Lecture 3: Petroleum Refining Overview in This Lecture, We Present a Brief Overview of the Petroleum Refining, a Prominent Process Technology in Process Engineering
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amorphous Silica Containers for Germanium Ultrapurification by Zone Refining O
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Siberian Federal University Digital Repository ISSN 0020-1685, Inorganic Materials, 2016, Vol. 52, No. 11, pp. 1091–1095. © Pleiades Publishing, Ltd., 2016. Original Russian Text © O.I. Podkopaev, A.F. Shimanskii, T.V. Kulakovskaya, A.N. Gorodishcheva, N.O. Golubovskaya, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 11, pp. 1163–1167. Amorphous Silica Containers for Germanium Ultrapurification by Zone Refining O. I. Podkopaeva, *, A. F. Shimanskiib, **, T. V. Kulakovskayaa, A. N. Gorodishchevac, ***, and N. O. Golubovskayab aOJSC Germanium, Transportnyi proezd 1, Krasnoyarsk, 660027 Russia bSiberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, 660047 Russia cReshetnev Siberian State Aerospace University, pr. im. gazety Krasnoyarskii rabochii 31, Krasnoyarsk, 660014 Russia *e-mail: [email protected] **e-mail: [email protected] ***e-mail: [email protected] Received March 2, 2016 Abstract—We have studied the wetting behavior of molten germanium on silica ceramics and amorphous sil- ica coatings in vacuum at a pressure of 1 Pa and a temperature of 1273 K. The results demonstrate that the wetting of rough surfaces of ceramic samples and coatings by liquid Ge is significantly poorer than that of the smooth surface of quartz glass. The contact angle of polished glass is ~100°, and that of the ceramics and coatings increases from 112° to 137° as the total impurity content of the material decreases from 0.120 to 1 × 10–3 wt %. Using experimental contact angle data, we calculated the work of adhesion of molten Ge to the materials studied. -
APPENDIX M SUMMARY of MAJOR TYPES of Carfg2 REFINERY
APPENDIX M SUMMARY OF MAJOR TYPES OF CaRFG2 REFINERY MODIFICATIONS Appendix M: Summan/ of Major Types of CaRFG2 Refinery Modifications: Alkylation Units A process unit that combines small-molecule hydrocarbon gases produced in the FCCU with a branched chain hydrocarbon called isobutane, producing a material called alkylate, which is blended into gasoline to raise the octane rating. Alkylate is a high octane, low vapor pressure gasoline blending component that essentially contains no olefins, aromatics, or sulfur. This plant improves the ultimate gasoline-making ability of the FCC plant. Therefore, many California refineries built new or modified existing units to increase alkylate production to blend and to produce greater amounts of CaRFG2. Alkylate is produced by combining C3, C4, and C5 components with isobutane (nC4). The process of alkylation is the reverse of cracking. Olefins (such as butenes and propenes) and isobutane are used as feedstocks and combined to produce alkylate. This process enables refiners to utilize lighter components that otherwise could not be blended into gasoline due to their high vapor pressures. Feed to alkylation unit can include pentanes from light cracked gasoline treaters, isobutanes from butane isomerization unit, and C3/C4 streams from delayed coking units. Isomerization Units - C4/C5/C6 A refinery that has an alkylation plant is not likely to have exactly enough is-butane to match the proplylene and butylene (olefin) feeds. The refiner usually has two choices - buy iso-butane or make it in a butane isomerization (Bl) plant. Isomerization is the rearrangement of straight chain hydrocarbon molecules to form branched chain products or to convert normal paraffins to their isomer. -
Refining Crude Oil
