Visbreaking: a Technology of the Past and the Future
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Chemistry of Sulfur in Fluid Catalytic Cracking
Catalytic Reduction of Sulfur in Fluid Catalytic Cracking Rick Wormsbecher Collaborators Grace Davison Laboratoire Catalyse et Spectrochimie, CNRS, Université de Caen Ruizhong Hu Michael Ziebarth Fabian Can Wu-Cheng Cheng Francoise Maugé Robert H. Harding Arnaud Travert Xinjin Zhao Terry Roberie Ranjit Kumar Thomas Albro Robert Gatte Outline • Review of fluid catalytic cracking. • Sulfur balance and sulfur cracking chemistry. • Catalytic reduction of sulfur by Zn aluminate/alumina. Fluid Catalytic Cracking • Refinery process that “cracks” high molecular weight hydrocarbons to lower molecular weight. • Refinery process that provides ~50 % of all transportation fuels indirectly. • Provides ~35 % of total gasoline pool directly from FCC produced naphtha. • ~80 % of the sulfur in gasolines comes from the FCC naphtha. Sulfur in Gasoline • Sulfur compounds reversibly poison the auto emission catalysts, increasing NOx and hydrocarbon emission. SOx emissions as well. • World-wide regulations to limit the sulfur content of transportation fuels. – 10 - 30 ppm gasoline. • Sulfur can be removed by hydrogenation chemistry. – Expensive. – Lowers fuel quality. Fluid Catalytic Cracking Unit Products Riser Flue Gas Reactor (~500 ºC) Regenerator (~725 ºC) Reaction is endothermic. 400 tons Catalyst circulates from catalyst Riser to Regenerator. inventory 50, 000 Air Feedstock barrels/day Carbon Distribution H2 ~0.05 % Flare C1 ~1.0 % Flare Petrochem Feed C2-C4 ~14-18 % Naphtha MW ~330 g/mole C5-C11 ~50 % C12-C22 ~15-25 % LCO C22+ ~5-15 % HCO Coke ~3-10 % -
Exxonmobil Torrance Refinery Electrostatic Precipitator Explosion Torrance, California
InvestigationInvestigation Report Report ExxonMobil Torrance Refinery Electrostatic Precipitator Explosion Torrance, California Incident Date: February 18, 2015 On-Site Property Damage, Catalyst Particles Released to Community, Near Miss in MHF Alkylation Unit No. 2015-02-I-CA KEY ISSUES: • Lack of Safe Operating Limits and Operating Procedure • Safeguard Effectiveness • Operating Equipment Beyond Safe Operating Life • Re-use of Previous Procedure Variance Without Sufficient Hazard Analysis Published May 2017 CSB · ExxonMobil Torrance Refinery Investigation Report The U.S. Chemical Safety and Hazard Investigation Board (CSB) is an independent Federal agency whose mission is to drive chemical safety change through independent investigations to protect people and the environment. The CSB is a scientific investigative organization; it is not an enforcement or regulatory body. Established by the Clean Air Act Amendments of 1990, the CSB is responsible for determining accident causes, issuing safety recommendations, studying chemical safety issues, and evaluating the effectiveness of other government agencies involved in chemical safety. More information about the CSB is available at www.csb.gov. The CSB makes public its actions and decisions through investigative publications, all of which may include safety recommendations when appropriate. Examples of the types of publications include: CSB Investigation Reports: formal, detailed reports on significant chemical accidents and include key findings, root causes, and safety recommendations. CSB Investigation Digests: plain-language summaries of Investigation Reports. CSB Case Studies: examines fewer issues than a full investigative report, case studies present investigative information from specific accidents and include a discussion of relevant prevention practices. CSB Safety Bulletins: short, general-interest publications that provide new or timely information intended to facilitate the prevention of chemical accidents. -
ADVANCES in FLUID CATALYTIC CRACKING (November 2005)
