Hordern House Rare Books Pty

Total Page:16

File Type:pdf, Size:1020Kb

Hordern House Rare Books Pty 77 vICTORIA STREET • POTTS POINT • SyDNEy NSw 2011 • AUSTRAlia • TElephONE (02) 9356 4411 • fAx (02) 9357 3635 HORDERN HOUSE RARE BOOKS PTY. LTD. A.B.N. 94 193 459 772 E-MAIL: [email protected] INTERNET: www.hordern.com DIRECTORS: ANNE McCORMICK • DEREK McDONNELL HORDERN HOUSE RARE BOOKS • MANUSCRIPTS • PAINTINGS • PRINTS • RARE BOOKS • MANUSCRIPTS • PAINTINGS • PRINTS • RARE BOOKS • MANUSCRIPTS • PAINTINGS Acquisitions • October 2015 Important Works on Longitude 2. [BOARD OF LONGITUDE]. The 3. [BUREAU DES LONGITUDES]. Nautical Almanac and Astronomical Connaissance des tems, a l’usage des Ephemeris, for the Year 1818. Astronomes et des Navigateurs pour l’an X… Octavo, very good in original polished calf, faithfully rebacked. London, John Octavo, folding world map and two Murray 1815. folding tables; an attractive copy in contemporary marbled calf, gilt, red Rare copy of the Nautical Almanac for spine label. Paris, l’Imprimerie de la 1818, a fundamental inclusion in the République, Fructidor, An VII, that is shipboard library of any Admiralty- circa August 1799. sponsored voyage. The Almanac was used for reckoning the longitude at sea A handsome copy of this rare work by the lunar method, and was closely by the French Bureau des Longitudes, studied by officers of the Royal Navy. for use by naval officers for the year The continued publication of such 1802 and 1803. The volume includes a almanacs is further proof that the handsome map of the world showing invention of the chronometer, (whilst the track of a solar eclipse that revolutionary), did not completely occurred in August of that year. Much supersede the necessity for other fail- like the British equivalent, these tables 1. ARNOLD, Thomas. The American safes. The slim survival rate is ample were published far in advance of the Practical Lunarian, and Seaman’s Guide… testament of the hard use to which the year under review, in anticipation almanacs were put. of their use on long voyages of $885 Thick octavo, 15 plates (some folding), exploration (in this instance the 1800- many tables and text illustrations, 1804 Baudin voyage to Australia and original calf binding. Philadelphia, the Pacific). Robert Desilver, August 1822. $925 First and only edition: a remarkable compendium of naval information for the ready use of mariners, including lunar tables for reckoning the longitude at sea. The author, Thomas Arnold, was the proprietor of a Nautical Academy located on the Philadelphia river-front, and was an authority of navigation at sea. Curiously, it also includes the earliest published map based on the Freycinet voyage, being an engraved sketch-map of French Bay in the Falkland Islands where the Uranie ran aground. $5500 2 3 - Please note that all our catalogue prices are in Australian dollars - 4 4. [HALLEY, Edmund]. MOUNTAIN, 5. [HARRISON, John]. KEILL, John. An 6. [HUTCHINSON, John]. Article on William and James DODSON. A Introduction to the True Astronomy… John Hutchinson’s longitude clock… Correct Chart of the Terraqueous Globe… Octavo, with 25 folding plates in series Octavo, 48 pp., disbound. London, D. and two finely engraved folding lunar Henry, November 1775. Large oblong map measuring 555 x charts, in the original contemporary 1470 mm., in two sections, laid-down; a calf binding. London, J. Buckland and Complete issue of the Gentleman’s most attractive copy. London, Laurie & others, 1760. Magazine for November 1775 Whittle 1794. containing an interesting biographical article on John Hutchinson (1674- Splendid late-eighteenth-century 1737), a natural scientist who in world chart showing variations of A wonderful survival: an important 1712 invented and built a novel the compass with ‘isogonic lines’, eighteenth-century handbook of chronometer for ascertaining an innovation introduced almost astronomy from the library of the great longitude. This issue also includes a a century earlier by renowned watchmaker John Harrison, inventor succinct notice of Atkyn’s 1735 voyage astronomer Edmund Halley following of the marine chronometer that to Guinea, wherein a serious effort to his command of the first British voyage revolutionised the study of longitude determine longitude with timekeepers of scientific discovery. As the engraved and which was prized by Captain was attempted. caption indicates, it was believed that Cook and his compatriots. The book $375 eventually compass variation could bears Harrison’s armorial bookplate be used to calculate longitude at sea. and ownership