Annotated World Bibliography of Host Plants of the Melon Fly, Bactrocera Cucurbitae (Coquillett) (Diptera: Tephritidae)

Total Page:16

File Type:pdf, Size:1020Kb

Annotated World Bibliography of Host Plants of the Melon Fly, Bactrocera Cucurbitae (Coquillett) (Diptera: Tephritidae) INSECTA MUNDI A Journal of World Insect Systematics 0527 Annotated World Bibliography of Host Plants of the Melon Fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) Grant T. McQuate USDA-ARS, Daniel K. Inouye U.S. Pacifi c Basin Agricultural Research Center (DKIPBARC) 64 Nowelo Street Hilo, HI 96720 Nicanor J. Liquido USDA-APHIS-PPQ, Center for Plant Health Science and Technology 300 Ala Moana Blvd. Honolulu, HI 96850 Kelly A. A. Nakamichi Center for Integrated Pest Management (CIPM) North Carolina State University Raleigh, NC 27606 Date of Issue: February 24, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Grant T. McQuate, Nicanor J. Liquido, and Kelly A. A. Nakamichi Annotated World Bibliography of Host Plants of the Melon Fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) Insecta Mundi 0527: 1–339 ZooBank Registered: urn:lsid:zoobank.org:pub:AA9AB625-4CAB-49D9-A2AA-0C05F41E2076 Published in 2017 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Ab- stracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Chief Editor: David Plotkin, e-mail: [email protected] Assistant Editor: Paul E. Skelley, e-mail: [email protected] Head Layout Editor: Eugenio H. Nearns Editorial Board: J. H. Frank, M. J. Paulsen, Michael C. Thomas Review Editors: Listed on the Insecta Mundi webpage Manuscript Preparation Guidelines and Submission Requirements available on the Insecta Mundi web- page at: http://centerforsystematicentomology.org/insectamundi/ Printed copies (ISSN 0749-6737) annually deposited in libraries: CSIRO, Canberra, ACT, Australia Museu de Zoologia, São Paulo, Brazil Agriculture and Agrifood Canada, Ottawa, ON, Canada The Natural History Museum, London, UK Muzeum i Instytut Zoologii PAN, Warsaw, Poland National Taiwan University, Taipei, Taiwan California Academy of Sciences, San Francisco, CA, USA Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA Field Museum of Natural History, Chicago, IL, USA National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia Electronic copies (Online ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format: Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico. Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/ Goethe-Universität, Frankfurt am Main: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-135240 Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Com- mons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/ licenses/by-nc/3.0/ Layout Editor for this article: Eugenio H. Nearns 0527: 1–339 2017 Annotated World Bibliography of Host Plants of the Melon Fly, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) Grant T. McQuate USDA-ARS, Daniel K. Inouye U.S. Pacifi c Basin Agricultural Research Center (DKIPBARC) 64 Nowelo Street Hilo, HI 96720 [email protected] Nicanor J. Liquido USDA-APHIS-PPQ, Center for Plant Health Science and Technology 300 Ala Moana Blvd. Honolulu, HI 96850 [email protected] Kelly A. A. Nakamichi Center for Integrated Pest Management (CIPM) North Carolina State University Raleigh, NC 27606 [email protected] Abstract. The melon fl y, Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae), is a widespread, economically important tephritid fruit fl y species. Bactrocera cucurbitae infests fruits and vegetables of a number of different plant species, with many host plants in the plant family Cucurbitaceae, but with additional hosts scattered across many other plant families. Although thought to be native to India, its distribution has spread throughout many countries in Oriental Asia, into a number of Pacifi c Island nations, and into Africa. The documented introduc- tions into countries outside its native distribution show that this species could establish in other countries where it does not presently occur, particularly through the movement of infested fruit. As with other tephritid fruit fl y species, establishment of B. cucurbitae can have signifi cant economic consequences, including damage and loss of food production, as well as requirements for implementation of costly quarantine treatments to permit export of commodities susceptible to infestation by B. cucurbitae and inspection of susceptible imported commodities. In order