Siméon-Denis Poisson

Total Page:16

File Type:pdf, Size:1020Kb

Siméon-Denis Poisson Siméon-Denis Poisson Les mathématiques au service de la science Illustration de couverture : En 1804, Poisson était professeur suppléant à l’École polytechnique Il fut nommé professeur deux ans plus tard © Collections École polytechnique-Palaiseau Illustration ci-contre : Portrait d’après nature de Siméon-Denis Poisson par Antoine Maurin Lithographie de François-Séraphin Delpech, vers 1820 © Collections École polytechnique-Palaiseau Histoire des Mathématiques et des Sciences physiques Siméon-Denis Poisson Les mathématiques au service de la science Yvette Kosmann-Schwarzbach éditrice Ce logo a pour objet d’alerter le lecteur sur la menace que représente pour l’avenir de l’écrit, tout particulièrement dans le domaine univer- sitaire, le développement massif du « photocopillage ». Cette pratique qui s’est généralisée, notamment dans les établissements d’enseignement, provoque une baisse brutale des achats de livres, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui menacée. Nous rappelons donc que la production et la vente sans autorisation, ainsi que le recel, sont passibles de poursuites. Les demandes d’autorisation de photocopier doivent être adressées à l’éditeur ou au Centre français d’exploitation du droit de copie : 20, rue des Grands-Augustins , 75006 Paris. Tél. : 01 44 07 47 70. © Éditions de l’École polytechnique - Juin 2013 91128 Palaiseau Cedex Préface Ce livre est un hybride. Treize des dix-neuf chapitres répartis en sept parties reproduisent les articles de Siméon-Denis Poisson en son temps, livre édité par Michel Métivier, Pierre Costabel, et Pierre Dugac, publié en 1981 par l’École polytechnique, Palaiseau (France), à l’occasion du bicentenaire de la naissance de Poisson, qui y fut élève avant d’y enseigner. Cet ouvrage, diversement dactylographié, eut une diffusion très limitée et, trente ans plus tard, il nous a paru souhaitable qu’une nouvelle édition en soit entreprise. À notre avis, son contenu, qui n’avait rien perdu de sa valeur, méritait une plus grande diffusion, tout en exigeant des compléments importants pour indiquer des prolongements récents de l’œuvre de Poisson et pour traiter certains sujets de manière plus approfondie. Nous avons reproduit en tête de ce nouveau livre la préface de Paul Germain et la postface de Jean Dieudonné. La Partie I par Pierre Costabel, Ernest Coumet et Bernard Bru, les trois premiers chapitres de la Partie II par Robin Rider, A.P. Youschkevitch, et S.S. Demidov, le deuxième chapitre de la Partie III par Louis L. Bucciarelli et le troisième par David H. Arnold, la Partie IV par Paul Brouzeng, André Chappert, et R.W. Home, et la Partie V par Bernard Bru et Oscar Sheynin ont fait partie de l’édition de 1981. La liste des travaux de Poisson avec les remarques de Pierre Dugac, qui figuraient dans l’édition de 1981, constituent la nouvelle Partie VII. La plupart de ces textes, dont plusieurs auteurs sont aujourd’hui décédés et regrettés, sont inchangés à quelques corrections éditoriales près. Cependant, certains ont été révisés par leur auteur, leurs références ont été mises aux normes de l’ouvrage, et trois chapitres, originellement écrits en anglais, ont été traduits en français pour cette édition. Il fallait aussi que cet ouvrage fût mis à jour par des contributions plus récentes. L’introduction, un chapitre par moi-même dans la Partie II, les trois chapitres écrits par Franco Magri, Alain Albouy, et Patrick Iglesias-Zemmour pour la Partie III, et les deux chapitres de la Partie VI, écrits l’un par moi-même et l’autre par Catherine Meusburger et Winston Fairbairn, sont originaux. De nouvelles avancées sur Poisson et sur la science aux XIXe et XXe siècles pourront-elles prendre appui sur les recherches anciennes et récentes que contient ce livre ? Nous l’espérons. Paris et Palaiseau, mai 2013 Yvette Kosmann-Schwarzbach Table des matières Préface de l’édition de 1981, Paul GERMAIN vii Postface de l’édition de 1981, Jean DIEUDONNÉ xi Introduction, Yvette KOSMANN-SCHWARZBACH 1 Remarquessurlabibliographie . 