inscription ‘E Libris 7. [PARLIAMENT OF GREAT BRITAIN]. Although unsuitable for practical use, Jn. Harrison July 23d 1766’ above An Act for Providing a Publick this method remained a tantalising the initials ‘JH’ to the title-page in Reward… possibility at the close of the eighteenth Harrison’s distinctive hand. It contains century when this map was printed, three separate discussions of longitude Folio, with 4 pp. as marine chronometers remained showing widely accepted approaches to table; bound inordinately expensive and beyond the the problem. with 22 other means of most mariners. parliamentary Perry & Prescott p. 75. $7500 acts for the $8500 session in contemporary plain calf with shelf label. London, John Baskett, 1714. The first publication of the Longitude Act, a pivotal 5 document in maritime history: ‘nothing is so much wanted and 7 desired at Sea, as the Discovery of 10. [PARLIAMENT OF GREAT BRITAIN]. 12. ROSSEL, Paul-Édouard. Autograph the Longitude’. The act – more often An Act for… making Experiments of letter signed, concerning the lunar seen in disbound form – is here in its Proposals made for discovering the method for calculating longitude. appropriate context in the full printing Longitude. of the twenty-three Acts of the first Manuscript letter, 231 x 186 mm., on session of parliament in 1714. Other Folio, title, pp. 271-274; disbound yet a bifolium sheet, letter comprising first acts in the session are of some interest: fine. London, Mark Baskett, 1765. page with three blank pages, dated and for example one act removes the “ad signed by Rossel. [Paris?], 15 June 1819. valorem” tax on imported books and This Act clarifies the process of prints, another is for “Encouraging the paying out prize monies, stipulating Rossel, astronomer of the Tobacco-Trade”. that the Commissioners of the Board d’Entrecasteaux expedition in search Horblit, 42a; Norman, 2. of Longitude are to pass on the of La Pérouse, writes to Louis Marie $14,500 particulars of any individual deemed Bajot, inspector-general of the library worthy to the Commissioners of the of the Ministry of the Marine and an Navy (who in due course instruct editor of some standing. Bajot had 8. [PARLIAMENT OF GREAT BRITAIN]. the Naval treasurer to issue a bill of previously asked Rossel to review some An Act for explaining and rendering payment). This process is limited articles on the lunar method, however more effectual Two Acts… for to the disbursement of sums up to he reports the method is unsatisfactory discovering the Longitude… £2000: greater amounts required and should be abandoned since the parliamentary approval. difficulty of accurately measuring the Folio, title page, pp. 367-374, fine. $1200 height of the moon is too great and London, Mark Baskett, January 1765. An important Longitude Act, bringing John Harrison closer to reward but insisting the secret workings of his chronometers be revealed. Having outlined the successful sea trials during voyages to Jamaica and Barbados, this Act formalises the demand for Harrison to deliver the prototype H-4 and two identical operational copies of the chronometer (complete with diagrams) within a space of six months to be considered for the reward. The Act also rewards two German professors, Euler and Mayer, for their contribution to the lunar method – accordingly it directs that £300 to be 11 paid to Euler and £3000 to the widow of Tobias Mayer. liable to “grandes erreurs”.The letter $2250 reflects Rossel’s considerable practical 11. [PARLIAMENT OF GREAT BRITAIN]. experience in reconciling the dual 9. [PARLIAMENT OF GREAT BRITAIN]. Ten Acts of Parliament discussing the sciences of astronomy and navigation, An Act for… making Experiments of reward for discovering the longitude and the high regard accorded by his Proposals made for discovering the at sea. peers. Longitude. $2400 Ten individual acts, folio, housed in Folio, title, pp. 675-678; disbound yet an attractive red quarter morocco fine. London, Mark Baskett, 1762. bookform box. London, various printers for Parliament, 1762- 1818. This Act empowers the Commissioners of Longitude power to expend sums A substantial collection, including three up to £2,000 on experimental projects. pivotal Acts regarding prize payments As such, it significantly expands the to John Harrison with stipulations for scope of the Board to rigorously test provision of prototype chronometers. plausible proposals from a wide range Other Acts in this collection concern the of applicants. This large experimental publication of lunar tables, and detail budget accommodated the Jamaica the distribution