Best Practices in the Management of Traumatic Brain Injury

Total Page:16

File Type:pdf, Size:1020Kb

Best Practices in the Management of Traumatic Brain Injury ACS TQIP BEST PRACTICES IN THE MANAGEMENT OF TRAUMATIC BRAIN INJURY Released January 2015 Table of Contents Introduction ............................................................................................... 3 Using the Glasgow Coma Scale ...................................................................... 3 Triage and Transport .................................................................................... 5 Goals of Treatment ...................................................................................... 5 Intracranial Pressure Monitoring ..................................................................... 6 Management of Intracranial Hypertension ....................................................... 9 Advanced Neuromonitoring .........................................................................12 Surgical Management .................................................................................13 Nutritional Support ....................................................................................14 Tracheostomy ............................................................................................15 Timing of Secondary Procedures ...................................................................15 Timing of Pharmacologic Venous Thromboembolism Prophylaxis ........................17 Management Considerations for Pediatric Patients with TBI ................................18 Management Considerations for Elderly Patients with TBI ...................................19 Prognostic Decision-Making and Withdrawal of Medical Support ........................20 Outcome Assessment and Quality Improvement in TBI ......................................22 Bibliography .............................................................................................24 Expert Panel ..............................................................................................28 Acknowledgements ....................................................................................29 Disclaimer .................................................................................................29 2 INTRODUCTION USING THE GLASGOW COMA SCALE Traumatic brain injury (TBI) is a disease process that carries major public health Key messages: and socioeconomic consequences. In z The Glasgow Coma Scale the United States alone, an estimated (GCS) provides a reliable tool 2.5 million emergency department visits for assessing disturbances of and hospitalizations are associated with consciousness across care paths TBI annually; and more than 50,000 individuals die from TBI. Moreover, a z Standardized approaches considerable proportion of TBI survivors to GCS assessment and incur temporary or permanent disability. reporting are essential The estimated annual burden of TBI on z The GCS should specify the score the United States economy is more than for each of the three components $76 billion, with the costs for disability (eye, verbal, motor) when and lost productivity outweighing reporting on individual patients the costs for acute medical care. z The sum of the component scores Data from well-designed, controlled (GCS 3-15) is relevant for comparisons studies on acute management of TBI are at the group level for purposes sparse. Evidence-based guidelines for TBI of classification and prognosis management have been compiled, but the paucity of high-quality studies limits The Glasgow Coma Scale (GCS) was the strength and scope of their counsel. introduced forty years ago by Teasdale The TQIP Best Practice Guidelines for and Jennett as a practical method for the Management of Traumatic Brain assessing the full spectrum of disorders Injury present recommendations of consciousness, from very mild to regarding care of the TBI patients based severe. It has been broadly adopted, and on the best available evidence or, if is internationally utilized as an integral evidence is lacking, based upon the part of clinical practice and research. consensus opinion of the expert panel. The GCS aims to rate performance in three different domains of response: the eye, verbal, and motor response (Table 1). For individual patients, it is recommended that in that all three components be reported, e.g., E4V4M5, versus a sum score, e.g., GCS 13. The derived sum score of the GCS (3-15) is more relevant for comparisons at the group level and provides a useful tool for classification and prognosis. 