The Tangled Tale of Phase Space David D Nolte, Purdue University

Total Page:16

File Type:pdf, Size:1020Kb

The Tangled Tale of Phase Space David D Nolte, Purdue University Purdue University From the SelectedWorks of David D Nolte Spring 2010 The Tangled Tale of Phase Space David D Nolte, Purdue University Available at: https://works.bepress.com/ddnolte/2/ Preview of Chapter 6: DD Nolte, Galileo Unbound (Oxford, 2018) The tangled tale of phase space David D. Nolte feature Phase space has been called one of the most powerful inventions of modern science. But its historical origins are clouded in a tangle of independent discovery and misattributions that persist today. David Nolte is a professor of physics at Purdue University in West Lafayette, Indiana. Figure 1. Phase space , a ubiquitous concept in physics, is espe- cially relevant in chaos and nonlinear dynamics. Trajectories in phase space are often plotted not in time but in space—as rst- return maps that show how trajectories intersect a region of phase space. Here, such a rst-return map is simulated by a so- called iterative Lozi mapping, (x, y) (1 + y − x/2, −x). Each color represents the multiple intersections of a single trajectory starting from dierent initial conditions. Hamiltonian Mechanics is geometry in phase space. ern physics (gure 1). The historical origins have been further —Vladimir I. Arnold (1978) obscured by overly generous attribution. In virtually every textbook on dynamics, classical or statistical, the rst refer- Listen to a gathering of scientists in a hallway or a ence to phase space is placed rmly in the hands of the French coee house, and you are certain to hear someone mention mathematician Joseph Liouville, usually with a citation of the phase space. Walk down the science aisle of the local book- 1838 paper in which he supposedly derived the theorem on store, and you will surely catch a glimpse of a portrait of a the conservation of volume in phase space. 2 (The box on page strange attractor, the powerful visual icon of phase space. 34 gives a modern derivation.) In fact, in his paper Liouville Though it was used originally to describe specic types of makes no mention of phase space, let alone dynamical sys- dynamical systems, today “phase space” has become syn- tems. Liouville’s paper is purely mathematical, on the behav- onymous with the idea of a large parameter set: Whether they ior of a class of solutions to a specic kind of dierential are stock prices in economics, the dust motes in Saturn’s equation. Though he lived for another 44 years, he was ap- rings, or high-energy particles in an accelerator, the degrees parently unaware of his work’s application to statistical me- of freedom are loosely called the phase space of the respective chanics by others 3 even within his lifetime. Therefore, Liou- systems. The concept and its name are embedded in our sci- ville’s famous paper, cited routinely by all the conventional entic uency and cultural literacy. In his popular book Chaos textbooks, and even by noted chroniclers of the history of on the history and science of chaos theory, James Gleick calls mathematics, as the origin of phase space, surprisingly is not! phase space “one of the most powerful inventions of modern How did we lose track of the discovery of one of our science.” 1 But who invented it? Who named it? And why? most important modern concepts in physics? If it was not dis- The origins of both the concept of phase space and its covered by Liouville, then by whom and when and why? name are historically obscure—which is surprising in view And where did it get its somewhat strange name of “phase” of the central role it plays in practically every aspect of mod- space? Where’s the phase? © 2010 American Institute of Physics, S-0031-9228-1004-010-X April 2010 Physics Today 33 Hamiltonian flow in phase space Hamilton’s dynamical equations connect position x with Volume in phase space is conserved under Hamiltonian flow, momentum px through the Hamiltonian H: a property known today as Liouville’s theorem. dx ∂Hxp(, ) dp ∂Hxp(, ) = x , x =− x . dt ∂px dt ∂x px Dynamics can generally be described as a flow or trajectory Phase given by a vector differential equation, point Trajectory ηη˙ =().f In phase space, η represents the position or phase point, and the flow is expressed through Hamilton’s equations. In two- dV = dpx dx Δp 1 dimensional phase space, x Δx ∂H ∂H x η =(xp , ), f()=η ,− . x ( ( ∂px ∂x dV2 = dV1 The evolution of a volume element dV = dpxdx in phase space is given by 1 dV ∂ ∂H ∂ ∂H =·=∇f ((+−(( =0 Vdt ∂x ∂px ∂px ∂x The search for the origins of phase space presents two satisfies the equation challenges. The first is to identify those people who con- du n ∂P = ∑ i u. tributed to the