of prize monies to those trial of Harrison’s chronometer while advancing the lunar method for reckoning providing widespread impetus to other the longitude. contenders. A full collation is available on request. $1200 $18,500 12 13. SCRIVEN, E. (engraver). [Nevil] 14. WALES, William and William Maskelyne. From the original Picture BAYLY. The Original Astronomical by Vanderburgh in the possession of Observations made in the course of a the Royal Society. Voyage towards the South Pole… Stipple engraving measuring 130 x 105 Quarto, with a double-page plate, mm., beautifully preserved within ample two folding plates and a folding map; margins with engraved description. attractively bound in full calf, spine London, Charles Knight, circa 1830. ornately gilt to a period design. London, printed by Strahan for Nourse, Mount A finely engraved portrait of the and Page, 1777. Astronomer Royal, Nevil Maskelyne (1732-1811). A pre-eminent figure in eighteenth-century English science, Maskelyne was deeply involved in solving the riddle of calculating longitude at sea.
Recommended publications
  • Articles Articles
    Articles Articles ALEXI BAKER “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Résumé Abstract On représente souvent les instruments scientifiques Early modern British “scientific” instruments, including du 18e siècle, y compris les chronomètres de précision, precision timekeepers, are often represented as static, comme des objets statiques, à l’état neuf et complets en pristine, and self-contained in 18th-century depictions eux-mêmes dans les descriptions des débuts de l’époque and in many modern museum displays. In reality, they moderne et dans de nombreuses expositions muséales were almost constantly in physical flux. Movement and d’aujourd’hui. En réalité, ces instruments se trouvaient changing and challenging environmental conditions presque constamment soumis à des courants physiques. frequently impaired their usage and maintenance, Le mouvement et les conditions environnementales especially at sea and on expeditions of “science” and difficiles et changeantes perturbaient souvent leur exploration. As a result, individuals’ experiences with utilisation et leur entretien, en particulier en mer et mending and adapting instruments greatly defined the lors d’expéditions scientifiques et d’exploration. Ce culture of technology and its use as well as later efforts sont donc les expériences individuelles de réparation at standardization. et d’adaptation des instruments qui ont grandement contribué à définir la culture de la technologie. In 1769, the astronomer John Bradley finally the calculation of the distance between the Earth reached the Lizard peninsula in Cornwall and the Sun. Bradley had not needed to travel with his men, instruments, and portable tent as far as many of his Transit counterparts, but observatory after a stressful journey.
    [Show full text]
  • WHERE WAS MEAN SOLAR TIME FIRST ADOPTED? Simone Bianchi INAF-Osservatorio Astrofisico Di Arcetri, Largo E. Fermi, 5, 50125, Flor
    WHERE WAS MEAN SOLAR TIME FIRST ADOPTED? Simone Bianchi INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125, Florence, Italy [email protected] Abstract: It is usually stated in the literature that Geneva was the first city to adopt mean solar time, in 1780, followed by London (or the whole of England) in 1792, Berlin in 1810 and Paris in 1816. In this short paper I will partially revise this statement, using primary references when available, and provide dates for a few other European cities. Although no exact date was found for the first public use of mean time, the primacy seems to belong to England, followed by Geneva in 1778–1779 (for horologists), Berlin in 1810, Geneva in 1821 (for public clocks), Vienna in 1823, Paris in 1826, Rome in 1847, Turin in 1849, and Milan, Bologna and Florence in 1860. Keywords: mean solar time 1 INTRODUCTION The inclination of the Earth’s axis with respect to the orbital plane and its non-uniform revolution around the Sun are reflected in the irregularity of the length of the day, when measured from two consecutive passages of the Sun on the meridian. Though known since ancient times, the uneven length of true solar days became of practical interest only after Christiaan Huygens (1629 –1695) invented the high-accuracy pendulum clock in the 1650s. For proper registration of regularly-paced clocks, it then became necessary to convert true solar time into mean solar time, obtained from the position of a fictitious mean Sun; mean solar days all having the same duration over the course of the year.