to avoid these adverse economic consequences, one needs to prevent the entry, establishment and spread of B. cucurbitae into a new habitat. To successfully achieve this, an accurate knowledge of the fl y’s host plants is essential. Cognizant of this need, we prepared, and present here, a worldwide list of host plants for B. cucurbitae, with annotations on reported laboratory and fi eld infestation data. Overall, 136 plant taxa from 62 plant genera and 30 plant families are identifi ed as hosts of B. cucurbitae, based on reported fi eld infestation data. The predominant family, as expected, is Cucurbitaceae, with 56 plant taxa (41.2% of all host plant taxa) in which fi eld infestation by B. cucurbitae has been documented. The family with the 2nd highest number of documented infested plant taxa is Solanaceae, for which there are published fi eld infestation data for 20 plant taxa (14.7% of plant taxa for which there is documented fi eld infestation). Papers that list plants as hosts of B. cucurbitae based only on laboratory data, those that list plants as a host but do not report any fi eld infestation data, and those that report interception data add an additional 137 host plant taxa, representing a total of 80 genera and 39 plant families, 20 of which are additional plant families beyond those for which there is fi eld infestation data. These additional species must be considered “undetermined” hosts for which additional data are needed to document actual host status. This paper is a comprehensive documentation of host plants of the melon fl y based on recorded infestations in labora- tory and/or fi eld, interceptions at ports of entry, or “listing only” associations. Host records presented here will be used in vetting and developing the offi cial USDA list of host plants of the melon fl y, which will be published by APHIS as a federal order. Key words. Field infestation, lab infestation, interception, Cucurbitaceae, Solanaceae, tephritid fruit fl y Introduction The melon fl y, Bactrocera cucurbitae (Coquillett) (Fig. 1, 2), is a widespread economically important tephritid fruit fl y species. Although not endemic to Hawaii, U.S.A., it was fi rst described in Honolulu, 2 • INSECTA MUNDI 0527, February 2017 MCQUATE ET AL. Hawaii, by Coquillett (1899), after introduction there from South East Asia (Drew 1989). It was originally described as Dacus cucurbitae Coquillett, but has been placed in other genera, including Chaetodacus and Strumeta (Drew 1989) and, most recently, Zeugodacus (De Meyer et al. 2015, Virgilio et al. 2015). In the present paper, we have chosen to refer to this species as B. cucurbitae. Although there is good support for revising the genus placement to Zeugodacus (De Meyer et al. 2015, Virgilio et al. 2015), there has not been universal acceptance of this change among scientists familiar with tephritid fruit fl y taxonomy, so we will use what has been most commonly used, while further data are accumulated in regards to the desirability of making this change. Although B. cucurbitae is thought to be native to India (Dhillon et al. 2005), its distribution has spread throughout many countries in Oriental Asia (White and Elson-Harris 1992), and into a number of Pacifi c Island nations (Dhillon et al. 2005, Drew 1982). The fi rst report of B. cucurbitae on the African continent was in Tanzania in 1936. Up until 1999, it was only reported in East Africa and the Indian Ocean islands of Mauritius and Réunion (De Meyer et al. 2015), but has now been recovered in West Africa, fi rst in Gambia in 1999. It is now regarded to be present throughout West Africa (Vayssières et al. 2007). The current geographic range of B. cucurbitae is presented in Fig. 3. The distribution pre- sented shows the countries where fi eld infestation by B. cucurbitae has been reported, as well additional countries where adult fl ies have been reported to be present (Xia et al. 2015, CABI 2016). The documented introductions of B. cucurbitae into countries outside its native distribution show that this species could establish in countries where it does not presently occur, particularly through the movement of infested fruit. As with other tephritid fruit fl y species, establishment of B. cucurbitae can have signifi cant economic consequences, including damage and loss of food production, as well as requirements for implementation of costly quarantine treatments to permit export of commodities sus- ceptible to infestation by B.