development of the concept of phase space. To ( ∂x ( do that, we will start back at the time of Liouville to find out dt i =1 i what role he really did play in the story and how his contri- If the expression in parentheses is zero, then u is a constant. bution found its way into modern textbooks. The second Furthermore, if the arbitrary constants ai are chosen to be val- challenge is to discover who gave phase space its fully mod- ues of xi at time t = 0, then the system has the solution ern name. To answer that question, we will be led to a now ∂x ()t ut()=deti =1 obscure encyclopedia article published in 1911 that had ety- (∂x (0) ( mological side effects not fully intended by its author [Q1]. j Liouville’s theorem because u(0) is clearly equal to 1. Liouville’s 1838 paper appeared only a few years after Liouville (1809–82) was perhaps the most renowned French William Rowan Hamilton (1805–65) published his dynamics4 mathematician of the mid-19th century. That era was the in 1834 and 1835, yet Liouville made no reference to his the- golden age of differential calculus and the beginning of dif- orem’s application to dynamics. ferential geometry. Liouville displayed a virtuoso breadth of The connection with mechanics was made in 1842 by the expertise in topics ranging from number theory and complex Prussian mathematician Carl Gustav Jacob Jacobi (1804–51), analysis to differential geometry and topology. He is known who recognized that the differential equations that Liouville among mathematicians and physicists for several mathemat- had studied could describe mechanical systems5 (figure 3). In ical theorems, most notably the Sturm–Liouville theory of in- Hamilton’s dynamics, position coordinates xi and momen- tegral equations. The motivation for much of his work came tum coordinates pi evolve according to the Hamiltonian func- from physical problems in celestial mechanics, but he also tion H: drew from electrodynamics and the theory of heat. The prop- dx ∂Hdp ∂H erties and solutions of differential equations of many vari- i ==−., i ables were among his main areas of interest, and in that con- dt∂pi dt ∂xi text he was working on the solution of differential equations with constant integrals in the late 1830s. To apply Liouville’s theorem, Jacobi made the assignments In modern notation, the original formulation of Liou- (again in modern notation) ville’s theorem2 (figure 2) states that given a system of n first- xxpin= 1:= x in = 1: , inn = +1:2 = in = 1: ; order differential equations dx ∂H ∂H i Pin=1: ==.,−Pin= +1:2 n =Ptxin (,12 , x ,..., x ), ∂p ∂x dt i in=1: i in=1: if a complete set of solutions is Therefore, xxtaa= (, , ,..., a ), ii12 n 2nn∂P ∂2H n∂2H ∑∑i =−=0, ∑ ∂ ∂ where the ai are arbitrary constants, then the Jacobian deter- i =1∂xi i =1∂xiip i =1 ∂piix minant ∂x and, according to Liouville’s observation, the Jacobian deter- ut( ) = det i (∂a ( minant u is constant. j Explicitly referencing Liouville’s 1838 paper in the 1866 34 April 2010 Physics Today www.physicstoday.org But in the 1700s it was not natural. Vari- ables were algebraic entities, not coordi- nate axes. And while the solutions to equations of multiple variables could lead to loci of points with multiple in- dices, there was no formal thought that they represented geometric objects in higher dimensions. Amazingly, the sur- face [Q3] areas and volumes of spheres in four dimensions (and higher) had been derived by Jacobi as early as 1834, but to him they were simply integrals over products of differentials. All that would change rather sud- denly in the 1840s as Plücker in Germany and Cayley and James Joseph Sylvester in the UK parameterized projective geometry and found extensions beyond the ordinary three dimensions of our Figure 2. Liouville’s theorem, as derived in Joseph Liouville’s paper of 1838 tangible world. Cayley, in his 1843 paper entitled “Note Sur la Théorie de la Variation des constantes arbitraires” (“Note 2 titled “Chapters in the Analytical Geom- on the Theory of the Variation of Arbitrary Constants”) [Q2], often cited as the etry of (n) Dimensions,” was the first to original proof of the conservation of phase space. Liouville never applied the take the bold step of referring to a geom- theorem to mechanics—to him, it dealt just with a specific kind of differential etry of more than three dimensions. equation. After that, the stage was set for the “in- vention” of multiple dimensions when Grassmann developed the concept of an n-dimensional vector space in 1844. The publication of his lectures of 1843–44, Jacobi was the first to culmination of the multidimensional trend in analytic geom- put Liouville’s mathematical theorem into a mechanical con- etry came with Riemann’s lecture on the foundations of text.