3 A score of ≥13 correlates with a mild of the GCS are that it covers a broad brain injury, 9 to 12 is a moderate spectrum of disorders of consciousness, injury, and ≤8 a severe brain injury. is widely applicable, and offers an important tool for monitoring changes in If a GCS component is untestable due the level of consciousness. Standardized to intubation, sedation, or another approaches to both its assessment and confounder, the reason for this should its reporting are required in order to be be recorded. Although often done, able to compare evaluations over time a score of 1 should not be assigned or when communicating with other because differentiation between a health care professionals. Spontaneous “true 1” and an untestable component responses are first observed without is relevant. Graphical display of the stimulating the patient in any way. three GCS components over time may First, verbal stimuli are applied, such as facilitate earlier detection of changes. asking a patient to obey commands and Assessment requires either a at the same time observing whether, spontaneous response or response e.g., an eye opening occurs. If a patient following application of a stimulus. is not responsive, a stimulus is applied At more severely disturbed levels of to elicit a response. The location of consciousness, the motor score has the stimulus (central or peripheral) better discrimination, but in milder should be standardized and used injuries the eye and verbal components consistently. To describe the motor are more relevant. Thus, each component response, only the reaction of the arms of the scale (Eye, Verbal, Motor) provides should be observed, not the legs. complementary information. Strengths Table 1. Glasgow Coma Scale Eye opening (E) None 1 To pressure 2 To sound 3 Spontaneous 4 Untestable Reason: Verbal response (V) None 1 Sounds 2 Words 3 Confused 4 Oriented 5 Untestable Reason: Motor response (M) None 1 Extension 2 Abnormal flexion 3 Normal flexion 4 Localizing 5 Obey commands 6 Untestable Reason: 4 Providing the initial resuscitative care TRIAGE AND in lower-level trauma center centers (III, IV, or non-designated hospitals) may TRANSPORT occasionally be rationalized in some rural Key Message settings with long transport times (≥ 1 hour). However, these hospitals should z Patients with a Glasgow Coma have predefined air/ground transfer Scale (GCS) ≤ 13 should be rapidly protocols and agreements in place to transported directly from the scene provide for the immediate transfer of to the highest level trauma center TBI patients to the highest level center available in a defined trauma system available within a defined trauma system. to allow for expedient neurosurgical assessment and intervention z Patients with a combination of TBI GOALS OF TREATMENT (GCS score ≤ 15) and moderate to severe extra-cranial anatomic injuries These clinical parameters should be and Abbreviated Injury Score (AIS) ≥3 maintained as part of goal-directed TBI should be rapidly transferred to the treatment. Some of these goals are more highest level of care within a defined relevant for patients in the intensive care trauma system to allow for expedient unit (ICU) setting (e.g., CPP, ICP, PbtO2) neurosurgical and multidisciplinary while others are applicable to all TBI assessment and intervention patients. Adequate oxygenation and normocapnia should be maintained. Proper field triage is critical for patients Patients with significant pulmonary with suspected TBI. Trauma patients issues (e.g. Acute Respiratory Distress with TBI require rapid resuscitation, Syndrome) may require lung-specific definitive operative management, and parameters. Systolic blood pressure critical care capabilities to prevent (SBP) and mean arterial pressure secondary brain injury. The US Center for should be monitored closely to avoid Disease Control’s (CDC) 2011 Field Triage hypotension. The goal for temperature Guidelines for Injured Patients direct management is normothermia. Core EMS providers to transport all patients body temperature should be kept with a Glasgow Coma Scale (GCS) < 13, <38°C. The goal for electrolytes is to or those with any level of TBI (GCS ≤ 15) maintain within normal range. Specific and extracranial injuries (AIS ≥ 3) to the attention to the sodium level is crucial highest level trauma center that has the in TBI patients. Hyponatremia must be expertise, personnel, and facilities to avoided as this may worsen cerebral rapidly provide definitive care, usually edema. TBI patients may also develop a level I or II trauma center. Despite diabetes insipidus (DI) or the syndrome these guidelines, significant undertriage of inappropriate antidiuretic hormone of TBI victims has been documented (SIADH). Therefore patients should throughout the US in systems with have frequent monitoring of the serum and without trauma centers. sodium and osmolality levels. Both 5 Table 2. Goals of Treatment Pulse Oximetry ≥ 95% ICP 20 - 25 mmHg Serum sodium 135-145 PaO2 ≥ 100 mmHg PbtO2 ≥ 15 mmHg INR ≤ 1.4 * 3 3 PaCO2 35-45 mmHg CPP ≥ 60 mmHg Platelets ≥ 75 x 10 / mm SBP ≥ 100 mmHg Temperature 36.0-38°C
Recommended publications
  • Surgical Management of Parkinson's Disease