REFINING CRUDE OIL New Zealand buys crude oil from overseas, as well as drilling for some oil locally. This oil is a mixture of many hydrocarbons that has to be refined before it can be used for fuel. All crude oil in New Zealand is refined by The New Zealand Refining Company at their Marsden Point refinery where it is converted to petrol, diesel, kerosene, aviation fuel, bitumen, refinery gas (which fuels the refinery) and sulfur. The refining process depends on the chemical processes of distillation (separating liquids by their different boiling points) and catalysis (which speeds up reaction rates), and uses the principles of chemical equilibria. Chemical equilibrium exists when the reactants in a reaction are producing products, but those products are being recombined again into reactants. By altering the reaction conditions the amount of either products or reactants can be increased. Refining is carried out in three main steps. Step 1 - Separation The oil is separated into its constituents by distillation, and some of these components (such as the refinery gas) are further separated with chemical reactions and by using solvents which dissolve one component of a mixture significantly better than another. Step 2 - Conversion The various hydrocarbons produced are then chemically altered to make them more suitable for their intended purpose. For example, naphthas are "reformed" from paraffins and naphthenes into aromatics. These reactions often use catalysis, and so sulfur is removed from the hydrocarbons before they are reacted, as it would 'poison' the catalysts used. The chemical equilibria are also manipulated to ensure a maximum yield of the desired product. -
Reasoned Request on Failure of Bosnia Herzegovina to Comply With
ANNEX 9a/14th MC/10-08-2016 TO THE MINISTERIAL COUNCIL OF THE ENERGY COMMUNITY represented by the Presidency and the Vice-Presidency of the Energy Community REASONED REQUEST in Case ECS-2/13 Submitted pursuant to Article 90 of the Treaty establishing the Energy Community and Article 29 of Procedural Act No 2008/1/MC-EnC of the Ministerial Council of the Energy Community of 27 June 2008 on the Rules of Procedure for Dispute Settlement under the Treaty, the SECRETARIAT OF THE ENERGY COMMUNITY against BOSNIA AND HERZEGOVINA seeking a Decision from the Ministerial Council that Bosnia and Herzegovina, 1. by failing to ensure within the prescribed time limit that heavy fuel oils are not used if their sulphur content exceeds 1.00 % by mass in the entire territory of the Contracting Party, Bosnia and Herzegovina has failed to fulfil its obligations under Article 3(1) of Directive 1999/32/EC in conjunction with Article 16 of the Treaty establishing the Energy Community; 2. by failing to ensure within the prescribed time limit that gas oils are not used if their sulphur content exceeds 0.1 % by mass in the entire territory of the Contracting Party, Bosnia and Herzegovina has failed to fulfil its obligations under Article 4(1) of Directive 1999/32/EC in conjunction with Article 16 of the Treaty establishing the Energy Community. The Secretariat of the Energy Community has the honour of submitting the following Reasoned Request to the Ministerial Council. I. Relevant Facts (1) As a Contracting Party to the Treaty establishing the Energy Community (“the Treaty”), Bosnia and Herzegovina is under an obligation to implement the acquis communautaire on environment as listed in Article 16 of the Treaty. -
Naphtha Safety Data Sheet According to Regulation (EC) No
Naphtha Safety Data Sheet according to Regulation (EC) No. 1907/2006 (REACH) with its amendment Regulation (EU) 2015/830 Revision date: 29 Dec 2020 Version: 4.0 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product form : Substance (UVCB) Trade name : Naphtha Chemical name : Solvent naphtha (petroleum), light aliph.; Low boiling point naphtha; [A complex combination of hydrocarbons obtained from the distillation of crude oil or natural gasoline. It consists predominantly of saturated hydrocarbons having carbon numbers predominantly in the range of C5 through C10 and boiling in the range of approximately 35°C to 160°C (95°F to 320°F).] IUPAC name : Solvent naphtha (petroleum), light aliph. EC Index-No. : 649-267-00-0 EC-No. : 265-192-2 CAS-No. : 64742-89-8 REACH registration No : 01-2119471306-40 Type of product : Hydrocarbons Synonyms : Solvent naphtha (petroleum), light aliph. Product group : Raw material BIG No : F06734 1.2. Relevant identified uses of the substance or mixture and uses advised against 1.2.1. Relevant identified uses Main use category : Industrial use Use of the substance/mixture : Chemical raw material Function or use category : Intermediates Title Life cycle stage Use descriptors Use of substance as intermediate Industrial SU8, SU9, PROC1, PROC2, PROC3, PROC8a, PROC8b, (ES Ref.: ES 2) PROC15, PROC28, ERC6a Manufacture of substance Manufacture PROC1, PROC2, PROC3, PROC8a, PROC8b, PROC15, (ES Ref.: ES 1) PROC28, ERC1 Full text of use descriptors: see section 16 1.2.2. Uses advised against No additional information available NOR1.3. Details of the supplier of product safety information sheet Manufacturer Only Representative ZapSibNeftekhim LLC Gazprom Marketing and Trading France Promzona avenue des Champs-Elysées 68 626150 Tobolsk, Tyumen region - Russion Federation 75008 Paris - France T +7 (3456) 398-000 - F +7 (3456) 266-449 T +33 1 42 99 73 50 - F +33 1 42 99 73 99 [email protected] [email protected] 1.4. -