Recommended publications
  • The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc.
    [Show full text]
  • The Liouville Equation in Atmospheric Predictability
    The Liouville Equation in Atmospheric Predictability Martin Ehrendorfer Institut fur¨ Meteorologie und Geophysik, Universitat¨ Innsbruck Innrain 52, A–6020 Innsbruck, Austria [email protected] 1 Introduction and Motivation It is widely recognized that weather forecasts made with dynamical models of the atmosphere are in- herently uncertain. Such uncertainty of forecasts produced with numerical weather prediction (NWP) models arises primarily from two sources: namely, from imperfect knowledge of the initial model condi- tions and from imperfections in the model formulation itself. The recognition of the potential importance of accurate initial model conditions and an accurate model formulation dates back to times even prior to operational NWP (Bjerknes 1904; Thompson 1957). In the context of NWP, the importance of these error sources in degrading the quality of forecasts was demonstrated to arise because errors introduced in atmospheric models, are, in general, growing (Lorenz 1982; Lorenz 1963; Lorenz 1993), which at the same time implies that the predictability of the atmosphere is subject to limitations (see, Errico et al. 2002). An example of the amplification of small errors in the initial conditions, or, equivalently, the di- vergence of initially nearby trajectories is given in Fig. 1, for the system discussed by Lorenz (1984). The uncertainty introduced into forecasts through uncertain initial model conditions, and uncertainties in model formulations, has been the subject of numerous studies carried out in parallel to the continuous development of NWP models (e.g., Leith 1974; Epstein 1969; Palmer 2000). In addition to studying the intrinsic predictability of the atmosphere (e.g., Lorenz 1969a; Lorenz 1969b; Thompson 1985a; Thompson 1985b), efforts have been directed at the quantification or predic- tion of forecast uncertainty that arises due to the sources of uncertainty mentioned above (see the review papers by Ehrendorfer 1997 and Palmer 2000, and Ehrendorfer 1999).
    [Show full text]
  • Siméon-Denis Poisson Mathematics in the Service of Science
    S IMÉ ON-D E N I S P OISSON M ATHEMATICS I N T H E S ERVICE O F S CIENCE E XHIBITION AT THE MATHEMATICS LIBRARY U NIVE RSIT Y O F I L L I N O I S A T U RBANA - C HAMPAIGN A U G U S T 2014 Exhibition on display in the Mathematics Library of the University of Illinois at Urbana-Champaign 4 August to 14 August 2014 in association with the Poisson 2014 Conference and based on SIMEON-DENIS POISSON, LES MATHEMATIQUES AU SERVICE DE LA SCIENCE an exhibition at the Mathematics and Computer Science Research Library at the Université Pierre et Marie Curie in Paris (MIR at UPMC) 19 March to 19 June 2014 Cover Illustration: Portrait of Siméon-Denis Poisson by E. Marcellot, 1804 © Collections École Polytechnique Revised edition, February 2015 Siméon-Denis Poisson. Mathematics in the Service of Science—Exhibition at the Mathematics Library UIUC (2014) SIMÉON-DENIS POISSON (1781-1840) It is not too difficult to remember the important dates in Siméon-Denis Poisson’s life. He was seventeen in 1798 when he placed first on the entrance examination for the École Polytechnique, which the Revolution had created four years earlier. His subsequent career as a “teacher-scholar” spanned the years 1800-1840. His first publications appeared in the Journal de l’École Polytechnique in 1801, and he died in 1840. Assistant Professor at the École Polytechnique in 1802, he was named Professor in 1806, and then, in 1809, became a professor at the newly created Faculty of Sciences of the Université de Paris.