Recommended publications
  • Cadmium Contamination in Orchard Soils and Fruit Trees and Its Potential Health Risk in Guangzhou, China
    ARTICLE IN PRESS + MODEL http://www.paper.edu.cn Environmental Pollution xx (2005) 1e7 Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China J.T. Li a, J.W. Qiu b, X.W. Wang a, Y. Zhong a, C.Y. Lan a,*, W.S. Shu a,* a School of Life Sciences and State Key Laboratory of Biocontrol, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, PR China b Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong, PR China Received 6 August 2005; received in revised form 19 September 2005; accepted 14 October 2005 Carambola fruit can accumulate high levels of cadmium and may be a health risk for humans. Abstract This study examines cadmium (Cd) contamination in orchard soils and fruit trees in Guangzhou, China, and assesses its potential health risk. Soils and tissues samples of three species of fruit trees were collected from three orchards. The average soil Cd concentration was 1.27, 1.84 and 0.68 mg/kg in orchards I, II, and III, respectively. The carambola (Averrhoa carambola) accumulated exceptionally high concentrations of Cd (7.57, 10.84, 9.01 and 2.15 mg/kg dw in root, twig, leaf and fruit, respectively), being 6.0e24 times and 4.0e10 times the corresponding tissue Cd in the longan (Dimocarpus longan) and wampee (Clausena lansium), respectively. Furthermore, all Cd concentrations (0.04e0.25 mg Cd/kg fw) of the fruits exceeded the tolerance limit of cadmium in foods of PR China (0.03 mg/kg fw). Our results indicate that the carambola tree has high Cd accumulation capacity and might be a Cd accumulator; and its fruit, among the three species of fruits studied, also poses the highest potential health risk to local residents.
    [Show full text]
  • It Happened in Montevideo a Look at a Hoard of Rolls from Uruguay
    30 It Happened in Montevideo A look at a hoard of rolls from Uruguay As all collectors know, from time to time something crops up that is quite unexpected and different from anything you’ve seen before. This is certainly the case with a collection of rolls recently imported into the UK from Montevideo in Uruguay, a saga that took a good three years. Earlier articles looking at South America have shown it was a market where pretty well anything was imported, so the majority of rolls are from familiar American, British and German companies. Most are 88-note but with plenty of Artrio-Angelus reproducing rolls, as well as Recordo and QRS Automatic expression rolls – the latter offering more basic expression than reproducing pianos, a type of instrument rarely seen in the UK. The mixture of music, and the condition of the rolls, suggests that the collection is based around the remaining stock from a closed shop. Maybe this was the importer, and piano dealership, Vittone Hnos (Brothers) whose name appears on some box-top labels. So, what was unexpected? It was the final block of rolls made locally in Montevideo. They are on two different labels, the majority on Victor and a few on GH, the initials of their maker, Gioscia Hnos. Autumn 2010 31 Now, anybody with the slightest interest in old records or gramophones will immediately be asking whether this Victor is the famous gramophone maker, or if the name is just a coincidence. The seller actually referred to them as “RCA Victor”, which seemed so far-fetched that it was dismissed (RCA came into the frame very late in the roll-making era).
    [Show full text]
  • The Heirloom Gardener's Seed-Saving Primer Seed Saving Is Fun and Interesting
    The Heirloom Gardener's Seed-Saving Primer Seed saving is fun and interesting. It tells the story of human survival, creativity, and community life. Once you learn the basics of saving seeds you can even breed your own variety of crop! Share your interesting seeds and stories with other gardeners and farmers while helping to prevent heirloom varieties from going extinct forever. Contact The Foodshed Project to find out about local seed saving events! 1. Food “as a system”...........................................................................................................................5 2. Why are heirloom seeds important?.................................................................................................6 3. How are plants grouped and named?...............................................................................................8 4. Why is pollination important?... ......................................................................................................11 5. What is a monoecious or a dioecious plant?....................................................................................12 6. How do you know if a plant will cross-breed?.................................................................................14 7. What types of seeds are easiest to save?........................................................................................18 8. What about harvesting and storing seeds?.....................................................................................20 9. What do I need to know
    [Show full text]
  • Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 27 | Issue 1 Article 3 2009 Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae) David J. Hearn University of Arizona, Tucson Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons, and the Ecology and Evolutionary Biology Commons Recommended Citation Hearn, David J. (2009) "Descriptive Anatomy and Evolutionary Patterns of Anatomical Diversification in Adenia (Passifloraceae)," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 27: Iss. 1, Article 3. Available at: http://scholarship.claremont.edu/aliso/vol27/iss1/3 Aliso, 27, pp. 13–38 ’ 2009, Rancho Santa Ana Botanic Garden DESCRIPTIVE ANATOMY AND EVOLUTIONARY PATTERNS OF ANATOMICAL DIVERSIFICATION IN ADENIA (PASSIFLORACEAE) DAVID J. HEARN Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA ([email protected]) ABSTRACT To understand evolutionary patterns and processes that account for anatomical diversity in relation to ecology and life form diversity, anatomy of storage roots and stems of the genus Adenia (Passifloraceae) were analyzed using an explicit phylogenetic context. Over 65,000 measurements are reported for 47 quantitative and qualitative traits from 58 species in the genus. Vestiges of lianous ancestry were apparent throughout the group, as treelets and lianous taxa alike share relatively short, often wide, vessel elements with simple, transverse perforation plates, and alternate lateral wall pitting; fibriform vessel elements, tracheids associated with vessels, and libriform fibers as additional tracheary elements; and well-developed axial parenchyma. Multiple cambial variants were observed, including anomalous parenchyma proliferation, anomalous vascular strands, successive cambia, and a novel type of intraxylary phloem.