    SEMINAR PAPER DTM Chan Surgical management of Parkinson’s VCT Mok WS Poon disease: a critical review KN Hung XL Zhu ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○ !"#$%&'()*+, Parkinson’s disease is a progressive disabling movement disorder that is characterised by three cardinal symptoms: resting tremor, rigidity, and bradykinesia. Before the availability of effective medical treatment with levodopa and stereotactic neurosurgery, the objective of surgical management was to alleviate symptoms such as tremor at the expense of motor deficits. Levodopa was the first effective medical treatment for Parkinson’s disease, and surgical treatment such as stereotactic thalamo- tomy became obsolete. After one decade of levodopa therapy, however, drug-induced dyskinesia had become a source of additional disability not amenable to medical treatment. Renewed interest in stereotactic functional neurosurgery to manage Parkinson’s disease has been seen since the 1980s. Local experience of deep-brain stimulation is presented and discussed in this paper. Deep-brain stimulation of the subthalamic nucleus is an effective treatment for advanced Parkinson’s disease, although evidence from randomised control trials is lacking. !"#$%&'()*+,-!./01$23456789:; Key words: !"#$%&'()*+,-./01'23456789:;< Electric stimulation; !"#$%&'()*+,-./01(23#45+6789: Globus pallidus/surgery; Parkinson disease; !"#$%&'()*+,-./012345678'9:;< Stereotactic techniques; !"#$%&'()*%+,-./0123)456789:; Subthalamic nuclei/surgery; !"#$%&'()*+,-.1980 !"#$%&'()* Thalamus/surgery !"#$%&'()*+,-./0123456789:;<=
    [Show full text]
  • Spinal Cord Injury and Traumatic Brain Injury Research Grant Program Report 2020
    This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp Spinal Cord Injury and Traumatic Brain Injury Research Grant Program Report January 15, 2020 Author About the Minnesota Office of Higher Education Alaina DeSalvo The Minnesota Office of Higher Education is a Competitive Grants Administrator cabinet-level state agency providing students with Tel: 651-259-3988 financial aid programs and information to help [email protected] them gain access to postsecondary education. The agency also serves as the state’s clearinghouse for data, research and analysis on postsecondary enrollment, financial aid, finance and trends. The Minnesota State Grant Program is the largest financial aid program administered by the Office of Higher Education, awarding up to $207 million in need-based grants to Minnesota residents attending eligible colleges, universities and career schools in Minnesota. The agency oversees other state scholarship programs, tuition reciprocity programs, a student loan program, Minnesota’s 529 College Savings Plan, licensing and early college awareness programs for youth. Minnesota Office of Higher Education 1450 Energy Park Drive, Suite 350 Saint Paul, MN 55108-5227 Tel: 651.642.0567 or 800.657.3866 TTY Relay: 800.627.3529 Fax: 651.642.0675 Email: [email protected] Table of Contents Introduction 1 Spinal Cord Injury and Traumatic Brain Injury Advisory Council 1 FY 2020 Proposal Solicitation Schedule
    [Show full text]
  • Decompressive Craniectomy Following Severe Traumatic Brain Injury with an Initial Glasgow Coma Scale Score of 3 Or 4
    Case Report Clinics in Surgery Published: 03 Jul, 2019 Decompressive Craniectomy Following Severe Traumatic Brain Injury with an Initial Glasgow Coma Scale Score of 3 or 4 Afif AFIF* Department of Neurosurgery and Anatomy, Pierre Wertheimer Hospital, France Abstract Background: Decompressive craniectomy is a surgical management option for severe Traumatic Brain Injury (TBI). However, few studies have followed patients with TBI who have a Glasgow Coma Scale (GCS) score of 3 or 4 (out of 15). Decompressive craniectomy has been avoided in such patients owing to poor outcomes and poor functional recoveries in previous cases of treatment using this method. Clinical Presentation: Two patients are presented in our case series. The first suffered severe TBI following an aggression, with a GCS score of 3 and bilaterally dilated unreactive pupils. Brains CT scan showed right frontal fracture, bifrontal hematoma contusion, a fronto-temporo-parietal acute Subdural Hematoma (SDH) with a thickness of 14 mm on the right side, traumatic subarachnoid hemorrhage, with 20 mm of midline shift to the left side, and diffuses brain edema. The second presented with severe TBI following an automobile accident, with a GCS score of 4 and iso- reactive pupils. A brain CT scan showed bilateral fronto-temporal fracture, diffuse brain hematoma contusion, traumatic subarachnoid hemorrhage, right Extradural Hematoma (EDH) and bilateral fronto-temporo-parietal acute SDH that was more pronounced on the right side. Conclusion: Follow-up after the operations showed an Extended Glasgow Outcome Scale (EGOS) score of 8 and a very good functional recovery for both patients. Our case series suggests that in patients with severe TBI and a GCS score of 3 or 4; decompressive craniectomy can be performed OPEN ACCESS with good long-term neurological outcomes.