    [Show full text]
  • Transcendental Numbers
    INTRODUCTION TO TRANSCENDENTAL NUMBERS VO THANH HUAN Abstract. The study of transcendental numbers has developed into an enriching theory and constitutes an important part of mathematics. This report aims to give a quick overview about the theory of transcen- dental numbers and some of its recent developments. The main focus is on the proof that e is transcendental. The Hilbert's seventh problem will also be introduced. 1. Introduction Transcendental number theory is a branch of number theory that concerns about the transcendence and algebraicity of numbers. Dated back to the time of Euler or even earlier, it has developed into an enriching theory with many applications in mathematics, especially in the area of Diophantine equations. Whether there is any transcendental number is not an easy question to answer. The discovery of the first transcendental number by Liouville in 1851 sparked up an interest in the field and began a new era in the theory of transcendental number. In 1873, Charles Hermite succeeded in proving that e is transcendental. And within a decade, Lindemann established the tran- scendence of π in 1882, which led to the impossibility of the ancient Greek problem of squaring the circle. The theory has progressed significantly in recent years, with answer to the Hilbert's seventh problem and the discov- ery of a nontrivial lower bound for linear forms of logarithms of algebraic numbers. Although in 1874, the work of Georg Cantor demonstrated the ubiquity of transcendental numbers (which is quite surprising), finding one or proving existing numbers are transcendental may be extremely hard. In this report, we will focus on the proof that e is transcendental.
    [Show full text]
  • 6A. Mathematics
    19-th Century ROMANTIC AGE Mathematics Collected and edited by Prof. Zvi Kam, Weizmann Institute, Israel The 19th century is called “Romantic” because of the romantic trend in literature, music and arts opposing the rationalism of the 18th century. The romanticism adored individualism, folklore and nationalism and distanced itself from the universality of humanism and human spirit. Coming back to nature replaced the superiority of logics and reasoning human brain. In Literature: England-Lord byron, Percy Bysshe Shelly Germany –Johann Wolfgang von Goethe, Johann Christoph Friedrich von Schiller, Immanuel Kant. France – Jean-Jacques Rousseau, Alexandre Dumas (The Hunchback from Notre Dam), Victor Hugo (Les Miserable). Russia – Alexander Pushkin. Poland – Adam Mickiewicz (Pan Thaddeus) America – Fennimore Cooper (The last Mohican), Herman Melville (Moby Dick) In Music: Germany – Schumann, Mendelsohn, Brahms, Wagner. France – Berlioz, Offenbach, Meyerbeer, Massenet, Lalo, Ravel. Italy – Bellini, Donizetti, Rossini, Puccini, Verdi, Paganini. Hungary – List. Czech – Dvorak, Smetana. Poland – Chopin, Wieniawski. Russia – Mussorgsky. Finland – Sibelius. America – Gershwin. Painters: England – Turner, Constable. France – Delacroix. Spain – Goya. Economics: 1846 - The American Elias Howe Jr. builds the general purpose sawing machine, launching the clothing industry. 1848 – The communist manifest by Karl Marks & Friedrich Engels is published. Describes struggle between classes and replacement of Capitalism by Communism. But in the sciences, the Romantic era was very “practical”, and established in all fields the infrastructure for the modern sciences. In Mathematics – Differential and Integral Calculus, Logarithms. Theory of functions, defined over Euclidian spaces, developed the field of differential equations, the quantitative basis of physics. Matrix Algebra developed formalism for transformations in space and time, both orthonormal and distortive, preparing the way to Einstein’s relativity.