15 Remerciements .................................. 17 I SIMÉON-DENIS POISSON EN SON TEMPS 19 Siméon-Denis Poisson, aspect de l’homme et de son œuvre, Pierre COSTABEL 21 Poisson élève à l’École polytechnique, Ernest COUMET 41 Deuxattestations................................. 41 «L’affairedubinômedeNewton» . 45 «Sociétéd’enseignement» .. .. .. .. .. .. .. .. .. .. .. .. 51 Poisson et l’instruction publique, Bernard BRU 63 Les écoles de la Révolution et l’Université impériale . ........ 64 LacarrièredePoisson .............................. 66 Nominations ................................... 69 Programmesdescollèges.. .. .. .. .. .. .. .. .. .. .. .. .. 72 Programmesdesfacultés.. .. .. .. .. .. .. .. .. .. .. .. .. 73 II LES MATHÉMATIQUES DE POISSON 77 Poisson et l’algèbre à l’aube du XIXe siècle, Robin E. RIDER 79 i ii TABLE DES MATIÈRES L’élimination au XVIIIe siècle.......................... 80 EuleretBézout.................................. 81 L’argumentdePoisson.............................. 82 Algèbre et enseignement à l’École polytechnique . ...... 85 S.-D. Poisson et la théorie de l’intégration, Adolph P. YOUSCHKEVITCH 89 Aperçuhistorique................................. 89 NewtonetLeibniz ................................ 90 Euler : intégrales particulières et intégrales déterminées ........... 93 L’intégraledéfinie................................. 96 Le Traité deLacroix............................... 98 Difficultés pour les fonctions discontinues . ..... 99 L’apportdePoisson ............................... 102 NouvelleconceptiondeCauchy . 107 CauchyvuparLebesgue.. .. .. .. .. .. .. .. .. .. .. .. .. 110 Des parenthèses de Poisson aux algèbres de Lie, Sergei S. DEMIDOV 113 LesparenthèsesdePoisson . 113 JacobietlethéorèmedePoisson . 114 Parenthèses de Poisson et équations aux dérivées partielles.......... 116 Précurseurs des transformations infinitésimales de Lie . ......... 118 LestravauxdeLie ................................ 121 AlgèbresdeLie.................................. 124 LeformalismedesparenthèsesdePoisson . 126 La géométrie de Poisson, création du XXe siècle, Yvette KOSMANN-SCHWARZBACH 129 Aperçudegéométriedifférentielle. 130 Lagrange,Poisson,Hamilton, Liouville . ..... 132 Géométrie projective, groupe symplectique et géométrie symplectique . 133 LieetKlein ................................. 134 Du « groupe complexe » aux espaces linéaires symplectiques . ..... 136 LagéométriesymplectiquedeCarlSiegel . 137 Lagéométriesymplectiquedesvariétés. .. .. 138 Ehresmann : variétés presque symplectiques . 138 Ehresmann:variétéssymplectiques. 140 LecolloquedeStrasbourgde1953 . 141 LecolloquedeRomede1973 . 143 Géométriesymplectiqueetmécanique . 145 GéométriedePoisson .............................. 147 TABLE DES MATIÈRES iii Denombreuxprécurseurs . 149 Mécanique quantique et crochets de Poisson généralisés . ..... 150 Encoredesprécurseurs. 155 Lesorbitescoadjointes . 158 D’autres approches encore dans les années 1970 . 160 LestravauxdeLichnerowicz. 161 Petite histoire d’une importante formule . ..... 165 D’immensesdéveloppements. 168 III POISSON ET LA MÉCANIQUE 173 La dynamique des corps solides de d’Alembert à Poisson, Franco MAGRI 175 Lemouvementdel’axedelaterre . 175 Unnouveauprincipededynamique. 176 Lalibrationdelalune .............................. 182 Leséquationsded’Alembert . 185 Leséquationsd’Euler .............................. 189 LasynthèsedeLagrange.. .. .. .. .. .. .. .. .. .. .. .. .. 195 LasynthèsedePoisson.............................. 201 Poisson et la mécanique des surfaces élastiques, Louis L. BUCCIARELLI 207 Lesmémoiresde1812etde1823 . 207 Leproblèmedelaplaque ............................ 208 Versunethéoriedel’élasticité. 212 Conclusion .................................... 