Oil Refinery Sector
Gujarat Cleaner Production Centre - ENVIS Centre CLEANER PRODUCTION OPPURTUNITIES IN OIL REFINERY SECTOR Gujarat Cleaner Production Centre - ENVIS Centre OIL REFINERY An oil refinery or petroleum refinery is an industrial process plant where crude oil is processed and refined into more useful products such as petroleum naphtha, gasoline, diesel fuel, asphalt base, heating oil, kerosene and liquefied petroleum gas. Oil refineries are typically large, sprawling industrial complexes with extensive piping running throughout, carrying streams of fluids between large chemical processing units. Common process units found in a refinery: • Desalter unit washes out salt from the crude oil before it enters the atmospheric distillation unit. • Atmospheric distillation unit distills crude oil into fractions. • Vacuum distillation unit further distills residual bottoms after atmospheric distillation. • Naphtha hydrotreater unit uses hydrogen to desulfurize naphtha from atmospheric distillation. Must hydrotreat the naphtha before sending to a Catalytic Reformer unit. • Catalytic reformer unit is used to conver t the naphtha-boiling range molecules into higher octane reformate (reformer product). The reformate has higher content of aromatics and cyclic hydrocarbons). An important byproduct of a r eformer is hydrogen released during the catalyst reaction. The hydrogen is used either in the hydrotreater or the hydrocracker. • Distillate hydrotreater unit desulfurizes distillates (such as diesel) after atmospheric distillation. • Fluid catalytic cracker (FCC) unit upgrades heavier fractions into lighter, more valuable products. • Hydrocracker unit uses hydrogen to upgrade heavier fractions into lighter, more valuable products. • Visbreaking unit upgrades heavy residual oils by thermally cracking them into li ghter, more valuable reduced viscosity products. • Merox unit treats LPG, kerosene or jet fuel by oxidizing mercaptans to organic disulfides. -
Tailoring Diesel Bioblendstock from Integrated Catalytic Upgrading of Carboxylic Acids: a “Fuel Property First” Approach Xiangchen Huoa,B, Nabila A
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2019 Tailoring Diesel Bioblendstock from Integrated Catalytic Upgrading of Carboxylic Acids: A “Fuel Property First” Approach Xiangchen Huoa,b, Nabila A. Huqa, Jim Stunkela, Nicholas S. Clevelanda, Anne K. Staracea, Amy E. Settlea,b, Allyson M. Yorka,b, Robert S. Nelsona, David G. Brandnera, Lisa Foutsa, Peter C. St. Johna, Earl D. Christensena, Jon Lueckea, J. Hunter Mackc, Charles S. McEnallyd, Patrick A. Cherryd, Lisa D. Pfefferled, Timothy J. Strathmannb, Davinia Salvachúaa, Seonah Kima, Robert L. McCormicka, Gregg T. Beckhama, Derek R. Vardona* aNational Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, United States bColorado School of Mines, 1500 Illinois St., Golden, CO, United States cUniversity of Massachusetts Lowell, 220 Pawtucket St., Lowell, MA, United States dYale University, 9 Hillhouse Avenue, New Haven, CT, United States *[email protected] Section S1: Experimental Methods Catalyst synthesis and characterization Pt/Al2O3 catalyst was prepared by strong electrostatic adsorption method with chloroplatinic acid hexahydrate as Pt precursor. Al2O3 of 30-50 mesh and Pt precursor were added to deionized water, and solution pH was adjusted to 3 by adding HCl. After stirring overnight, the catalyst particles were recovered by filtration extensively washed with -1 deionized water. The catalyst was dried in the air and reduced in flowing H2 (200 mL min ) at 300°C for 4 h. BET surface area was determined by nitrogen physisorption using a Quadrasorb SI™ surface area analyzer from Quantachrome Instruments. Samples of ~80–120 mg were measured using a 55-point nitrogen adsorption/desorption curve at -196°C. -