    [Show full text]
  • Recognizing When a Child's Injury Or Illness Is Caused by Abuse
    U.S. Department of Justice Office of Justice Programs Office of Juvenile Justice and Delinquency Prevention Recognizing When a Child’s Injury or Illness Is Caused by Abuse PORTABLE GUIDE TO INVESTIGATING CHILD ABUSE U.S. Department of Justice Office of Justice Programs 810 Seventh Street NW. Washington, DC 20531 Eric H. Holder, Jr. Attorney General Karol V. Mason Assistant Attorney General Robert L. Listenbee Administrator Office of Juvenile Justice and Delinquency Prevention Office of Justice Programs Innovation • Partnerships • Safer Neighborhoods www.ojp.usdoj.gov Office of Juvenile Justice and Delinquency Prevention www.ojjdp.gov The Office of Juvenile Justice and Delinquency Prevention is a component of the Office of Justice Programs, which also includes the Bureau of Justice Assistance; the Bureau of Justice Statistics; the National Institute of Justice; the Office for Victims of Crime; and the Office of Sex Offender Sentencing, Monitoring, Apprehending, Registering, and Tracking. Recognizing When a Child’s Injury or Illness Is Caused by Abuse PORTABLE GUIDE TO INVESTIGATING CHILD ABUSE NCJ 243908 JULY 2014 Contents Could This Be Child Abuse? ..............................................................................................1 Caretaker Assessment ......................................................................................................2 Injury Assessment ............................................................................................................4 Ruling Out a Natural Phenomenon or Medical Conditions
    [Show full text]
  • Management of the Head Injury Patient
    Management of the Head Injury Patient William Schecter, MD Epidemilogy • 1.6 million head injury patients in the U.S. annually • 250,000 head injury hospital admissions annually • 60,000 deaths • 70-90,000 permanent disability • Estimated cost: $100 billion per year Causes of Brain Injury • Motor Vehicle Accidents • Falls • Anoxic Encephalopathy • Penetrating Trauma • Air Embolus after blast injury • Ischemia • Intracerebral hemorrhage from Htn/aneurysm • Infection • tumor Brain Injury • Primary Brain Injury • Secondary Brain Injury Primary Brain Injury • Focal Brain Injury – Skull Fracture – Epidural Hematoma – Subdural Hematoma – Subarachnoid Hemorrhage – Intracerebral Hematorma – Cerebral Contusion • Diffuse Axonal Injury Fracture at the Base of the Skull Battle’s Sign • Periorbital Hematoma • Battle’s Sign • CSF Rhinorhea • CSF Otorrhea • Hemotympanum • Possible cranial nerve palsy http://health.allrefer.com/pictures-images/ Fracture of maxillary sinus causing CSF Rhinorrhea battles-sign-behind-the-ear.html Skull Fractures Non-depressed vs Depressed Open vs Closed Linear vs Egg Shell Linear and Depressed Normal Depressed http://www.emedicine.com/med/topic2894.htm Temporal Bone Fracture http://www.vh.org/adult/provider/anatomy/ http://www.bartleby.com/107/illus510.html AnatomicVariants/Cardiovascular/Images0300/0386.html Epidural Hematoma http://www.chestjournal.org/cgi/content/full/122/2/699 http://www.bartleby.com/107/illus769.html Epidural Hematoma • Uncommon (<1% of all head injuries, 10% of post traumatic coma patients) • Located
    [Show full text]
  • Hypertensive Intracerebral Hemorrhage Due to Autonomic Dysreflexia in a Young Man with Cervical Cord Injury