    [Show full text]
  • Transcendental Numbers
    Bachelor Thesis DEGREE IN MATHEMATICS Faculty of Mathematics University of Barcelona TRANSCENDENTAL NUMBERS Author: Adina Nedelea Director: Dr. Ricardo Garc´ıaL´opez Department: Algebra and Geometry Barcelona, June 27, 2016 Summary Transcendental numbers are a relatively recent finding in mathematics and they provide, togheter with the algebraic numbers, a classification of complex numbers. In the present work the aim is to characterize these numbers in order to see the way from they differ the algebraic ones. Going back to ancient times we will observe how, since the earliest history mathematicians worked with transcendental numbers even if they were not aware of it at that time. Finally we will describe some of the consequences and new horizons of mathematics since the apparition of the transcendental numbers. Agradecimientos El trabajo final de grado es un punto final de una etapa y me gustar´aagradecer a todas las personas que me han dado apoyo durante estos a~nosde estudios y hicieron posible que llegue hasta aqu´ı. Empezar´epor agradecer a quien hizo posible este trabajo, a mi tutor Ricardo Garc´ıa ya que sin su paciencia, acompa~namiento y ayuda me hubiera sido mucho mas dif´ıcil llevar a cabo esta tarea. Sigo con los agradecimientos hacia mi familia, sobretodo hacia mi madre quien me ofreci´ola libertad y el sustento aunque no le fuera f´acily a mi "familia adoptiva" Carles, Marilena y Ernest, quienes me ayudaron a sostener y pasar por todo el pro- ceso de maduraci´onque conlleva la carrera y no rendirme en los momentos dif´ıciles. Gracias por la paciencia y el amor de todos ellos.
    [Show full text]
  • Siméon-Denis Poisson
    Siméon-Denis Poisson Les mathématiques au service de la science Illustration de couverture : En 1804, Poisson était professeur suppléant à l’École polytechnique Il fut nommé professeur deux ans plus tard © Collections École polytechnique-Palaiseau Illustration ci-contre : Portrait d’après nature de Siméon-Denis Poisson par Antoine Maurin Lithographie de François-Séraphin Delpech, vers 1820 © Collections École polytechnique-Palaiseau Histoire des Mathématiques et des Sciences physiques Siméon-Denis Poisson Les mathématiques au service de la science Yvette Kosmann-Schwarzbach éditrice Ce logo a pour objet d’alerter le lecteur sur la menace que représente pour l’avenir de l’écrit, tout particulièrement dans le domaine univer- sitaire, le développement massif du « photocopillage ». Cette pratique qui s’est généralisée, notamment dans les établissements d’enseignement, provoque une baisse brutale des achats de livres, au point que la possibilité même pour les auteurs de créer des œuvres nouvelles et de les faire éditer correctement est aujourd’hui menacée. Nous rappelons donc que la production et la vente sans autorisation, ainsi que le recel, sont passibles de poursuites. Les demandes d’autorisation de photocopier doivent être adressées à l’éditeur ou au Centre français d’exploitation du droit de copie : 20, rue des Grands-Augustins , 75006 Paris. Tél. : 01 44 07 47 70. © Éditions de l’École polytechnique - Juin 2013 91128 Palaiseau Cedex Préface Ce livre est un hybride. Treize des dix-neuf chapitres répartis en sept parties reproduisent les articles de Siméon-Denis Poisson en son temps, livre édité par Michel Métivier, Pierre Costabel, et Pierre Dugac, publié en 1981 par l’École polytechnique, Palaiseau (France), à l’occasion du bicentenaire de la naissance de Poisson, qui y fut élève avant d’y enseigner.