Olefins Recovery CRYO–PLUS ™ TECHNOLOGY 02
Olefins Recovery CRYO–PLUS ™ TECHNOLOGY 02 Refining & petrochemical experience. Linde Engineering North America Inc. (LENA) has constructed more than twenty (20) CRYO-PLUS™ units since 1984. Proprietary technology. Higher recovery with less energy. Refinery configuration. Designed to be used in low-pressure hydrogen-bearing Some of the principal crude oil conversion processes are off-gas applications, the patented CRYO-PLUS™ process fluid catalytic cracking and catalytic reforming. Both recovers approximately 98% of the propylene and heavier processes convert crude products (naphtha and gas oils) components with less energy required than traditional into high-octane unleaded gasoline blending components liquid recovery processes. (reformate and FCC gasoline). Cracking and reforming processes produce large quantities of both saturated and Higher product yields. unsaturated gases. The resulting incremental recovery of the olefins such as propylene and butylene by the CRYO-PLUS™ process means Excess fuel gas in refineries. that more feedstock is available for alkylation and polym- The additional gas that is produced overloads refinery erization. The result is an overall increase in production of gas recovery processes. As a result, large quantities of high-octane, zero sulfur, gasoline. propylene and propane (C3’s), and butylenes and butanes (C4’s) are being lost to the fuel system. Many refineries Our advanced design for ethylene recovery. produce more fuel gas than they use and flaring of the ™ The CRYO-PLUS C2= technology was specifically excess gas is all too frequently the result. designed to recover ethylene and heavier hydrocarbons from low-pressure hydrogen-bearing refinery off-gas streams. Our patented design has eliminated many of the problems associated with technologies that predate the CRYO-PLUS C2=™ technology. -
Laboratory Rectifying Stills of Glass 2
» LABORATORY RECTIFYING STILLS OF GLASS 2 By Johannes H. Bruun 3 and Sylvester T. Schicktanz 3 ABSTRACT A complete description is given of a set of all-glass rectifying stills, suitable for distillation at pressures ranging from atmospheric down to about 50 mm. The stills are provided with efficient bubbling-cap columns containing 30 to 60 plates. Adiabatic conditions around the column are maintained by surrounding it with a jacket provided with a series of independent electrical heating units. Suitable means are provided for adjusting or maintaining the reflux ratio at the top of the column. For the purpose of conveniently obtaining an accurate value of the true boiling points of the distillates a continuous boiling-point apparatus is incor- porated in the receiving system. An efficient still of the packed-column type for distillations under pressures less than 50 mm is also described. Methods of operation and efficiency tests are given for the stills. CONTENTS Page I. Introduction 852 II. General features of the still assembly 852 III. Still pot 853 IV. Filling tube and heater for the still pot 853 V. Rectifying column 856 1. General features 856 2. Large-size column 856 3. Medium-size column 858 4. Small-size column 858 VI. Column jacket 861 VII. Reflux regulator 861 1. With variable reflux ratio 861 2. With constant reflux ratio 863 VIII. The continuous boiling-point apparatus 863 IX. Condensers and receiver 867 X. The mounting of the still 867 XI. Manufacture and transportation of the bubbling-cap still 870 XII. Operation of the bubbling-cap still 870 XIII. -
Burton Introduces Thermal Cracking for Refining Petroleum John Alfred Heitmann University of Dayton, [email protected]