    J UOEH(産業医科大学雑誌)35( 2 ): 159-164(2013) 159 [Case Report] Hypertensive Intracerebral Hemorrhage Due to Autonomic Dysreflexia in a Young Man with Cervical Cord Injury Tadashi Sumiya Department of Spinal Care Center, Division of Rehabilitation Medicine 219 Myoji, Katsuragi-cho, Ito-gun, 649-7113, Japan Abstract : The author reports the case of a 36 year old man with cervical cord injury in whom autonomic dysreflexia developed into intracerebral hemorrhage during inpatient rehabilitation. This patient showed complete quadriplegia (motor below C6 and sensory below C7) due to fracture of the 6th cervical vertebra. An indwelling urethral catheter had been inserted into the bladder for 3 months, diminishing bladder expansiveness. Bladder capacity decreased to 200 ml and the patient frequently experienced headaches whenever his bladder was full. To obtain smoother urine flow, a supra-pubic cystostomy was performed. The headaches were temporarily cured, but soon relapsed with extreme increases in blood pressure, representing typical symptoms of autonomic dysreflexia. However, no poten- tial triggers were identified or removed, and lack of blood pressure management led to left putaminal hemorrhage. Despite operative treatment, the right upper extremity showed progressive increases in muscle tonus and finally formed a frozen shoulder with elbow flexion contracture. Two factors contributed to this serious complication: first, autonomic dysreflexia triggered by minor malfunction and/or irritation from the cystostomy catheter; and second, the medical staff lacked sufficient experience in and knowledge about the management of autonomic dysreflexia. It is of the utmost importance for medical staff engaging in rehabilitation of spinal patients to share information regard- ing triggers of autonomic dysreflexia and to be thorough in ensuring proper medical management.
    [Show full text]
  • Traumatic Brain Injury
    REPORT TO CONGRESS Traumatic Brain Injury In the United States: Epidemiology and Rehabilitation Submitted by the Centers for Disease Control and Prevention National Center for Injury Prevention and Control Division of Unintentional Injury Prevention The Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation is a publication of the Centers for Disease Control and Prevention (CDC), in collaboration with the National Institutes of Health (NIH). Centers for Disease Control and Prevention National Center for Injury Prevention and Control Thomas R. Frieden, MD, MPH Director, Centers for Disease Control and Prevention Debra Houry, MD, MPH Director, National Center for Injury Prevention and Control Grant Baldwin, PhD, MPH Director, Division of Unintentional Injury Prevention The inclusion of individuals, programs, or organizations in this report does not constitute endorsement by the Federal government of the United States or the Department of Health and Human Services (DHHS). Suggested Citation: Centers for Disease Control and Prevention. (2015). Report to Congress on Traumatic Brain Injury in the United States: Epidemiology and Rehabilitation. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. Atlanta, GA. Executive Summary . 1 Introduction. 2 Classification . 2 Public Health Impact . 2 TBI Health Effects . 3 Effectiveness of TBI Outcome Measures . 3 Contents Factors Influencing Outcomes . 4 Effectiveness of TBI Rehabilitation . 4 Cognitive Rehabilitation . 5 Physical Rehabilitation . 5 Recommendations . 6 Conclusion . 9 Background . 11 Introduction . 12 Purpose . 12 Method . 13 Section I: Epidemiology and Consequences of TBI in the United States . 15 Definition of TBI . 15 Characteristics of TBI . 16 Injury Severity Classification of TBI . 17 Health and Other Effects of TBI .
