Century Regulator by John Roger Arnold Expert Adviser's Statement

Total Page:16

File Type:pdf, Size:1020Kb

Century Regulator by John Roger Arnold Expert Adviser's Statement Case 5 2010-11 : An early 19 th -century regulator by John Roger Arnold Expert Adviser’s Statement EXECUTIVE SUMMARY 1. Brief Description of item • What is it ? Longcase regulator • What is it made of ? Mahogany, brass and steel. • What are its measurements ? Height 193 cms. • Who is the artist/maker and what are his/her dates? John Roger Arnold (1769 – 1843) • What date is the item? 1795 – 1800 • What condition is it in? Good and original. 2. Context • Provenance From the time of manufacture to the recent sale at Bonham’s London Auction House (15th December 2009), making an assumption of inheritance, the regulator has a traceable provenance – see appendix 3 below. • Key literary and exhibition references The regulator has not been exhibited and has not featured in any published work. 3. Waverley criteria • Which of the Waverley criteria does the item meet? (If it is of ‘outstanding significance for the study of some particular branch of art learning or history’ which area of art learning or history). Waverley Criteria1 and 3. • Very briefly why? Waverley Criterion 1– It is so connected with our history (including local history) and national life that its departure would be a misfortune. This regulator is important because it is intimately connected with the life and business of one of Britain’s internationally recognised and celebrated chronometer making businesses and with the history of precision timekeeping in this country - an area in which London clock, watch and chronometer makers lead the world for over a century. The Arnold business had a history of providing regulators of the highest quality to observatories, perhaps the most celebrated examples being two regulators commissioned from John Arnold senior in April 1772 for the Royal Observatory, Greenwich. The first of these, subsequently known as No.1 continued in service, with modifications until it was sold into public ownership in 1932. The second, No.2, was used there until it was sold in 1938. The provenance suggests that this regulator was retained and used by its maker. Such examples in the field of horology are very survivors indeed and for this example to leave the country would indeed be a great misfortune. Waverley Criterion 3 – Is it of outstanding significance for the study of some particular branch of art, learning or history? The study of horology in Great Britain is being carried out in a more extensive way than ever before. For centuries, from as early as the 1660s to the introduction of quartz technology in the post World War II era, Britain led the world in the field of precision horology. In this context, the work of John Arnold and his son John Roger Arnold is particularly significant and surviving examples of regulators made by them are relatively rare, especially those which remain in this country. Made in about 1796 – 1800, this regulator was owned and even perhaps used by John Arnold at the end of his life, and was subsequently used by his son John Roger Arnold (1769-1843). It would have been an important example of Arnold’s productions and may have been employed as the workshop time-standard for testing the rates of marine timekeepers and other precision pieces before they were sold to the public or issued to navigators or the British Government. It might otherwise have been a timekeeper which stood in the Arnold shop as a demonstration of the level to which high precision could rise. It is therefore of outstanding importance in the study of the history and development of precision timekeeping and workshop practice of the time. The timekeeper also incorporates an example of a zinc/iron compensated pendulum, a piece of horological technology which is also relatively rare and worthy of study. DETAILED CASE 1. Detailed description of item(s) if more than in Executive summary, and any comments. What does it depict? The work is a very fine example of precision horology from the end of the 18 th century. Case: Solid mahogany case with panelled plinth and double skirted bottom. A hinged, locked door in the trunk. Flat-top hood with hinged glazed door and solid mahogany panels at the sides. At the back, at the height of the door an iron strap enables accurate levelling when the clock is fixed to the wall. Inside the case a substantial cast bracket provided suspension for the pendulum. Dial: The one-piece silvered brass dial is engraved with an outer minute circle numbered 0-60 at five-minute intervals. Below the 60 minute a subsidiary dial has an outer circle divided to seconds and numbered every 10 seconds. An aperture below the centre reveals a disc numbered I-XII for the hours. Movement Weight-driven month-going movement with substantial brass plates and six tapered pillars retained by screws at the front. Four wheel going train with Harrison’s maintaining power on the great wheel. The great wheel, intermediate and centre wheel pivots all have adjustable endplates. The third wheel and escape wheel run in jewelled bearings. Graham dead-beat escapement, with steel escape wheel carrying the seconds hand. Polished steel pallets with jewelled pallet stones. Seconds-beating pendulum, with steel and zinc gridiron compensation, suspended from a large cast block inset and screwed to the case back-board. The steel crutch fork is lined with gold on the faces which interact with the pendulum rod. Two micrometer screws provide beat adjustment. Dial signed: Arnold London No.33 . What does it tell us about that period? It is a typical high-precision machine, made to be used as a time standard. The most common use for such regulators was in astronomical observatories. However, such machines were also made for individuals who had an interest in science, astronomy and