University of Dayton eCommons History Faculty Publications Department of History 1991 Burton Introduces Thermal Cracking for Refining Petroleum John Alfred Heitmann University of Dayton, [email protected] Follow this and additional works at: https://ecommons.udayton.edu/hst_fac_pub Part of the History Commons eCommons Citation Heitmann, John Alfred, "Burton Introduces Thermal Cracking for Refining Petroleum" (1991). History Faculty Publications. 92. https://ecommons.udayton.edu/hst_fac_pub/92 This Encyclopedia Entry is brought to you for free and open access by the Department of History at eCommons. It has been accepted for inclusion in History Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. 573 BURTON INTRODUCES THERMAL CRACKING FOR REFINING PETROLEUM Category of event: Chemistry Time: January, 1913 Locale: Whiting, Indiana Employing high temperatures and pressures, Burton developed a large-scale chem ical cracking process, thus pioneering a method that met the need for more fuel Principal personages: WILLIAM MERRIAM BURTON (1865-1954), a chemist who developed a commercial method to convert high boiling petroleum fractions to gas oline by "cracking" large organic molecules into more useful and marketable smaller units ROBERT E. HUMPHREYS, a chemist who collaborated with Burton WILLIAM F. RODGERS, a chemist who collaborated with Burton EUGENE HOUDRY, an industrial scientist who developed a procedure us ing catalysts to speed the conversion process, which resulted in high octane gasoline Summary of Event In January, 1913, William Merriam Burton saw the first battery of twelve stills used in the thermal cracking of petroleum products go into operation at Standard Oil of Indiana's Whiting refinery. -
Imports of Crude Oil in Czech Republic January to September 2015
Imports of Crude Oil in Czech republic January to September 2015 Country of Origin Imports (kt) Shares (%) Azerbaijan 1 740,7 30,90 Kazakhstan 619,6 11,00 Hungary 15,3 0,27 Russia 3 257,5 57,83 Total 5 633,1 Mean retail prices of motor fuels in CZK/litre in years 2011, 2012, 2013, 2014 and 2015, monthly 2011 product 1/11 2/11 3/11 4/11 5/11 6/11 7/11 8/11 9/11 10/11 11/11 12/11 Average Regular Unleaded gasoline 91, 10 ppm 33,54 33,41 34,13 34,65 - - - - - - - - 33,93 Premium Unl. gasoline 95, 10 ppm 33,47 33,38 34,22 34,86 35,21 34,88 34,75 34,78 34,65 34,81 34,99 34,95 34,58 Super plus Unl. 98, 10 ppm 35,35 35,27 35,94 36,33 36,94 36,74 36,64 36,70 36,67 36,77 36,85 36,77 36,41 Regular Unl. 91 with AK additive 32,97 32,95 33,31 33,62 33,78 33,69 33,96 33,91 33,84 34,07 34,43 34,51 33,75 ULS Diesel, 10 ppm 32,72 32,84 33,80 34,42 34,44 34,24 34,25 34,34 34,38 34,69 35,31 35,58 34,25 LPG 17,16 17,56 17,40 17,41 17,34 17,21 17,03 16,93 16,84 16,76 16,79 17,19 17,14 Comment: Observation of Regular Unleaded Gasoline 91 have been stopped since 1.5.2011 (low market share) 2012 product 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 11/12 12/12 Average Premium Unl. -
Converting Visbreakers to Delayed Cokers - an Opportunity for European Refiners
Converting Visbreakers to Delayed Cokers - An Opportunity for European Refiners European Coking.com Conference Sept. 30 - Oct. 2, 2008 Alex Broerse Lummus Technology a CB&I company © Lummus Technology Overview Introduction Delayed Coking Delayed Coking vs. Visbreaking Case Study Conclusions © Lummus Technology Converting Visbreakers to Delayed Cokers - 2 Fuel Oil Market General trend: reduction of sulfur content in fuel oil Typically 1.0-1.5 wt% S International Maritime Organization introduced SOx Emission Control Areas: . Sulfur content of fuel oil on board ships < 1.5 wt% . 1st SECA: Baltic Sea (effective 2006) . North Sea end of 2007 . More to follow Similar trend in other fuel oil application areas End of bunker fuel oil as sulfur sink? © Lummus Technology Converting Visbreakers to Delayed Cokers - 3 European Fuels Market Increased demand for ULS diesel Gradually decreasing fuel oil market Price gap between low sulfur crudes and opportunity crudes Re-evaluation of bottom-of-the-barrel strategy maximize diesel and minimize/eliminate fuel oil production What are the options? © Lummus Technology Converting Visbreakers to Delayed Cokers - 4 Bottom-of-the-Barrel Conversion Technologies Non Catalytic Catalytic Delayed coking Atm. / vac. resid hydrotreating Fluid / flexicoking Ebullated bed hydrocracking Gasification Resid FCC © Lummus Technology Converting Visbreakers to Delayed Cokers - 5 Lummus Capabilities for Bottom-of-the-Barrel Lummus Technology – Houston Delayed coking Resid FCC Chevron Lummus Global JV – Bloomfield Atmospheric/vacuum residue hydrotreating LC-FINING ebullated bed hydrocracking Lummus Technology – Bloomfield / The Hague Refinery planning studies (e.g., grassroots, revamps, processing of opportunity crudes) © Lummus TechnologyExtensive experience in heavy crude upgrade Converting Visbreakers to Delayed Cokers - 6 scenarios Overview Introduction Delayed Coking Delayed Coking vs.