    [Show full text]
  • Intracranial Hemorrhage As Initial Presentation of Cerebral Venous Sinus Thrombosis
    Case Report Journal of Heart and Stroke Published: 31 Dec, 2019 Intracranial Hemorrhage as Initial Presentation of Cerebral Venous Sinus Thrombosis Joseph Y Chu1* and Marc Ossip2 1Department of Medicine, University of Toronto, Canada 2Department of Diagnostic Imaging, William Osler Health System, Canada Abstract Intracranial Hemorrhage (ICH) as initial presentation is an uncommon complication of Cerebral Venous-Sinus Thrombosis (CVT). Clinical and neuro-imaging studies of 4 cases of ICH due cerebral venous-sinus thrombosis seen at the William Osler Health System in Toronto will be presented. Discussion of the immediate and long-term management of these interesting cases will be reviewed with emphasis on the appropriate neuro-imaging studies. Literature review of Direct Oral Anticoagulants (DOAC) in the long-term management of these challenging cases will be discussed. Introduction The following are four cases of Cerebral Venous-Sinus Thrombosis (CVT) who present initially as Intracranial Hemorrhage (ICH). Clinical details, including immediate and long term management and neuro-imaging studies are presented. Results Case 1 A 43 years old R-handed house wife, South-Asian decent, who was admitted to hospital on 06- 10-2014 with sudden headache and right hemiparesis. Her past health shows no prior hypertension or stroke. She is not on any hormone replacement therapy, non-smoker and non-drinker. Married with 1 daughter. Examination shows BP=122/80, P=70 regular, GCS=15, with right homonymous hemianopsia, right hemiparesis: arm=leg 1/5, extensor R. Plantar response. She was started on IV Heparin after her unenhanced CT showed acute left parietal intracerebral hemorrhage and her MRV showed extensive sagittal sinus thrombosis extending into the left transverse OPEN ACCESS sinus (Figures 1,2).
    [Show full text]
  • Early Management of Retained Hemothorax in Blunt Head and Chest Trauma
    World J Surg https://doi.org/10.1007/s00268-017-4420-x ORIGINAL SCIENTIFIC REPORT Early Management of Retained Hemothorax in Blunt Head and Chest Trauma 1,2 1,8 1,7 1 Fong-Dee Huang • Wen-Bin Yeh • Sheng-Shih Chen • Yuan-Yuarn Liu • 1 1,3,6 4,5 I-Yin Lu • Yi-Pin Chou • Tzu-Chin Wu Ó The Author(s) 2018. This article is an open access publication Abstract Background Major blunt chest injury usually leads to the development of retained hemothorax and pneumothorax, and needs further intervention. However, since blunt chest injury may be combined with blunt head injury that typically requires patient observation for 3–4 days, other critical surgical interventions may be delayed. The purpose of this study is to analyze the outcomes of head injury patients who received early, versus delayed thoracic surgeries. Materials and methods From May 2005 to February 2012, 61 patients with major blunt injuries to the chest and head were prospectively enrolled. These patients had an intracranial hemorrhage without indications of craniotomy. All the patients received video-assisted thoracoscopic surgery (VATS) due to retained hemothorax or pneumothorax. Patients were divided into two groups according to the time from trauma to operation, this being within 4 days for Group 1 and more than 4 days for Group 2. The clinical outcomes included hospital length of stay (LOS), intensive care unit (ICU) LOS, infection rates, and the time period of ventilator use and chest tube intubation. Result All demographics, including age, gender, and trauma severity between the two groups showed no statistical differences.