    [Show full text]
  • Le Bureau Des Longitudes: Imitation Du Board of Longitude Britannique?
    Le Bureau des longitudes : imitation du Board of Longitude britannique ? Martina Schiavon To cite this version: Martina Schiavon. Le Bureau des longitudes : imitation du Board of Longitude britannique ?. 2018. hal-03218044 HAL Id: hal-03218044 https://hal.univ-lorraine.fr/hal-03218044 Submitted on 5 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Le Bureau des longitudes : imitation du Board of Longitude britannique ? Martina Schiavon Figure 1 - Salle de réunion du Bureau des longitudes (Source : Bureau des longitudes) Premières réflexions après la mise en ligne des procès-verbaux du Bureau des longitudes Dans son rapport sur les besoins actuels du Bureau des longitudes du 22 septembre 1920, l’astronome et mathématicien Marie-Henri Andoyer (1862-1929) revenait ainsi sur la création du Bureau : « Le nom même de “Bureau des Longitudes” est la simple traduction du nom anglais de l’établissement analogue “Board of Longitude”, chargé de publier le Nautical Almanach pour l’usage des marins et de rechercher les meilleures méthodes pour résoudre le problème fondamental de la détermination des longitudes, soit sur mer, soit à terre.
    [Show full text]
  • Siméon-Denis Poisson Mathematics in the Service of Science
    S IMÉ ON-D E N I S P OISSON M ATHEMATICS I N T H E S ERVICE O F S CIENCE E XHIBITION AT THE MATHEMATICS LIBRARY U NIVE RSIT Y O F I L L I N O I S A T U RBANA - C HAMPAIGN A U G U S T 2014 Exhibition on display in the Mathematics Library of the University of Illinois at Urbana-Champaign 4 August to 14 August 2014 in association with the Poisson 2014 Conference and based on SIMEON-DENIS POISSON, LES MATHEMATIQUES AU SERVICE DE LA SCIENCE an exhibition at the Mathematics and Computer Science Research Library at the Université Pierre et Marie Curie in Paris (MIR at UPMC) 19 March to 19 June 2014 Cover Illustration: Portrait of Siméon-Denis Poisson by E. Marcellot, 1804 © Collections École Polytechnique Revised edition, February 2015 Siméon-Denis Poisson. Mathematics in the Service of Science—Exhibition at the Mathematics Library UIUC (2014) SIMÉON-DENIS POISSON (1781-1840) It is not too difficult to remember the important dates in Siméon-Denis Poisson’s life. He was seventeen in 1798 when he placed first on the entrance examination for the École Polytechnique, which the Revolution had created four years earlier. His subsequent career as a “teacher-scholar” spanned the years 1800-1840. His first publications appeared in the Journal de l’École Polytechnique in 1801, and he died in 1840. Assistant Professor at the École Polytechnique in 1802, he was named Professor in 1806, and then, in 1809, became a professor at the newly created Faculty of Sciences of the Université de Paris.