    [Show full text]
  • Five Hundred Plant Species in Gunung Halimun Salak National Park, West Java a Checklist Including Sundanese Names, Distribution and Use
    Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman Five hundred plant species in Gunung Halimun Salak National Park, West Java A checklist including Sundanese names, distribution and use Hari Priyadi Gen Takao Irma Rahmawati Bambang Supriyanto Wim Ikbal Nursal Ismail Rahman © 2010 Center for International Forestry Research. All rights reserved. Printed in Indonesia ISBN: 978-602-8693-22-6 Priyadi, H., Takao, G., Rahmawati, I., Supriyanto, B., Ikbal Nursal, W. and Rahman, I. 2010 Five hundred plant species in Gunung Halimun Salak National Park, West Java: a checklist including Sundanese names, distribution and use. CIFOR, Bogor, Indonesia. Photo credit: Hari Priyadi Layout: Rahadian Danil CIFOR Jl. CIFOR, Situ Gede Bogor Barat 16115 Indonesia T +62 (251) 8622-622 F +62 (251) 8622-100 E [email protected] www.cifor.cgiar.org Center for International Forestry Research (CIFOR) CIFOR advances human wellbeing, environmental conservation and equity by conducting research to inform policies and practices that affect forests in developing countries. CIFOR is one of 15 centres within the Consultative Group on International Agricultural Research (CGIAR). CIFOR’s headquarters are in Bogor, Indonesia. It also has offices in Asia, Africa and South America. | iii Contents Author biographies iv Background v How to use this guide vii Species checklist 1 Index of Sundanese names 159 Index of Latin names 166 References 179 iv | Author biographies Hari Priyadi is a research officer at CIFOR and a doctoral candidate funded by the Fonaso Erasmus Mundus programme of the European Union at Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences.
    [Show full text]
  • Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid
    Known Host Plants of Huanglongbing (HLB) and Asian Citrus Psyllid Diaphorina Liberibacter citri Plant Name asiaticus Citrus Huanglongbing Psyllid Aegle marmelos (L.) Corr. Serr.: bael, Bengal quince, golden apple, bela, milva X Aeglopsis chevalieri Swingle: Chevalier’s aeglopsis X X Afraegle gabonensis (Swingle) Engl.: Gabon powder-flask X Afraegle paniculata (Schum.) Engl.: Nigerian powder- flask X Atalantia missionis (Wall. ex Wight) Oliv.: see Pamburus missionis X X Atalantia monophylla (L.) Corr.: Indian atalantia X Balsamocitrus dawei Stapf: Uganda powder- flask X X Burkillanthus malaccensis (Ridl.) Swingle: Malay ghost-lime X Calodendrum capense Thunb.: Cape chestnut X × Citroncirus webberi J. Ingram & H. E. Moore: citrange X Citropsis gilletiana Swingle & M. Kellerman: Gillet’s cherry-orange X Citropsis schweinfurthii (Engl.) Swingle & Kellerm.: African cherry- orange X Citrus amblycarpa (Hassk.) Ochse: djerook leemo, djeruk-limau X Citrus aurantiifolia (Christm.) Swingle: lime, Key lime, Persian lime, lima, limón agrio, limón ceutí, lima mejicana, limero X X Citrus aurantium L.: sour orange, Seville orange, bigarde, marmalade orange, naranja agria, naranja amarga X Citrus depressa Hayata: shiikuwasha, shekwasha, sequasse X Citrus grandis (L.) Osbeck: see Citrus maxima X Citrus hassaku hort. ex Tanaka: hassaku orange X Citrus hystrix DC.: Mauritius papeda, Kaffir lime X X Citrus ichangensis Swingle: Ichang papeda X Citrus jambhiri Lushington: rough lemon, jambhiri-orange, limón rugoso, rugoso X X Citrus junos Sieb. ex Tanaka: xiang