215 Après Laplace : la mécanique moléculaire de Poisson, David H. ARNOLD 217 Premièresannées ................................. 217 La physique selon Laplace : le programme laplacien . ...... 219 L’évolution de la pensée de Poisson sur les mathématiques de la mécanique moléculaire ................................. 220 L’inquiétude sur les intégrales définies, contexte d’une controverse . 221 LamécaniquephysiquedePoisson . 226 Quelquesconclusions............................... 227 Histoire des équations de la mécanique analytique : repères chronologiques et difficultés, Alain ALBOUY 229 Lamécaniquedesforces ............................. 229 La relation fondamentale de la dynamique avant les Principia ..... 231 iv TABLE DES MATIÈRES Hésitations. Des idées « venoient à la traverse » . 242 Leprincipedelalisted’équations. 245 Principeded’Alembert . 254 Lamécaniqueconservative. 256 Principevariationnel . 257 Forcesdérivantd’unpotentiel . 262 LaRévolution,Poissonetleréveildulion . 270 Lagrange et Poisson, sur la variation des constantes, Patrick IGLESIAS-ZEMMOUR 281 ParenthèsesdeLagrange. 282 ParenthèsesdePoisson. .. .. .. .. .. .. .. .. .. .. .. .. .. 287 Parenthèsesoucrochets? . .. .. .. .. .. .. .. .. .. .. .. .. 289 IV POISSON PHYSICIEN 293 Poisson et la capillarité d’après un manuscrit de Duhem, « Leçons sur les théories de la capillarité », Paul BROUZENG 295 L’histoire des théories dans l’énergétique de Duhem . ........ 295 La place de l’histoire dans l’œuvre scientifique . ....... 296 Lesoppositionsd’écoles . 297 LathéoriedePoissonselonDuhem . 298 Mécanique analytique et mécanique physique . .. .. 300 Capillarité et thermodynamique générale. ..... 301 Poisson et les problèmes de l’optique, la controverse avec Fresnel,
Recommended publications
  • The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc.
    [Show full text]
  • The Liouville Equation in Atmospheric Predictability
    The Liouville Equation in Atmospheric Predictability Martin Ehrendorfer Institut fur¨ Meteorologie und Geophysik, Universitat¨ Innsbruck Innrain 52, A–6020 Innsbruck, Austria [email protected] 1 Introduction and Motivation It is widely recognized that weather forecasts made with dynamical models of the atmosphere are in- herently uncertain. Such uncertainty of forecasts produced with numerical weather prediction (NWP) models arises primarily from two sources: namely, from imperfect knowledge of the initial model condi- tions and from imperfections in the model formulation itself. The recognition of the potential importance of accurate initial model conditions and an accurate model formulation dates back to times even prior to operational NWP (Bjerknes 1904; Thompson 1957). In the context of NWP, the importance of these error sources in degrading the quality of forecasts was demonstrated to arise because errors introduced in atmospheric models, are, in general, growing (Lorenz 1982; Lorenz 1963; Lorenz 1993), which at the same time implies that the predictability of the atmosphere is subject to limitations (see, Errico et al. 2002). An example of the amplification of small errors in the initial conditions, or, equivalently, the di- vergence of initially nearby trajectories is given in Fig. 1, for the system discussed by Lorenz (1984). The uncertainty introduced into forecasts through uncertain initial model conditions, and uncertainties in model formulations, has been the subject of numerous studies carried out in parallel to the continuous development of NWP models (e.g., Leith 1974; Epstein 1969; Palmer 2000). In addition to studying the intrinsic predictability of the atmosphere (e.g., Lorenz 1969a; Lorenz 1969b; Thompson 1985a; Thompson 1985b), efforts have been directed at the quantification or predic- tion of forecast uncertainty that arises due to the sources of uncertainty mentioned above (see the review papers by Ehrendorfer 1997 and Palmer 2000, and Ehrendorfer 1999).