navigation and were commonly used by clock, watch and chronometer makers as time standards in their workshops for adjusting and setting their products. This regulator is a very fine example of the genre. Features, such as the jewelled bearings for the gear train, the jewelled pallets in the escapement and the zinc/iron gridiron temperature compensated pendulum mark it out as being of the finest quality available at the time. As such it reflects the pre- eminence of London makers in the field of precision regulators at the time. There is no doubt that in this period 1750 – 1850 the London makers led the world and had reputations second to none and John Arnold and his son John Roger Arnold rank amongst the most celebrated in the field. Who made it/painted it/wrote it? It was made in the workshops of John Roger Arnold towards the very end of John Arnold’s life when he was retired and his son was running the business No. of comparable items by the same artist already in the UK, in both public and private collections? There are only three identifiable regulators by John Arnold and his son John Roger Arnold known to remain in this country, although it is difficult to be precise as the whereabouts of those now in private ownership are not known. (See appendix 2 below) 2. Detailed explanation of the outstanding significance of the item(s). Significance of figures associated with the item(s): maker/client/owners? In the story of the development of precision timekeeping in the 18 th and 19 th century, precision regulators have played a central role as instruments providing accurate time-keeping in relation to astronomy, navigation and surveying. From the regulators made for the Royal Greenwich Observatory in 1675 by Thomas Tompion to the highly sophisticated instruments made by William H. Shortt for observatories around the world, the progress of astronomy was made possible by the production of increasingly accurate timekeepers. In that story in 18 th and 19 th century, London makers were at the forefront, pioneering new inventions and achieving ever more precise measurements of time. John Arnold and his son John Roger Arnold, were in the vanguard of those providing the finest and most precise machines. These took the form of static regulators and portable marine timekeepers. John Roger Arnold was without question one of the leading makers of precision regulators at the turn of the 19 th century, maintaining the standards established by his father in the preceding period. Significance of subject-matter? Horology is a widely studied subject around the world and more specifically in Great Britain which has a rich history. The London makers played a central role in the development of precision horology from John Harrison and Thomas Mudge during the 18 th century to the leading makers who carried the story into the 19 th century when London and Liverpool makers were supplying the world with marine chronometers for navigation. At the same time it was the London makers such as the Arnolds who were supply the observatories of the world with regulators as essential scientific instruments used in the furtherance of astronomical observations. Significance of materials/process/usage? See above. Is/are the item(s) of local/regional/national importance? This regulator, by one of London’s most celebrated makers, is of national importance in the history of horology. Summary of related items in public/private ownership in the UK (see appendix 3 below) References: Vaudrey Mercer, John Arnold & Son , Antiquarian Horological Society, London, 1972. Hans Staeger, 100 Jahre Präzisionuhren von Arnold bis Arnold & Frodsham , 1763-1862 , Staeger, Stuttgart, 1997. Derek Roberts, English Precision Pendulum Clocks , Schiffer, Atglen, 2003. Bonhams, London Sale Rooms, Fine Clocks and Barometers, 15 th December 2009 , lot132. Name of Expert Adviser and Institution: Dr. Jonathan Williams Keeper Prehistory & Europe British Museum Great Russell Street London WC1B 3DG Author of report (if different) David Thompson Curator of Horology Prehistory & Europe British Museum Great Russell Street London WC1B 3DG Date: 7 th July 2010 Appendix 1 John Arnold and John Roger Arnold.
Recommended publications
  • Grandfathers' Clocks: Their Making and Their Makers in Lancaster County
    GRANDFATHERS' CLOCKS: THEIR MAKING AND THEIR MAKERS IN LANCASTER COUNTY, Whilst Lancaster county is not the first or only home of the so-called "Grandfathers' Clock," yet the extent and the excellence of the clock industry in this type of clocks entitle our county to claim special distinction as one of the most noted centres of its production. I, therefore, feel the story of it specially worthy of an enduring place in our annals, and it is with pleasure •and patriotic enthusiasm that I devote the time and research necessary to do justice to the subject that so closely touches the dearest traditions of our old county's social life and surroundings. These old clocks, first bought and used by the forefathers of many of us, have stood for a century or more in hundreds of our homes, faithfully and tirelessly marking the flight of time, in annual succession, for four genera- tions of our sires from the cradle to the grave. Well do they recall to memory and imagination the joys and sorrows, the hopes and disappointments, the successes and failures, the ioves and the hates, hours of anguish, thrills of happiness and pleasure, that have gone into and went to make up the lives of the lines of humanity that have scanned their faces to know and note the minutes and the hours that have made the years of each succeeding life. There is a strong human element in the existence of all such clocks, and that human appeal to our thoughts and memories is doubly intensified when we know that we are looking upon a clock that has thus spanned the lives of our very own flesh and blood from the beginning.