    [Show full text]
  • “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18Th Century Alexi Baker
    Document generated on 09/29/2021 11:28 a.m. Material Culture Review “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Alexi Baker Volume 74-75, 2012 Article abstract Early modern British “scientific” instruments, including precision timekeepers, URI: https://id.erudit.org/iderudit/mcr74_75art01 are often represented as static, pristine, and self-contained in 18th-century depictions and in many modern museum displays. In reality, they were almost See table of contents constantly in physical flux. Movement and changing and challenging environmental conditions frequently impaired their usage and maintenance, especially at sea and on expeditions of “science” and exploration. As a result, Publisher(s) individuals’ experiences with mending and adapting instruments greatly defined the culture of technology and its use as well as later efforts at standardization. National Museums of Canada ISSN 0316-1854 (print) 0000-0000 (digital) Explore this journal Cite this article Baker, A. (2012). “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century. Material Culture Review, 74-75, 14–29. All rights reserved © National Museums of Canada, 2011 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research.
    [Show full text]
  • Century Regulator by John Roger Arnold Expert Adviser's Statement
    Case 5 2010-11 : An early 19 th -century regulator by John Roger Arnold Expert Adviser’s Statement EXECUTIVE SUMMARY 1. Brief Description of item • What is it ? Longcase regulator • What is it made of ? Mahogany, brass and steel. • What are its measurements ? Height 193 cms. • Who is the artist/maker and what are his/her dates? John Roger Arnold (1769 – 1843) • What date is the item? 1795 – 1800 • What condition is it in? Good and original. 2. Context • Provenance From the time of manufacture to the recent sale at Bonham’s London Auction House (15th December 2009), making an assumption of inheritance, the regulator has a traceable provenance – see appendix 3 below. • Key literary and exhibition references The regulator has not been exhibited and has not featured in any published work. 3. Waverley criteria • Which of the Waverley criteria does the item meet? (If it is of ‘outstanding significance for the study of some particular branch of art learning or history’ which area of art learning or history). Waverley Criteria1 and 3. • Very briefly why? Waverley Criterion 1– It is so connected with our history (including local history) and national life that its departure would be a misfortune. This regulator is important because it is intimately connected with the life and business of one of Britain’s internationally recognised and celebrated chronometer making businesses and with the history of precision timekeeping in this country - an area in which London clock, watch and chronometer makers lead the world for over a century. The Arnold business had a history of providing regulators of the highest quality to observatories, perhaps the most celebrated examples being two regulators commissioned from John Arnold senior in April 1772 for the Royal Observatory, Greenwich.
    [Show full text]
  • Document on Foundation of Bureau Des Longitudes (Pdf)
    Brief History of the Bureau des Longitudes After hearing a report read by the abbé Grégoire, the Bureau des Longitudes was created by a law of the National Convention of the 7 messidor year III (June 25 1795). The purpose was to reassume "the mastery of the seas from the English", through the improvement of the determination of longitudes at sea. Charged with the compilation of Knowledge of the Times and perfecting the astronomical tables, he had responsibility for the Paris observatory, the observatory of the Military school and all the astronomy instruments that belonged to the Nation. The ten founding members had been: Lagrange, Laplace, Lalande, Delambre, Méchain, Cassini, Bougainville, Borda, Buache and Caroché. It was charged, by the decree of January 30 1854 with a larger mission bringing to it, in addition realization of the ephemerides by its "Calculations Service" created in 1802, to organize several big scientific expeditions: geodetic measurements, observation of solar eclipses, observation of the passage of Venus in front of the Sun, works that were published in the Annals of the Bureau des Longitudes. It participated equally in the foundation of several scientific organisations such as the International Office of Time (1919), the Group of Researches of Spatial Géodésie (1971) and the International Earth Rotation Service (1988). Law of the year III and Regulations FOUNDATION OF THE OFFICE OF THE LONGITUDES Report made to the National Convention in its meeting of the 7 messidor year III (June 25 1795), by the Representative of the People GRÉGOIRE, on the establishment of the Office of the Longitudes.