    [Show full text]
  • Akebia Quinata
    Akebia quinata Akebia quinata Chocolate vine, five- leaf Akebia Introduction Native to eastern Asia, the genus Akebia consists of five species, with four species and three subspecies reported in China[168]. Members of this genus are deciduous or semi-deciduous twining vines. The roots, vines, and fruits can be used for medicinal purposes. The sweet fruits can be used in wine-making[4]. Taxonomy: Akebia quinata leaves. (Photo by Shep Zedaker, Virginia Polytechnic Institute & State FAM ILY: Lardizabalaceae University.) Genus: Akebia Decne. clustered on the branchlets, and divided male and the rest are female. Appearing Species of Akebia in China into five, or sometimes three to four from June to August, oblong or elliptic purplish fruits split open when mature, revealing dark, brownish, flat seeds Scientific Name Scientific Name arranged irregularly in rows[4]. A. chingshuiensis T. Shimizu A. quinata (Houtt.) Decne A. longeracemosa Matsumura A. trifoliata (Thunb.) Koidz Habitat and Distribution A. quinata grows near forest margins Description or six to seven papery leaflets that are along streams, as scrub on mountain Akebia quinata is a deciduous woody obovate or obovately elliptic, 2-5 cm slopes at 300 - 1500 m elevation, in vine with slender, twisting, cylindrical long, 1.5-2.5 cm wide, with a round or most of the provinces through which [4] stems bearing small, round lenticels emarginate apex and a round or broadly the Yellow River flows . It has a native on the grayish brown surface. Bud cuneate base. Infrequently blooming, range in Anhui, Fujian, Henan, Hubei, scales are light reddish-brown with the inflorescence is an axillary raceme Hunan, Jiangsu, Jiangxi, Shandong, an imbricate arrangement.
    [Show full text]
  • Redalyc.New Records of Mining Moths from the Iberian Peninsula From
    SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Lastuvka, A.; Lastuvka, Z. New records of mining moths from the Iberian Peninsula from 2014 (Insecta: Lepidoptera) SHILAP Revista de Lepidopterología, vol. 42, núm. 168, diciembre, 2014, pp. 633-647 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45540983010 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 633-647 New records of mining m 26/11/14 11:15 Página 633 SHILAP Revta. lepid., 42 (168), diciembre 2014: 633-647 eISSN: 2340-4078 ISSN: 0300-5267 New records of mining moths from the Iberian Peninsula from 2014 (Insecta: Lepidoptera) A. Lasˇtu˚vka & Z. Lasˇtu˚vka Abstract New records of Nepticulidae, Opostegidae, Heliozelidae, Bucculatricidae and Gracillariidae for Portugal and Spain are presented. Stigmella sakhalinella Puplesis, 1984, Ectoedemia louisella (Sircom, 1849), Bucculatrix albedinella (Zeller, 1839), B. demaryella (Duponchel, 1840), B. ulmella Zeller, 1848, B. albella Stainton, 1867, Caloptilia semifascia (Haworth, 1828), Parornix devoniella (Stainton, 1850), P. torquillella (Zeller, 1850), Phyllonorycter distentella (Zeller, 1846), P. cavella (Zeller, 1846), P. deschkai Triberti, 2007, P. acerifoliella (Zeller, 1839) and P. dubitella (Herrich-Schäffer, 1855) are new for Spain, and Stigmella sakhalinella, Bucculatrix albedinella , Caloptilia betulicola (Hering, 1928), Parornix tenella (Rebel, 1919) and Phyllonorycter ochreojunctella (Klimesch, 1942) are new for Portugal. Stigmella sakhalinella, Ectoedemia louisella, Bucculatrix albedinella , B.
