorrhage. About haemorrhagic stroke. You may also hear it 10% of all strokes are of this type. The called a brain haemorrhage or a brain bleed. blood leaks out into the brain tissue at high pressure, killing brain cells and causing brain In the UK, around 15% of strokes are swelling. haemorrhagic (due to a bleed), and about 85% are ischaemic (due to a blockage to the 2. Bleeding on the surface of the blood supply in the brain). brain Haemorrhagic stroke tends to affect The brain sits inside a fluid-filled cushion of younger people than ischaemic stroke, and membranes that protects it from the skull, is most common in people aged between called the subarachnoid space. If blood 45 and 70. Most strokes in the UK happen vessels near the surface of the brain burst over the age of 70. and blood leaks into the subarachnoid space, this is called a subarachnoid haemorrhage There are two main types of haemorrhagic (SAH). stroke: SAH accounts for around 5% of all strokes, 1.
    [Show full text]
  • Part Ii – Neurological Disorders
    Part ii – Neurological Disorders CHAPTER 19 HEAD AND SPINAL INJURY Dr William P. Howlett 2012 Kilimanjaro Christian Medical Centre, Moshi, Kilimanjaro, Tanzania BRIC 2012 University of Bergen PO Box 7800 NO-5020 Bergen Norway NEUROLOGY IN AFRICA William Howlett Illustrations: Ellinor Moldeklev Hoff, Department of Photos and Drawings, UiB Cover: Tor Vegard Tobiassen Layout: Christian Bakke, Division of Communication, University of Bergen E JØM RKE IL T M 2 Printed by Bodoni, Bergen, Norway 4 9 1 9 6 Trykksak Copyright © 2012 William Howlett NEUROLOGY IN AFRICA is freely available to download at Bergen Open Research Archive (https://bora.uib.no) www.uib.no/cih/en/resources/neurology-in-africa ISBN 978-82-7453-085-0 Notice/Disclaimer This publication is intended to give accurate information with regard to the subject matter covered. However medical knowledge is constantly changing and information may alter. It is the responsibility of the practitioner to determine the best treatment for the patient and readers are therefore obliged to check and verify information contained within the book. This recommendation is most important with regard to drugs used, their dose, route and duration of administration, indications and contraindications and side effects. The author and the publisher waive any and all liability for damages, injury or death to persons or property incurred, directly or indirectly by this publication. CONTENTS HEAD AND SPINAL INJURY 413 EPIDEMIOLOGY � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
    [Show full text]