    [Show full text]
  • Th B T the Brocots
    The BtBrocots A Dyyynasty of Horologers Presented by John G. Kirk 1 Outline • Introduction • Background: Paris Clocks • Brocot GlGenealogy • The Men and Their Works • Gallery 2 Outline • Introduction • Background: Paris Clocks • Brocot GlGenealogy • The Men and Their Works • Gallery 3 Introduction • This is a review of “Les Brocot, une dynastie d’ horlogers” by Richard Chavigny • Dean Armentrout asked me to discover the following: – How many/who are the Brocots who contributed to horology (see below…) – The years the famous innovations were made (and by whom) (see below…) – How the Brocot dynasty interacted with other clockmakers, for example the house of Le Roy (i(curious ly, such iitnterac tions, if any, aren’t mentioned in the book) 4 Outline • Introduction • Background: Paris Clocks • Brocot GlGenealogy • The Men and Their Works • Gallery 5 The Paris Clock (1 of 5) • The term, la Pendule de Paris, applies to table/mantel clocks developed by Parisian clockmakers • Beginning around 1810 and continuing well into the 20th century production of these clocks evolved into a highly industrialized process 6 The Paris Clock (2 of 7) • Around 1810, Paris clocks were no longer fabricated from scratch in Paris except by the grand houses, such as Breguet, Le Paute, etc. • A “mass” market for high quality, competitively‐priced “Clocks of Commerce” developed based on ébauches completed and finished in Paris 7 The Paris Clock (3 of 7) • The ébauches comprised – The two plates – The barrel (without spring) – The stiktrike titrain compltlete with dtdeten
    [Show full text]
  • Grandfathers' Clocks: Their Making and Their Makers in Lancaster County *
    Grandfathers' Clocks: Their Making and Their Makers in Lancaster County * By D. F. MAGEE, ESQ. Whilst Lancaster County is not the first or only home of the so-called "Grandfathers' Clock," yet the extent and the excellence of the clock industry in this type of clocks entitle our county to claim special distinction as one of the most noted centres of its production. I, therefore, feel the story of it specially worthy of an enduring place in our annals, and it is with pleasure and patriotic enthusiasm that I devote the time and research necessary to do justice to the subject that so closely touches the dearest traditions of our old county's social life and surroundings. These old clocks, first bought and used by the forefathers of many of us, have stood for a century or more in hundreds of our homes, faithfully and tirelessly marking the flight of time, in annual succession for four genera- tions of our sires from the cradle to the grave. Well do they recall to memory and imagination the joys and sorrows, the hopes and disappointments, the successes and failures, the loves and the * A second edition of this paper was necessitated by an increasing demand for the pamphlet, long gone from the files of the Historical Society. No at- tempt has been made to re-edit the text. D. F. Magee's sentences, punctuations and all are his own. A few errors of dates or spelling have been corrected, and a few additions have been made. These include the makers, Christian Huber, Henry L.
    [Show full text]
  • Articles Articles
    Articles Articles ALEXI BAKER “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Résumé Abstract On représente souvent les instruments scientifiques Early modern British “scientific” instruments, including du 18e siècle, y compris les chronomètres de précision, precision timekeepers, are often represented as static, comme des objets statiques, à l’état neuf et complets en pristine, and self-contained in 18th-century depictions eux-mêmes dans les descriptions des débuts de l’époque and in many modern museum displays. In reality, they moderne et dans de nombreuses expositions muséales were almost constantly in physical flux. Movement and d’aujourd’hui. En réalité, ces instruments se trouvaient changing and challenging environmental conditions presque constamment soumis à des courants physiques. frequently impaired their usage and maintenance, Le mouvement et les conditions environnementales especially at sea and on expeditions of “science” and difficiles et changeantes perturbaient souvent leur exploration. As a result, individuals’ experiences with utilisation et leur entretien, en particulier en mer et mending and adapting instruments greatly defined the lors d’expéditions scientifiques et d’exploration. Ce culture of technology and its use as well as later efforts sont donc les expériences individuelles de réparation at standardization. et d’adaptation des instruments qui ont grandement contribué à définir la culture de la technologie. In 1769, the astronomer John Bradley finally the calculation of the distance between the Earth reached the Lizard peninsula in Cornwall and the Sun. Bradley had not needed to travel with his men, instruments, and portable tent as far as many of his Transit counterparts, but observatory after a stressful journey.