    [Show full text]
  • Taxonomic Significance of Spermoderm Pattern in Cucurbitaceae M. Ajmal
    Bangladesh J. Plant Taxon. 20(1): 61-65, 2013 (June) © 2013 Bangladesh Association of Plant Taxonomists TAXONOMIC SIGNIFICANCE OF SPERMODERM PATTERN IN CUCURBITACEAE 1 2 3 M. AJMAL ALI , FAHAD M.A. AL-HEMAID, ARUN K. PANDEY AND JOONGKU LEE Department of Botany and Microbiology, College of Science, King Saud University, Riyadh-11451, Saudi Arabia. Keywords: Cucurbitaceae; SEM; Spermoderm; Testa. Abstract Studies on spermoderm using scanning electron microscope (SEM) were undertaken in 12 taxa under 11 genera of the family Cucurbitaceae sampled from India, China and Korea. The spermoderm pattern in the studied taxa varies from rugulate, reticulate to colliculate type. The spermoderm shows rugulate type in Benincasa hispida and Sicyos angulatus; reticulate type in Citrullus colocynthis, Cucumis melo var. agrestis, Diplocyclos palmatus, Hemsleya longivillosa, Luffa echinata, Momordica charantia, M. cymbalaria, Schizopepon bryoniifolius, and Trichosanthes cucumerina; and colliculate type in Gynostemma laxiflorum. The present study clearly reveals that the testa features greatly varies across the genera which can be used as micromorphological markers for identification as well as character states for deducing relationship of the taxa within the family. Introduction Spermoderm refers to the pattern present on the seed coat of mature seeds. Seed characteristic, particularly exomorphic features as revealed by scanning electron microscopy, have been used by many workers in resolving taxonomic problems (Koul et al., 2000; Pandey and Ali, 2006) and evolutionary relationships (Kumar et al., 1999; Segarra and Mateu, 2001). Cucurbitaceae, with c. 800 species under 130 genera (Schaefer and Renner, 2011) are among the economically most important plant families (Kirtikar and Basu, 1975; Chakravarty, 1982; Ali and Pandey, 2006).
    [Show full text]
  • T.C Ordu Üniversitesi Fen Bilimleri Enstitüsü Çorum Ili
    T.C ORDU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ ÇORUM İLİ İSKİLİP İLÇESİNDE YETİŞTİRİLEN MAHALLİ MİSKET ELMALARININ FENOLOJİK, MORFOLOJİK, POMOLOJİK ÖZELLİKLERİNİN BELİRLENMESİ VE MOLEKÜLER OLARAK TANIMLANMASI BERNA DOĞRU YÜKSEK LİSANS TEZİ BAHÇE BİTKİLERİ ANABİLİM DALI AKADEMİK DANIŞMAN Prof. Dr. Turan KARADENİZ İKİNCİ DANIŞMAN Yrd. Doç. Dr. Hatice İKTEN ORDU-2012 i ÇORUM İLİ İSKİLİP İLÇESİNDE YETİŞTİRİLEN MAHALLİ MİSKET ELMALARININ FENOLOJİK, MORFOLOJİK, POMOLOJİK ÖZELLİKLERİNİN BELİRLENMESİ VE MOLEKÜLER OLARAK TANIMLANMASI ÖZET Bu araĢtırma, Çorum ili Ġskilip ilçesinin mahalli Misket elmalarının fenolojik, morfolojik, pomolojik ve moleküler özelliklerinin tanımlanması amacıyla 2010-2011 yılları arasında yürütülmüĢtür. Seçilen genotiplerde ortalama meyve ağırlığı 102.94-175.74 g arasında, meyve çapı 58.96-73.92 mm arasında, meyve boyu 57.88-72.36 mm arasında, meyve eti sertliği 8.40-11.66 lb, meyve hacmi 120-232 ml arasında, SÇKM % 10.65-% 15.00 arasında; pH 4.26-5.80 arasında; TEAM (titre edilebilir asit miktarı) ise % 0.13-% 0.35 arasında tespit edilmiĢtir. Seçilen elma genotipleri arasındaki genetik çeĢitliliği DNA seviyesinde saptamak için 30 RAPD (Random Amplified Polymorphic DNA ) primeri kullanılmıĢtır. Amplifikasyonlar sonucu toplam 217 adet bant elde edilmiĢ ve bu bantlardan 102 adeti (% 45)’i polimorfik özellik göstermiĢtir. Anahtar Kelimeler: Ġskilip, Misket Elması, Genetik Kaynaklar, Seleksiyon, RAPD ii DETERMINATION OF PHENOLOGICAL, MORPHOLOGICAL, POMOLOGICAL CHARACTERISTICS AND MOLECULAR IDENTIFICATION OF LOCAL MISKET APPLE
    [Show full text]
  • Check List of Wild Angiosperms of Bhagwan Mahavir (Molem