    [Show full text]
  • A BRI H IEF HISTO Howard R. C ORY of TH the Champion, K HE
    A BRIEF HISTORY OF THE FOUNDING OF THE EASTERN ASSOCIATION FOR THE SURGERY OF TRAUMA (EAST) Howard R. Champion, Kimball I. Maull, Lenworth M. Jacobs, Burton H. Harris A BRIEF HISTORY OF THE FOUNDING OF THE EASTERN ASSOCIATION FOR THE SURGERY OF TRAUMA (EAST) Howard R. Champion, Kimball I. Maull, Lenworth M. Jacobs, Burton H. Harris The Eastern Association for the Surgery of Trauma (EAST) was founded by a group of surgeons each of whom had somewhat established themselves in the field of trauma and surgical critical care by the early 1980s and were in the process of developing these disciplines and mentoring young surgeons. EAST has widely exceeded the original aspirations of that group of then-young surgeons. To understand why EAST was created and why it succeeded, it is necessary to glance back to the mid 1980s. The notion of EAST occurred in 1985 within a context of a growing demand for organized trauma care but no appropriate opportunities for young aspiring trauma surgeons to exchange knowledge, discuss advances in patient care, or develop their careers in this field within the discipline of surgery. No vehicle adequately nurtured young surgeons into the field of trauma. Today, EAST is an established and respected surgical organization reaching its 25-year mark with membership (Figure 1) of 1363 now exceeding that of the premier global trauma organization, the American Association for the Surgery of Trauma (AAST) (1227 members). Then The world of the young trauma surgeon in the early to mid 1980s was a very different place than it is more than 25 years later.
    [Show full text]
  • What to Expect After Having a Subarachnoid Hemorrhage (SAH) Information for Patients and Families Table of Contents
    What to expect after having a subarachnoid hemorrhage (SAH) Information for patients and families Table of contents What is a subarachnoid hemorrhage (SAH)? .......................................... 3 What are the signs that I may have had an SAH? .................................. 4 How did I get this aneurysm? ..................................................................... 4 Why do aneurysms need to be treated?.................................................... 4 What is an angiogram? .................................................................................. 5 How are aneurysms repaired? ..................................................................... 6 What are common complications after having an SAH? ..................... 8 What is vasospasm? ...................................................................................... 8 What is hydrocephalus? ............................................................................... 10 What is hyponatremia? ................................................................................ 12 What happens as I begin to get better? .................................................... 13 What can I expect after I leave the hospital? .......................................... 13 How will the SAH change my health? ........................................................ 14 Will the SAH cause any long-term effects? ............................................. 14 How will my emotions be affected? .......................................................... 15 When should
    [Show full text]
  • Delayed Traumatic Hemothorax in Older Adults
    Open access Brief report Trauma Surg Acute Care Open: first published as 10.1136/tsaco-2020-000626 on 8 March 2021. Downloaded from Complication to consider: delayed traumatic hemothorax in older adults Jeff Choi ,1 Ananya Anand ,1 Katherine D Sborov,2 William Walton,3 Lawrence Chow,4 Oscar Guillamondegui,5 Bradley M Dennis,5 David Spain,1 Kristan Staudenmayer1 ► Additional material is ABSTRACT very small hemothoraces rarely require interven- published online only. To view, Background Emerging evidence suggests older adults tion whereas larger hemothoraces often undergo please visit the journal online immediate drainage. However, emerging evidence (http:// dx. doi. org/ 10. 1136/ may experience subtle hemothoraces that progress tsaco- 2020- 000626). over several days. Delayed progression and delayed suggests HTX in older adults with rib fractures may development of traumatic hemothorax (dHTX) have not experience subtle hemothoraces that progress in a 1Surgery, Stanford University, been well characterized. We hypothesized dHTX would delayed fashion over several days.1 2 If true, older Stanford, California, USA be infrequent but associated with factors that may aid adults may be at risk of developing empyema or 2Vanderbilt University School of Medicine, Nashville, Tennessee, prediction. other complications without close monitoring. USA Methods We retrospectively reviewed adults aged ≥50 Delayed progression and delayed development of 3Radiology, Vanderbilt University years diagnosed with dHTX after rib fractures at two traumatic hemothorax (dHTX) have not been well Medical Center, Nashville, level 1 trauma centers (March 2018 to September 2019). characterized in literature. The ageing US popula- Tennessee, USA tion and increasing incidence of rib fractures among 4Radiology, Stanford University, dHTX was defined as HTX discovered ≥48 hours after Stanford, California, USA admission chest CT showed either no or ’minimal/trace’ older adults underscore a pressing need for better 5Department of Surgery, HTX.
    [Show full text]