    [Show full text]
  • The Evolution of Tower Clock Movements and Their Design Over the Past 1000 Years
    The Evolution Of Tower Clock Movements And Their Design Over The Past 1000 Years Mark Frank Copyright 2013 The Evolution Of Tower Clock Movements And Their Design Over The Past 1000 Years TABLE OF CONTENTS Introduction and General Overview Pre-History ............................................................................................... 1. 10th through 11th Centuries ........................................................................ 2. 12th through 15th Centuries ........................................................................ 4. 16th through 17th Centuries ........................................................................ 5. The catastrophic accident of Big Ben ........................................................ 6. 18th through 19th Centuries ........................................................................ 7. 20th Century .............................................................................................. 9. Tower Clock Frame Styles ................................................................................... 11. Doorframe and Field Gate ......................................................................... 11. Birdcage, End-To-End .............................................................................. 12. Birdcage, Side-By-Side ............................................................................. 12. Strap, Posted ............................................................................................ 13. Chair Frame .............................................................................................
    [Show full text]
  • Hordern House Rare Books Pty
    77 vICTORIA STREET • POTTS POINT • SyDNEy NSw 2011 • AUSTRAlia • TElephONE (02) 9356 4411 • fAx (02) 9357 3635 HORDERN HOUSE RARE BOOKS PTY. LTD. A.B.N. 94 193 459 772 E-MAIL: [email protected] INTERNET: www.hordern.com DIRECTORS: ANNE McCORMICK • DEREK McDONNELL HORDERN HOUSE RARE BOOKS • MANUSCRIPTS • PAINTINGS • PRINTS • RARE BOOKS • MANUSCRIPTS • PAINTINGS • PRINTS • RARE BOOKS • MANUSCRIPTS • PAINTINGS Acquisitions • October 2015 Important Works on Longitude 2. [BOARD OF LONGITUDE]. The 3. [BUREAU DES LONGITUDES]. Nautical Almanac and Astronomical Connaissance des tems, a l’usage des Ephemeris, for the Year 1818. Astronomes et des Navigateurs pour l’an X… Octavo, very good in original polished calf, faithfully rebacked. London, John Octavo, folding world map and two Murray 1815. folding tables; an attractive copy in contemporary marbled calf, gilt, red Rare copy of the Nautical Almanac for spine label. Paris, l’Imprimerie de la 1818, a fundamental inclusion in the République, Fructidor, An VII, that is shipboard library of any Admiralty- circa August 1799. sponsored voyage. The Almanac was used for reckoning the longitude at sea A handsome copy of this rare work by the lunar method, and was closely by the French Bureau des Longitudes, studied by officers of the Royal Navy. for use by naval officers for the year The continued publication of such 1802 and 1803. The volume includes a almanacs is further proof that the handsome map of the world showing invention of the chronometer, (whilst the track of a solar eclipse that revolutionary), did not completely occurred in August of that year. Much supersede the necessity for other fail- like the British equivalent, these tables 1.
    [Show full text]
  • William Raynes Part 2
    WILLIAM RAYNES The York years by Brian Loomes, UK PART 2 of 2 illiam Raynes’s York work is This clock was the subject of an known through two lantern article in CLOCKS in April 1983 describing Wclocks (just possibly three) and the experimental nature of the anchor three longcases. One lantern clock is a escapement, written by Mike Kennedy and re-converted verge with the pendulum set John Ballinger. The latter took up clock between the trains (what we usually call dealing after retiring from the RAF and ran Pinfold Antiques in Lincolnshire, where the clock was said to be on view but not for Figure 8. Lantern clock by William Raynes of sale. Obviously it was sold, passed through York, made in the late 1670s or early 1680s my hands and was then for many years in with experimental anchor escapement, the the collection of the late Dr J E S (‘Stuart’) only one known with anchor escapement by Walker of Hornsea, who was a keen clock him or by any York clockmaker. Figure 10. This dial centre from a verge a centre verge). This is probably the one pendulum clock by Thomas Cruttenden of that came through auction at Sothebys in York is identical, even down to the ‘angry’ 1978 and was sold again in the trade in dolphin frets. 2008. The other is the anchor escapement example pictured here, which is a clock I enthusiast and was instrumental in founding sold many years ago and re-purchased Hornsea Museum. recently. Each clock has a virtually identical engraved dial centre which, interestingly Figure 9.