    [Show full text]
  • The Tangled Tale of Phase Space David D Nolte, Purdue University
    Purdue University From the SelectedWorks of David D Nolte Spring 2010 The Tangled Tale of Phase Space David D Nolte, Purdue University Available at: https://works.bepress.com/ddnolte/2/ Preview of Chapter 6: DD Nolte, Galileo Unbound (Oxford, 2018) The tangled tale of phase space David D. Nolte feature Phase space has been called one of the most powerful inventions of modern science. But its historical origins are clouded in a tangle of independent discovery and misattributions that persist today. David Nolte is a professor of physics at Purdue University in West Lafayette, Indiana. Figure 1. Phase space , a ubiquitous concept in physics, is espe- cially relevant in chaos and nonlinear dynamics. Trajectories in phase space are often plotted not in time but in space—as rst- return maps that show how trajectories intersect a region of phase space. Here, such a rst-return map is simulated by a so- called iterative Lozi mapping, (x, y) (1 + y − x/2, −x). Each color represents the multiple intersections of a single trajectory starting from dierent initial conditions. Hamiltonian Mechanics is geometry in phase space. ern physics (gure 1). The historical origins have been further —Vladimir I. Arnold (1978) obscured by overly generous attribution. In virtually every textbook on dynamics, classical or statistical, the rst refer- Listen to a gathering of scientists in a hallway or a ence to phase space is placed rmly in the hands of the French coee house, and you are certain to hear someone mention mathematician Joseph Liouville, usually with a citation of the phase space.
    [Show full text]
  • Hordern House Rare Books Pty
    77 vICTORIA STREET • POTTS POINT • SyDNEy NSw 2011 • AUSTRAlia • TElephONE (02) 9356 4411 • fAx (02) 9357 3635 HORDERN HOUSE RARE BOOKS PTY. LTD. A.B.N. 94 193 459 772 E-MAIL: [email protected] INTERNET: www.hordern.com DIRECTORS: ANNE McCORMICK • DEREK McDONNELL HORDERN HOUSE RARE BOOKS • MANUSCRIPTS • PAINTINGS • PRINTS • RARE BOOKS • MANUSCRIPTS • PAINTINGS • PRINTS • RARE BOOKS • MANUSCRIPTS • PAINTINGS Acquisitions • October 2015 Important Works on Longitude 2. [BOARD OF LONGITUDE]. The 3. [BUREAU DES LONGITUDES]. Nautical Almanac and Astronomical Connaissance des tems, a l’usage des Ephemeris, for the Year 1818. Astronomes et des Navigateurs pour l’an X… Octavo, very good in original polished calf, faithfully rebacked. London, John Octavo, folding world map and two Murray 1815. folding tables; an attractive copy in contemporary marbled calf, gilt, red Rare copy of the Nautical Almanac for spine label. Paris, l’Imprimerie de la 1818, a fundamental inclusion in the République, Fructidor, An VII, that is shipboard library of any Admiralty- circa August 1799. sponsored voyage. The Almanac was used for reckoning the longitude at sea A handsome copy of this rare work by the lunar method, and was closely by the French Bureau des Longitudes, studied by officers of the Royal Navy. for use by naval officers for the year The continued publication of such 1802 and 1803. The volume includes a almanacs is further proof that the handsome map of the world showing invention of the chronometer, (whilst the track of a solar eclipse that revolutionary), did not completely occurred in August of that year. Much supersede the necessity for other fail- like the British equivalent, these tables 1.