    Check List 9(2): 186–207, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Check List of Wild Angiosperms of Bhagwan Mahavir PECIES S OF Mandar Nilkanth Datar 1* and P. Lakshminarasimhan 2 ISTS L (Molem) National Park, Goa, India *1 CorrespondingAgharkar Research author Institute, E-mail: G. [email protected] G. Agarkar Road, Pune - 411 004. Maharashtra, India. 2 Central National Herbarium, Botanical Survey of India, P. O. Botanic Garden, Howrah - 711 103. West Bengal, India. Abstract: Bhagwan Mahavir (Molem) National Park, the only National park in Goa, was evaluated for it’s diversity of Angiosperms. A total number of 721 wild species belonging to 119 families were documented from this protected area of which 126 are endemics. A checklist of these species is provided here. Introduction in the National Park are Laterite and Deccan trap Basalt Protected areas are most important in many ways for (Naik, 1995). Soil in most places of the National Park area conservation of biodiversity. Worldwide there are 102,102 is laterite of high and low level type formed by natural Protected Areas covering 18.8 million km2 metamorphosis and degradation of undulation rocks. network of 660 Protected Areas including 99 National Minerals like bauxite, iron and manganese are obtained Parks, 514 Wildlife Sanctuaries, 43 Conservation. India Reserves has a from these soils. The general climate of the area is tropical and 4 Community Reserves covering a total of 158,373 km2 with high percentage of humidity throughout the year.
    [Show full text]
  • Domination and Resistance in Afro-Brazilian Music
    Domination and Resistance In Afro-Brazilian Music Honors Thesis—2002-2003 Independent Major Oberlin College written by Paul A. Swanson advisor: Dr. Roderic Knight ii Table of Contents Abstract Introduction 1 Chapter 1 – Cultural Collisions Between the Old and New World 9 Mutual Influences 9 Portuguese Independence, Exploration, and Conquest 11 Portuguese in Brazil 16 Enslavement: Amerindians and Africans 20 Chapter 2 – Domination: The Impact of Enslavement 25 Chapter 3 – The ‘Arts of Resistance’ 30 Chapter 4 – Afro-Brazilian Resistance During Slavery 35 The Trickster: Anansi, Exú, malandro, and malandra 37 African and Afro-Brazilian Religion and Resistance 41 Attacks on Candomblé 43 Candomblé as Resistance 45 Afro-Brazilian Musical Spaces: the Batuque 47 Batuque Under Attack 50 Batuque as a Place of Resistance 53 Samba de Roda 55 Congadas: Reimagining Power Structures 56 Chapter 5 – Black and White in Brazil? 62 Carnival 63 Partner-dances 68 Chapter 6 – 1808-1917: Empire, Abolition and Republic 74 1808-1889: Kings in Brazil 74 1889-1917: A New Republic 76 Birth of the Morros 78 Chapter 7 – Samba 80 Oppression and Resistance of the Early Sambistas 85 Chapter 8 – the Appropriation and Nationalization of Samba 89 Where to find this national identity? 91 Circumventing the Censors 95 Contested Terrain 99 Chapter 9 – Appropriation, Authenticity, and Creativity 101 Bossa Nova: A New Sound (1958-1962) 104 Leftist Nationalism: the Oppression of Authenticity (1960-1968) 107 Coup of 1964 110 Protest Songs 112 Tropicália: the Destruction of Authenticity (1964-1968) 115 Chapter 10 – Transitions: the Birth of Black-Consciousness 126 Black Soul 129 Chapter 11 – Back to Bahia: the Rise of the Blocos Afro 132 Conclusions 140 Map 1: early Portugal 144 Map 2: the Portuguese Seaborne Empire 145 iii Map 3: Brazil 146 Map 4: Portuguese colonies in Africa 147 Appendix A: Song texts 148 Bibliography 155 End Notes 161 iv Abstract Domination and resistance form a dialectic relationship that is essential to understanding Afro-Brazilian music.
    [Show full text]