    [Show full text]
  • Factorial, Gamma and Beta Functions Outline
    Factorial, Gamma and Beta Functions Reading Problems Outline Background ................................................................... 2 Definitions .....................................................................3 Theory .........................................................................5 Factorial function .......................................................5 Gamma function ........................................................7 Digamma function .....................................................18 Incomplete Gamma function ..........................................21 Beta function ...........................................................25 Incomplete Beta function .............................................27 Assigned Problems ..........................................................29 References ....................................................................32 1 Background Louis Franois Antoine Arbogast (1759 - 1803) a French mathematician, is generally credited with being the first to introduce the concept of the factorial as a product of a fixed number of terms in arithmetic progression. In an effort to generalize the factorial function to non- integer values, the Gamma function was later presented in its traditional integral form by Swiss mathematician Leonhard Euler (1707-1783). In fact, the integral form of the Gamma function is referred to as the second Eulerian integral. Later, because of its great importance, it was studied by other eminent mathematicians like Adrien-Marie Legendre (1752-1833),
    [Show full text]
  • Joseph Liouville's Contribution to the Theoryof Integral Equations
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematics 9 (1982) 373-391 JOSEPH LIOUVILLE'S CONTRIBUTION TO THE THEORYOF INTEGRAL EQUATIONS BY JESPER LijTZEN DEPARTMENT OF MATHEMATICS, ODENSE UNIVERSITY, DK 5230 ODENSE M, DENMARK SUMMARIES It is well known that Liouville did pioneering work on the application of specific integral equations in different parts of mathematics and mathematical physics. However, his short paper on spectral theory of Hilbert-Schmidt like operators has been neglected. With that paper Liouville initiated the general theory of integral equations. I1 est bien connu que Joseph Liouville etait parmi les premiers 2 appliquer des equations intdqrales a la solution de plusieurs problemes de mathematique et de mechanique. D'autre part, sa note sur la theorie spectrale des op&-ateurs du type Hilbert-Schmidt est rest&e inconnue. Dans cette note, Liouville 5 entame la theorie g&&-ale des equations inteqrales. XOPOLLIO kl3BeCTH0, YTO flklYBE?JlJlb OAHMM I13 FlepBblX UCIIOJIb30BaJI HHTel?paJlbHble YPaBHeHkiR AJIR pelUeHMR pa3HOO6pa3HblX 3aAazI B 06nacTH MaTeMaTWKH II MeXa- HkiKM. qT0 Te KaCaeTCR er0 CTaTbU 0 CneKTpaJlbHO~ TeOpMM AJIFi OIlepaTOpOB TMna IhJIbbepTa UMHATa, TO OHa A0 CMX IlOp OCTaBaJlaCb HeM3BeCTHOn. A MemAy TeM 3Ta CTaTbR nI.iyBMJlJlR IlOJIOmMJla HaYaJlO o6ueFi TeOpMM MHTerpaJlbHblX YpaBHeHPiR. 1. INTRODUCTION In [1823] N. H. Abel published his solution of the isochrone problem. His approach led to the first explicit and conscious solution of an integral equation. In a series of papers pub- lished between 1833 and 1855 the isochrone problem and many other physical and mathematical problems were solved with the aid of integral equations by Joseph Liouville (1809-1882).