    [Show full text]
  • WHERE WAS MEAN SOLAR TIME FIRST ADOPTED? Simone Bianchi INAF-Osservatorio Astrofisico Di Arcetri, Largo E. Fermi, 5, 50125, Flor
    WHERE WAS MEAN SOLAR TIME FIRST ADOPTED? Simone Bianchi INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, 50125, Florence, Italy [email protected] Abstract: It is usually stated in the literature that Geneva was the first city to adopt mean solar time, in 1780, followed by London (or the whole of England) in 1792, Berlin in 1810 and Paris in 1816. In this short paper I will partially revise this statement, using primary references when available, and provide dates for a few other European cities. Although no exact date was found for the first public use of mean time, the primacy seems to belong to England, followed by Geneva in 1778–1779 (for horologists), Berlin in 1810, Geneva in 1821 (for public clocks), Vienna in 1823, Paris in 1826, Rome in 1847, Turin in 1849, and Milan, Bologna and Florence in 1860. Keywords: mean solar time 1 INTRODUCTION The inclination of the Earth’s axis with respect to the orbital plane and its non-uniform revolution around the Sun are reflected in the irregularity of the length of the day, when measured from two consecutive passages of the Sun on the meridian. Though known since ancient times, the uneven length of true solar days became of practical interest only after Christiaan Huygens (1629 –1695) invented the high-accuracy pendulum clock in the 1650s. For proper registration of regularly-paced clocks, it then became necessary to convert true solar time into mean solar time, obtained from the position of a fictitious mean Sun; mean solar days all having the same duration over the course of the year.
    [Show full text]
  • Le Bureau Des Longitudes: Imitation Du Board of Longitude Britannique?
    Le Bureau des longitudes : imitation du Board of Longitude britannique ? Martina Schiavon To cite this version: Martina Schiavon. Le Bureau des longitudes : imitation du Board of Longitude britannique ?. 2018. hal-03218044 HAL Id: hal-03218044 https://hal.univ-lorraine.fr/hal-03218044 Submitted on 5 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Le Bureau des longitudes : imitation du Board of Longitude britannique ? Martina Schiavon Figure 1 - Salle de réunion du Bureau des longitudes (Source : Bureau des longitudes) Premières réflexions après la mise en ligne des procès-verbaux du Bureau des longitudes Dans son rapport sur les besoins actuels du Bureau des longitudes du 22 septembre 1920, l’astronome et mathématicien Marie-Henri Andoyer (1862-1929) revenait ainsi sur la création du Bureau : « Le nom même de “Bureau des Longitudes” est la simple traduction du nom anglais de l’établissement analogue “Board of Longitude”, chargé de publier le Nautical Almanach pour l’usage des marins et de rechercher les meilleures méthodes pour résoudre le problème fondamental de la détermination des longitudes, soit sur mer, soit à terre.
    [Show full text]
  • Siméon-Denis Poisson Mathematics in the Service of Science
    S IMÉ ON-D E N I S P OISSON M ATHEMATICS I N T H E S ERVICE O F S CIENCE E XHIBITION AT THE MATHEMATICS LIBRARY U NIVE RSIT Y O F I L L I N O I S A T U RBANA - C HAMPAIGN A U G U S T 2014 Exhibition on display in the Mathematics Library of the University of Illinois at Urbana-Champaign 4 August to 14 August 2014 in association with the Poisson 2014 Conference and based on SIMEON-DENIS POISSON, LES MATHEMATIQUES AU SERVICE DE LA SCIENCE an exhibition at the Mathematics and Computer Science Research Library at the Université Pierre et Marie Curie in Paris (MIR at UPMC) 19 March to 19 June 2014 Cover Illustration: Portrait of Siméon-Denis Poisson by E. Marcellot, 1804 © Collections École Polytechnique Revised edition, February 2015 Siméon-Denis Poisson. Mathematics in the Service of Science—Exhibition at the Mathematics Library UIUC (2014) SIMÉON-DENIS POISSON (1781-1840) It is not too difficult to remember the important dates in Siméon-Denis Poisson’s life. He was seventeen in 1798 when he placed first on the entrance examination for the École Polytechnique, which the Revolution had created four years earlier. His subsequent career as a “teacher-scholar” spanned the years 1800-1840. His first publications appeared in the Journal de l’École Polytechnique in 1801, and he died in 1840. Assistant Professor at the École Polytechnique in 1802, he was named Professor in 1806, and then, in 1809, became a professor at the newly created Faculty of Sciences of the Université de Paris.