    [Show full text]
  • Les Annales Du Bureau Des Longitudes Travaux Faits Par L
    Annales du Bureau des longitudes (1877-1949) MARTINA SCHIAVON L.H.S.P. – Archives Henri Poincaré (UMR 7117 – CNRS) Université de Lorraine (France) Circulating Mathematics via Journals: The Rise of Internationalisation 1850-1920 Conference at the Mittag-Leffler Institute, Wednesday, 22 June 2016 Djursholm • Titles : Key elements 1877 : Annales du Bureau des longitudes et de l’observatoire astronomique de Montsouris 1882 Annales du Bureau des longitudes : travaux faits à l’observatoire astronomique de Montsouris (section navale) et mémoires diverses >1911 Annales du Bureau des longitudes 1949 in collaboration with the CNRS • Publisher (and Redaction Schiavon M. committee) : Bureau des longitudes Associated publisher : Ministère de la Marine • Printer : Jean-Albert Gauthier- Villars • Publication : 1877 – 1949 Digitized © Gallica (13th numbers) Plan • Why the Annales ? • Testing a periodization - crossing various elements on the diffusion of the Annales • Why the end ? M. Schiavon Schiavon M. Plan • Why the Annales ? • Testing a periodization - crossing various elements on the diffusion of the Annales • Why the end ? M. Schiavon Schiavon M. Reading the Bureau des longitudes minutes (1877-1878) « Les procès-verbaux du Bureau des longitudes. Un patrimoine numérisé (1795-1932) » http://bdl.ahp-numerique.fr/ • Minute of the 24th Mai 1876: « Il est donné lecture au bureau d'une lettre de monsieur le ministre de la marine accordant une subvention annuelle de deux mille francs pour la publication dans les annales du bureau des observations faites par les officiers de marine attachés à l'observatoire de MontSouris ». (©“Bureau des Longitudes - Séance du mercredi 24 mai 1876”, Les procès-verbaux du Bureau des longitudes , consulté le 13 juin 2016, http://purl.oclc.org/net/bdl/items/show/3269).
    [Show full text]
  • L'annuaire Du Bureau Des Longitudes75
    L’Annuaire du Bureau des longitudes (1795-1932) Colette Le Lay To cite this version: Colette Le Lay. L’Annuaire du Bureau des longitudes (1795-1932). 8, 2021, Collection du Bureau des longitudes, 978-2-491688-04-2. halshs-03233204 HAL Id: halshs-03233204 https://halshs.archives-ouvertes.fr/halshs-03233204 Submitted on 24 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Collection du Bureau des longitudes Volume 8 Colette Le Lay L’Annuaire du Bureau des longitudes (1795 - 1932) Collection du Bureau des longitudes - Volume 8 Colette Le Lay Bureau des longitudes © Bureau des longitudes, 2021 ISBN : 978-2-491688-05-9 ISSN : 2724-8372 Préface C’est avec grand plaisir que le Bureau des longitudes accueille dans ses éditions l’ouvrage de Colette Le Lay consacré à l’Annuaire du Bureau des longitudes. L’Annuaire est la publication du Bureau destinée aux institutions nationales, aux administrations1 et au grand public, couvrant, selon les époques, des domaines plus étendus que l’astronomie, comme la géographie, la démographie ou la physique par exemple. Sa diffusion est par nature plus large que celle des éphémérides et des Annales, ouvrages spécialisés destinés aux professionnels de l’astronomie ou de la navigation.
    [Show full text]
  • The Early History of Chronometers : a Background Study Related to the Voyages of Cook, Bligh, and Vancouver
    The Early History of Chronometers : A Background Study Related to the Voyages of Cook, Bligh, and Vancouver SAMUEL L. MAGE Y The purpose of this paper is to outline the historical developments relat­ ing to the chronometer, which played so crucial a part in the voyages of discovery made by Cook, Bligh and Vancouver. The inventor of the first successful chronometer — a technological marvel of precision watchmak­ ing — was John Harrison. His most famous model was the prize-winning H4 of 1759. Kendall's copy of this, known as Ki, helped Cook to plot the first charts of New Zealand and Australia. Ki was also used by Van­ couver, while K2 was once carried by Bligh on the Bounty.1 It is generally well known that in 1714 the British Admiralty offered a prize of twenty thousand pounds (possibly a million dollars in modern terms) for a method that could determine longitude on board a ship to within half a degree (or approximately thirty miles) on a passage to the West Indies. It is, however, less well appreciated how important a part the need for deter­ mining longitude had already played in the process of developing accurate clocks and watches for use on land as well as on the sea. Commander Waters has pointed out that "By about 1254 the Medi­ terranean seaman" knew his "direction between places to within less than 30 of arc", as well as his distances; "By about 1275 ... he had also a remarkably accurate sea chart of the whole of the Mediterranean and Black Sea coastlines", together with the sea compass and relevant table.2 Though there are claims that the sea compass was a European inven­ tion of slightly earlier date, Price feels that the use of the loadstone in navigation was probably of Chinese origin.