    [Show full text]
  • The Great L's of French Mathematics
    Journal of Mathematical Sciences: Advances and Applications Volume 12, Number 1, 2011, Pages 1-39 THE GREAT L’S OF FRENCH MATHEMATICS THOMAS P. DENCE Department of Mathematics Ashland University Ashland, OH 44805 USA e-mail: [email protected] Abstract During and surrounding the 18th century, France was the dominant player in the world of mathematics. This article highlights the lives and accomplishments, of 11 of the great French mathematicians at this time, who all had an interesting characteristic in common. 1. Introduction The history of mathematics dates back a long time, and surely enjoys some periods of remarkable achievements. The early Greek era involving Archimedes, Euclid, Diophantus, and Pythagoras really got the mathematical ball rolling. Periods of lackluster to minimal growth soon followed, but then mathematics received a major boost when it landed in Italy in the 15th-16th century for its developments in algebra. Within the next 200 years, mathematics took off like it was shot out of a cannon. Outside of the English genius Isaac Newton and the Swiss Leonhard Euler, a large majority of the growth was centered in mainland Europe, specifically Germany and France. The Germans included such greats as Carl Gauss, 2010 Mathematics Subject Classification: 01A45, 01A50, 01A70. Keywords and phrases: Lagrange, Laplace, Legendre, école polytechnique, calculus. Received September 13, 2011 2011 Scientific Advances Publishers 2 THOMAS P. DENCE Karl Weierstrass, Friedrich Wilhelm Bessel, Carl Gustav Jacobi, Peter Gustav Dirichlet, Christoph Gudermann, and Ernst Kummer, while the French were comprised of a number of individuals, who all shared a common and unique characteristic, namely, their last names began with the same letter, L.
    [Show full text]
  • Joseph Liouville
    Joseph Liouville Born: 24 March 1809 in Saint-Omer, France Died: 8 Sept 1882 in Paris, France Joseph Liouville's father was an army captain in Napoleon's army so Joseph had to spend the first few years of his life with his uncle. His father was certainly fortunate to survive the wars and after Napoleon was defeated he retired to live with his family. The family then settled in Toul where Joseph attended school. From Toul he went to the Collège St Louis in Paris where he studied mathematics at the highest levels. After reading articles in Gergonne's Journal he proved some geometrical results which he wrote up as papers although they were never published. Liouville entered the École Polytechnique in 1825 and attended Ampère's Cours d'analyse et de mécanique in session 1825-26. He also attended courses by Arago at the École Polytechnique as well as a second course by Ampère at the Collège de France. Although Liouville does not seem to have attended any of Cauchy's courses, it is clear that Cauchy must have had a strong influence on him. Liouville graduated in 1827 with de Prony and Poisson among his examiners. After graduating from the École Polytechnique Liouville entered the École des Ponts et Chaussées. However his health suffered when he had to undertake engineering projects and he spent some time at his home in Toul recovering. By now Liouville was set on an academic career and he found it impossible to study away from Paris. After a number of periods of leave, one of which allowed him to marry and have a few days honeymoon, it became clear to him that he must resign from the École des Ponts et Chaussées.
    [Show full text]
  • 6 X 10.5 Long Title.P65
    Cambridge University Press 978-1-107-00253-1 - Number Theory in the Spirit of Liouville Kenneth S. Williams Excerpt More information 1 Joseph Liouville (1809–1882) In 1809, the French mathematician Jean Fourier discovered that a complex wave is the sum of several simple waves; Napoleon´ Bonaparte was engaged against the British forces in the Peninsular War; and in the little town of Saint Omer, Pas de Calais, France, Joseph Liouville was born on March 24. His father, Claude Joseph, was a captain in Napoleon’s´ army; his mother, Ther´ ese` Balland, was a maternal cousin of Claude’s. They came from a distinguished, upper middle- class Lorraine family. The Liouvilles had an impeccable reputation, many of the family serving France honorably in the military, government and the law. The baby Joseph had a brother, Felix, born six years earlier at the family home in Toul, near Nancy. Because of their father’s profession, the family could not always be together and the two Liouville boys spent some of their childhood with an uncle in Vignot, near Commercy, where they attended their first school. Joseph, accord- ingtoC.-E.Dumont[97], writing in 1843, was no child prodigy. Indeed, his first teacher predicted he would not go far because he played too much. Though this early assessment proved to be very wrong, young Joseph demonstrated his early inclination for mathematics through games, most notably chess. When Captain Liouville retired the family moved back to Toul. There, Joseph entered the local college` where he studied ancient languages. He continued his studies in mathematics at the College` St.
    [Show full text]