    [Show full text]
  • Transcendental Numbers
    INTRODUCTION TO TRANSCENDENTAL NUMBERS VO THANH HUAN Abstract. The study of transcendental numbers has developed into an enriching theory and constitutes an important part of mathematics. This report aims to give a quick overview about the theory of transcen- dental numbers and some of its recent developments. The main focus is on the proof that e is transcendental. The Hilbert's seventh problem will also be introduced. 1. Introduction Transcendental number theory is a branch of number theory that concerns about the transcendence and algebraicity of numbers. Dated back to the time of Euler or even earlier, it has developed into an enriching theory with many applications in mathematics, especially in the area of Diophantine equations. Whether there is any transcendental number is not an easy question to answer. The discovery of the first transcendental number by Liouville in 1851 sparked up an interest in the field and began a new era in the theory of transcendental number. In 1873, Charles Hermite succeeded in proving that e is transcendental. And within a decade, Lindemann established the tran- scendence of π in 1882, which led to the impossibility of the ancient Greek problem of squaring the circle. The theory has progressed significantly in recent years, with answer to the Hilbert's seventh problem and the discov- ery of a nontrivial lower bound for linear forms of logarithms of algebraic numbers. Although in 1874, the work of Georg Cantor demonstrated the ubiquity of transcendental numbers (which is quite surprising), finding one or proving existing numbers are transcendental may be extremely hard. In this report, we will focus on the proof that e is transcendental.
    [Show full text]
  • 6A. Mathematics
    19-th Century ROMANTIC AGE Mathematics Collected and edited by Prof. Zvi Kam, Weizmann Institute, Israel The 19th century is called “Romantic” because of the romantic trend in literature, music and arts opposing the rationalism of the 18th century. The romanticism adored individualism, folklore and nationalism and distanced itself from the universality of humanism and human spirit. Coming back to nature replaced the superiority of logics and reasoning human brain. In Literature: England-Lord byron, Percy Bysshe Shelly Germany –Johann Wolfgang von Goethe, Johann Christoph Friedrich von Schiller, Immanuel Kant. France – Jean-Jacques Rousseau, Alexandre Dumas (The Hunchback from Notre Dam), Victor Hugo (Les Miserable). Russia – Alexander Pushkin. Poland – Adam Mickiewicz (Pan Thaddeus) America – Fennimore Cooper (The last Mohican), Herman Melville (Moby Dick) In Music: Germany – Schumann, Mendelsohn, Brahms, Wagner. France – Berlioz, Offenbach, Meyerbeer, Massenet, Lalo, Ravel. Italy – Bellini, Donizetti, Rossini, Puccini, Verdi, Paganini. Hungary – List. Czech – Dvorak, Smetana. Poland – Chopin, Wieniawski. Russia – Mussorgsky. Finland – Sibelius. America – Gershwin. Painters: England – Turner, Constable. France – Delacroix. Spain – Goya. Economics: 1846 - The American Elias Howe Jr. builds the general purpose sawing machine, launching the clothing industry. 1848 – The communist manifest by Karl Marks & Friedrich Engels is published. Describes struggle between classes and replacement of Capitalism by Communism. But in the sciences, the Romantic era was very “practical”, and established in all fields the infrastructure for the modern sciences. In Mathematics – Differential and Integral Calculus, Logarithms. Theory of functions, defined over Euclidian spaces, developed the field of differential equations, the quantitative basis of physics. Matrix Algebra developed formalism for transformations in space and time, both orthonormal and distortive, preparing the way to Einstein’s relativity.
    [Show full text]
  • Document on Foundation of Bureau Des Longitudes (Pdf)
    Brief History of the Bureau des Longitudes After hearing a report read by the abbé Grégoire, the Bureau des Longitudes was created by a law of the National Convention of the 7 messidor year III (June 25 1795). The purpose was to reassume "the mastery of the seas from the English", through the improvement of the determination of longitudes at sea. Charged with the compilation of Knowledge of the Times and perfecting the astronomical tables, he had responsibility for the Paris observatory, the observatory of the Military school and all the astronomy instruments that belonged to the Nation. The ten founding members had been: Lagrange, Laplace, Lalande, Delambre, Méchain, Cassini, Bougainville, Borda, Buache and Caroché. It was charged, by the decree of January 30 1854 with a larger mission bringing to it, in addition realization of the ephemerides by its "Calculations Service" created in 1802, to organize several big scientific expeditions: geodetic measurements, observation of solar eclipses, observation of the passage of Venus in front of the Sun, works that were published in the Annals of the Bureau des Longitudes. It participated equally in the foundation of several scientific organisations such as the International Office of Time (1919), the Group of Researches of Spatial Géodésie (1971) and the International Earth Rotation Service (1988). Law of the year III and Regulations FOUNDATION OF THE OFFICE OF THE LONGITUDES Report made to the National Convention in its meeting of the 7 messidor year III (June 25 1795), by the Representative of the People GRÉGOIRE, on the establishment of the Office of the Longitudes.