    [Show full text]
  • The Art of Horological Complications
    the art of horological complications 2020/2021 THE ART OF Horological Complications © Gerhard D. Wempe KG, Hamburg 2020 Author: Thomas Wanka 2020/2021 Noble radiance BREITLING 81 Metal bracelets make wristwatches into sporty luxury items 8 Chronomat Limited Wempe Edition 82 ROLEX 19 HUBLOT 85 Oyster Perpetual GMT-Master II 20 Big Bang Integral Titanium 86 Oyster Perpetual Day-Date 40 22 CHOPARD 89 PATEK PHILIPPE 25 Alpine Eagle Chronograph 90 Nautilus Chronograph 5980/1R 26 Nautilus 5711/1R 28 GIRARD-PERREGAUX 93 Laureato Ininity - exclusively available at Wempe 94 BREGUET 31 Marine Tourbillon Équation Marchante 32 ROGER DUBUIS 97 Classique 7337 34 Excalibur Spider Huracán 98 A. LANGE & SÖHNE 37 FERDINAND BERTHOUD 101 Odysseus 38 Chronomètre FB 1 102 Zeitwerk Minute Repeater 40 ULYSSE NARDIN 105 JAEGER-LECOULTRE 43 Executive Blast Black 106 Master Control Chronograph Calendar 44 TUDOR 109 Master Grande Tradition Grande Complication 46 Black Bay Fifty-Eight Navy Blue 110 CARTIER 49 TAG HEUER 113 Pasha de Cartier 50 Carrera Heuer 02 114 VACHERON CONSTANTIN 53 WEMPE IRON WALKER GLASHÜTTE I/SA 117 Overseas Perpetual Calendar Ultra-Thin 54 Iron Walker Automatic Chronograph 118 IWC SCHAFFHAUSEN 57 Iron Walker Automatic Diver‘s Watch 120 Portugieser Perpetual Calendar 58 LONGINES 123 GLASHÜTTE ORIGINAL 61 Spirit Pilot‘s Chronograph 124 Senator Cosmopolite 62 MONTBLANC 127 WEMPE CHRONOMETERWERKE GLASHÜTTE I/SA 65 Heritage Manufacture Pulsograph Limited Edition 128 Chronometerwerke Automatic Pilot‘s Watch Bronze 66 NOMOS GLASHÜTTE 131 175 Years
    [Show full text]
  • In the Stores of the British Museum Are Three Exquisite Springs, Made in the Late 1820S and 1830S, to Regulate the Most Precise Timepieces in the World
    1 Riotous assemblage and the materials of regulation Abstract: In the stores of the British Museum are three exquisite springs, made in the late 1820s and 1830s, to regulate the most precise timepieces in the world. Barely the thickness of a hair, they are exquisite because they are made entirely of glass. Combining new documentary evidence, funded by the Antiquarian Horological Society, with the first technical analysis of the springs, undertaken in collaboration with the British Museum, the research presented here uncovers their extraordinary significance to the global extension of nineteenth century capitalism through the repeal of the Corn Laws. In the 1830s and 1840s the Astronomer Royal, George Biddell Airy; the Hydrographer to the Admiralty, Francis Beaufort; and the Prime Minister, Sir Robert Peel, collaborated with the virtuoso chronometer-maker, Edward John Dent, to mobilize the specificity of particular forms of glass, the salience of the Glass Tax, and the significance of state standards, as means to reform. These protagonists looked to glass and its properties to transform the fiscal military state into an exquisitely regulated machine with the appearance of automation and the gloss of the free-trade liberal ideal. Surprising but significant connexions, linking Newcastle mobs to tales of Cinderella and the use of small change, demonstrate why historians must attend to materials and how such attention exposes claims to knowledge, the interests behind such claims, and the impact they have had upon the design and architecture of the modern world. Through the pivotal role of glass, this paper reveals the entangled emergence of state and market capitalism, and how the means of production was transformed in vitreous proportions.