Abstract Process Economics Program Report 195A ADVANCES IN FLUID CATALYTIC CRACKING (November 2005) Recent emphasis in fluid catalytic cracking is on maximum light olefins production, gasoline sulfur reduction and compliance with FCCU NOx and SOx emissions requirements. New cracking catalysts and additives for the reduction of NOx, SOx and gasoline sulfur continue to significantly improve FCCU operation. New hardware designs offer improved unit operation and efficiency. Areas of recent new hardware design improvements include the standpipe inlet, third stage cyclones, spent catalyst distributor and catalyst stripping. Wet gas scrubbers or selective catalytic reduction may now be required in some cases to meet emissions requirements. This report provides an overview of FCC developments in catalyst, process and hardware technologies since PEP Report 195, Advances in Fluid Catalytic Cracking, issued in 1991. The report then develops process economics for cracking the most common type of FCC feedstock, vacuum gas oil. PEP Report 228, Refinery Residue Upgrading, issued in 2000 reviews the special issues and technology of Residual Fluid Catalytic Cracking (RFCC) and develops process economics for cracking a residual feedstock. Since the refinery production of light olefins such as propylene offers refiners in some regions, especially Asia and Western Europe, an opportunity for profit, the process economics of maximum light olefins FCC from VGO are developed. Air emissions (SOX, NOX) from FCCUs and the reduction of FCC gasoline sulfur are major environmental issues discussed. Professionals and managers involved in the energy industry who manage, research, develop, plan, operate, design plants or manage investments in the petroleum refining and allied industries could benefit from the information contained in this report. -
Converting Visbreakers to Delayed Cokers - an Opportunity for European Refiners
Converting Visbreakers to Delayed Cokers - An Opportunity for European Refiners European Coking.com Conference Sept. 30 - Oct. 2, 2008 Alex Broerse Lummus Technology a CB&I company © Lummus Technology Overview Introduction Delayed Coking Delayed Coking vs. Visbreaking Case Study Conclusions © Lummus Technology Converting Visbreakers to Delayed Cokers - 2 Fuel Oil Market General trend: reduction of sulfur content in fuel oil Typically 1.0-1.5 wt% S International Maritime Organization introduced SOx Emission Control Areas: . Sulfur content of fuel oil on board ships < 1.5 wt% . 1st SECA: Baltic Sea (effective 2006) . North Sea end of 2007 . More to follow Similar trend in other fuel oil application areas End of bunker fuel oil as sulfur sink? © Lummus Technology Converting Visbreakers to Delayed Cokers - 3 European Fuels Market Increased demand for ULS diesel Gradually decreasing fuel oil market Price gap between low sulfur crudes and opportunity crudes Re-evaluation of bottom-of-the-barrel strategy maximize diesel and minimize/eliminate fuel oil production What are the options? © Lummus Technology Converting Visbreakers to Delayed Cokers - 4 Bottom-of-the-Barrel Conversion Technologies Non Catalytic Catalytic Delayed coking Atm. / vac. resid hydrotreating Fluid / flexicoking Ebullated bed hydrocracking Gasification Resid FCC © Lummus Technology Converting Visbreakers to Delayed Cokers - 5 Lummus Capabilities for Bottom-of-the-Barrel Lummus Technology – Houston Delayed coking Resid FCC Chevron Lummus Global JV – Bloomfield Atmospheric/vacuum residue hydrotreating LC-FINING ebullated bed hydrocracking Lummus Technology – Bloomfield / The Hague Refinery planning studies (e.g., grassroots, revamps, processing of opportunity crudes) © Lummus TechnologyExtensive experience in heavy crude upgrade Converting Visbreakers to Delayed Cokers - 6 scenarios Overview Introduction Delayed Coking Delayed Coking vs. -
THE H-OIL PROCESS: a Worldwxide LEADER in VACUUM RESIDUE HYDROPROCESSING” \ ^