    [Show full text]
  • Committed to Science Arnold at Christie's
    102 Nature Vol. 291 14 May 1981 ment of those results by using the relevant research community's own judgements of Arnold at Christie's scientific value, both directly (through con­ An 8-day marine timekeeper which is fidential questionnaires) and indirectly being offered for sale on 3 June at (through publication rates and citation Christie's London auction rooms is frequencies). thought to be a prototype for the modern A preliminary version of the radio­ marine chronometer, and it has been astronomy study was read last year at a suggested that the spring detent which it closed session of the Organization for employs could be the earliest ever, pre­ Economic Cooperation and Development, dating the putative "Earnshaw" pattern and was very well received; but the wide cir­ by several years. Made by John Arnold in culation of that paper, particularly in the London around 1775, the design of this Netherlands and West Germany, whose un-numbered chronometer throws light own radio telescopes were also assessed on the many problems which confronted (not all favourably) led to recrimination Arnold in his efforts to construct a from Jodrell Bank, which did not do so timekeeper which would be accurate and well in the study. And now North-Holland, reliable and could also be made in the publisher of Research Policy, in which quantity at a relatively low price. the final paper was to appear, is said to be His chronometer (a term he himself refusing to publish the radioastronomy coined) was designed to keep the same work. rate of going in every position and it Moreover, the originator of the SPRU incorporates a mechanism to compensate study, Sussex physicist Dr Norman for changes in temperature.
    [Show full text]
  • Siméon-Denis Poisson
    Siméon-Denis Poisson Les mathématiques au service de la science Illustration de couverture : En 1804, Poisson était professeur suppléant à l’École polytechnique Il fut nommé professeur deux ans plus tard © Collections École polytechnique-Palaiseau Illustration ci-contre : Portrait d’après nature de Siméon-Denis Poisson par Antoine Maurin Lithographie de François-Séraphin Delpech, vers 1820 © Collections École polytechnique-Palaiseau Histoire des Mathématiques et des Sciences physiques Siméon-Denis Poisson Les mathématiques au service de la science Yvette Kosmann-Schwarzbach éditrice Ce logo a pour objet d’alerter le lecteur sur la menace que représente pour l’avenir de l’écrit, tout particulièrement dans le domaine univer- sitaire, le développement massif du « photocopillage ». Cette pratique qui s’est généralisée, notamment dans les établissements d’enseignement, provoque une baisse brutale des achats de livres, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui menacée. Nous rappelons donc que la production et la vente sans autorisation, ainsi que le recel, sont passibles de poursuites. Les demandes d’autorisation de photocopier doivent être adressées à l’éditeur ou au Centre français d’exploitation du droit de copie : 20, rue des Grands-Augustins , 75006 Paris. Tél. : 01 44 07 47 70. © Éditions de l’École polytechnique - Juin 2013 91128 Palaiseau Cedex Préface Ce livre est un hybride. Treize des dix-neuf chapitres répartis en sept parties reproduisent les articles de Siméon-Denis Poisson en son temps, livre édité par Michel Métivier, Pierre Costabel, et Pierre Dugac, publié en 1981 par l’École polytechnique, Palaiseau (France), à l’occasion du bicentenaire de la naissance de Poisson, qui y fut élève avant d’y enseigner.
    [Show full text]