    [Show full text]
  • Celestial, Flow, and Mechanical Clocks
    recalibration Michael A. Lombardi First in a Series on the Evolution of Time Measurement: Celestial, Flow, and Mechanical Clocks ime is elusive. We are comfortable with the concept of us are many centuries older than the first clocks. The first -in time, but in many ways it defies understanding. We struments that we now recognize as clocks could measure T cannot see, hear, or touch time; we can only observe intervals shorter than one day by dividing the day into smaller its effects. Although we are unable to grasp time with our tra- parts. ditional senses, we can clearly “feel” the passage of time as we Most historians credit the Egyptians with being the first civ- watch night turn to day, the seasons change, or a child grow up. ilization to use clocks. Their first clocks were probably nothing We are also aware that we can’t stop or reverse the continuous more than sticks placed in the ground that indicated time by flow of time, a fact that becomes more obvious as we get older. both the length and direction of their shadow. As early as 1500 Defining time seems impossible, and attempts to do so by phi- BC, the Egyptians had developed a more advanced shadow losophers and scientists fall far short of their goal. clock (Fig. 1). This T-shaped instrument was placed in a sun- In spite of its elusiveness, we can measure time exception- lit area on the ground. In the morning, the crosspiece (AA) was ally well. In fact, we can measure time with more resolution set to face east and then rotated in the afternoon to face west.
    [Show full text]
  • “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18Th Century Alexi Baker
    Document generated on 09/29/2021 11:28 a.m. Material Culture Review “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Alexi Baker Volume 74-75, 2012 Article abstract Early modern British “scientific” instruments, including precision timekeepers, URI: https://id.erudit.org/iderudit/mcr74_75art01 are often represented as static, pristine, and self-contained in 18th-century depictions and in many modern museum displays. In reality, they were almost See table of contents constantly in physical flux. Movement and changing and challenging environmental conditions frequently impaired their usage and maintenance, especially at sea and on expeditions of “science” and exploration. As a result, Publisher(s) individuals’ experiences with mending and adapting instruments greatly defined the culture of technology and its use as well as later efforts at standardization. National Museums of Canada ISSN 0316-1854 (print) 0000-0000 (digital) Explore this journal Cite this article Baker, A. (2012). “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century. Material Culture Review, 74-75, 14–29. All rights reserved © National Museums of Canada, 2011 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research.
    [Show full text]
  • Cambridge University Press 978-1-108-41966-6 — the Victorian Palace of Science Edward J
    Cambridge University Press 978-1-108-41966-6 — The Victorian Palace of Science Edward J. Gillin Index More Information Index A Geological Manual,94 Albemarle Street, 68 A Preliminary Discourse on the Study of Albert, Prince, 160, 195 Natural philosophy,4 anti slavery, 158 A rudimentary treatise on clock and at the British Association, 68 watchmaking, 245 Michael Faraday, 184 Aberdeen, University of, 29 Alison, Archibald, 50–52 abolition of slavery, 3, 91, 158 on architecture, 51, 52 Acland, Thomas, 198 on Parliament, 51 acoustics, 30, 31, 56, 58, 59, 84, 140, 143 on utility, 52 Adams, Robert, 116, 117 political views, 51 Admiralty, 224 All Saint’s Church, Babbacombe, 120 Airy, George Biddell, 203, 216, 218, 220, All Souls College, Oxford, 95 232, 233, 238, 244, 252, 253, 256, An Introduction to the Study of Chemical 262, 263, 267, 268, 271 Philosophy,99 accuracy, 214, 224, 225, 237 Anderson, John Wilson, 131, 132 as Astronomer Royal, 221–23 Anglican, 6, 244 at Cambridge, 220 architecture, 109 at Greenwich, 216, 217, 221–23, 224, Broad Church, 6 225, 231 Cornwall, 188 authority over Edward John Dent, 250–51 geology, 107 career, 220 governance, 51 compass deviation, 221 High Church, 47, 106 dispute with Benjamin Vulliamy, 234–38 John Frederic Daniell, 99 Edmund Beckett Denison, 216 science, 5 Edward John Dent, 219, 225–26, 237 theology, 4 galvanic regulation, 217 universities, 125 galvanic time system, 227, 228–32, Anning, Mary, 91 238–44, 252, 253, 258 Ansted, David, 266 Greenwich time, 217 Anston stone, 102, 115, 117, 118, 265, Greenwich
    [Show full text]