    [Show full text]
  • Les Annales Du Bureau Des Longitudes Travaux Faits Par L
    Annales du Bureau des longitudes (1877-1949) MARTINA SCHIAVON L.H.S.P. – Archives Henri Poincaré (UMR 7117 – CNRS) Université de Lorraine (France) Circulating Mathematics via Journals: The Rise of Internationalisation 1850-1920 Conference at the Mittag-Leffler Institute, Wednesday, 22 June 2016 Djursholm • Titles : Key elements 1877 : Annales du Bureau des longitudes et de l’observatoire astronomique de Montsouris 1882 Annales du Bureau des longitudes : travaux faits à l’observatoire astronomique de Montsouris (section navale) et mémoires diverses >1911 Annales du Bureau des longitudes 1949 in collaboration with the CNRS • Publisher (and Redaction Schiavon M. committee) : Bureau des longitudes Associated publisher : Ministère de la Marine • Printer : Jean-Albert Gauthier- Villars • Publication : 1877 – 1949 Digitized © Gallica (13th numbers) Plan • Why the Annales ? • Testing a periodization - crossing various elements on the diffusion of the Annales • Why the end ? M. Schiavon Schiavon M. Plan • Why the Annales ? • Testing a periodization - crossing various elements on the diffusion of the Annales • Why the end ? M. Schiavon Schiavon M. Reading the Bureau des longitudes minutes (1877-1878) « Les procès-verbaux du Bureau des longitudes. Un patrimoine numérisé (1795-1932) » http://bdl.ahp-numerique.fr/ • Minute of the 24th Mai 1876: « Il est donné lecture au bureau d'une lettre de monsieur le ministre de la marine accordant une subvention annuelle de deux mille francs pour la publication dans les annales du bureau des observations faites par les officiers de marine attachés à l'observatoire de MontSouris ». (©“Bureau des Longitudes - Séance du mercredi 24 mai 1876”, Les procès-verbaux du Bureau des longitudes , consulté le 13 juin 2016, http://purl.oclc.org/net/bdl/items/show/3269).
    [Show full text]
  • L'annuaire Du Bureau Des Longitudes75
    L’Annuaire du Bureau des longitudes (1795-1932) Colette Le Lay To cite this version: Colette Le Lay. L’Annuaire du Bureau des longitudes (1795-1932). 8, 2021, Collection du Bureau des longitudes, 978-2-491688-04-2. halshs-03233204 HAL Id: halshs-03233204 https://halshs.archives-ouvertes.fr/halshs-03233204 Submitted on 24 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Collection du Bureau des longitudes Volume 8 Colette Le Lay L’Annuaire du Bureau des longitudes (1795 - 1932) Collection du Bureau des longitudes - Volume 8 Colette Le Lay Bureau des longitudes © Bureau des longitudes, 2021 ISBN : 978-2-491688-05-9 ISSN : 2724-8372 Préface C’est avec grand plaisir que le Bureau des longitudes accueille dans ses éditions l’ouvrage de Colette Le Lay consacré à l’Annuaire du Bureau des longitudes. L’Annuaire est la publication du Bureau destinée aux institutions nationales, aux administrations1 et au grand public, couvrant, selon les époques, des domaines plus étendus que l’astronomie, comme la géographie, la démographie ou la physique par exemple. Sa diffusion est par nature plus large que celle des éphémérides et des Annales, ouvrages spécialisés destinés aux professionnels de l’astronomie ou de la navigation.
    [Show full text]