—t&CR I'd, D 3 YJj TT-097 CONEXPO ARPEL '96 . i ' 1 "THE H-OIL PROCESS: A WORLDWXiDE LEADER IN VACUUM RESIDUE HYDROPROCESSING” \ ^ J.J. Colyar1 L.I. Wisdom2 A. Koskas3 SUMMARY With the uncertainty of market trends, refiners will need to hedge their investment strategies in the future by adding processing units that provide them with flexibility to meet the changing market. The various process configurations involving the H-Oil® Process described in this paper have been tested commercially and provide the refiner with the latest state of the art technology. ABSTRACT The H-Oil® Process is a catalytic hydrocracking process, invented by HRI, Inc., a division of IFP Enterprises, Inc. which is used to convert and upgrade petroleum residua and heavy oils. Today the H-Oil Process accounts for more than 50 percent of the worldwide vacuum residue hydroprocessing market due to its unique flexibility to handle a wide variety of heavy crudes 'while producing clean transportation fuels. The process is also flexible in terms of changes in yield selectivity and product quality. The unconverted vacuum residue from the process can be utilized for fuel oil production, blended into asphalt, routed to resid catalytic cracking, directly combusted or gasified to produce hydrogen. This paper will discuss additional background information on the H-Oil Process, some of the key advances made to the process and applications for the Latin America market. The paper will also discuss the status of recent commercial plants which are in operation or which are under design or construction and which utilize these new advances. -
Environmental, Health, and Safety Guidelines for Petroleum Refining
ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES PETROLEUM REFINING November 17, 2016 ENVIRONMENTAL, HEALTH, AND SAFETY GUIDELINES FOR PETROLEUM REFINING INTRODUCTION 1. The Environmental, Health, and Safety (EHS) Guidelines are technical reference documents with general and industry-specific examples of Good International Industry Practice (GIIP).1 When one or more members of the World Bank Group are involved in a project, these EHS Guidelines are applied as required by their respective policies and standards. These industry sector EHS Guidelines are designed to be used together with the General EHS Guidelines document, which provides guidance to users on common EHS issues potentially applicable to all industry sectors. For complex projects, use of multiple industry sector guidelines may be necessary. A complete list of industry sector guidelines can be found at: www.ifc.org/ehsguidelines. 2. The EHS Guidelines contain the performance levels and measures that are generally considered to be achievable in new facilities by existing technology at reasonable costs. Application of the EHS Guidelines to existing facilities may involve the establishment of site-specific targets, with an appropriate timetable for achieving them. 3. The applicability of the EHS Guidelines should be tailored to the hazards and risks established for each project on the basis of the results of an environmental assessment in which site-specific variables— such as host country context, assimilative capacity of the environment, and other project factors—are taken into account. The applicability of specific technical recommendations should be based on the professional opinion of qualified and experienced persons. 4. When host country regulations differ from the levels and measures presented in the EHS Guidelines, projects are expected to achieve whichever is more stringent. -
Simulation and Modeling of Catalytic Reforming Process
Petroleum & Coal ISSN 1337-7027 Available online at www.vurup.sk/petroleum-coal Petroleum & Coal 54 (1) 76-84, 2012 SIMULATION AND MODELING OF CATALYTIC REFORMING PROCESS Aboalfazl Askari*, Hajir Karimi, M.Reza Rahimi, Mehdi Ghanbari Chemical engineering department, School of engineering,Yasouj University,Yasouj 75918-74831, Iran; [email protected] Received July 26, 2011, Accepted January 5, 2012 Abstract One of the most important processes in oil refineries is catalytic reforming unit in which high octane gasoline is produced. The catalytic reforming unit by using Hysys-refinery software was simulated. The results are validated by operating data, which is taken from the Esfahan oil refinery catalytic reforming unit. Usually, in oil refineries, flow instability in composition of feedstock can affect the product quality. The attention of this paper was focused on changes of the final product flow rate and product’s octane number with respect to the changes in the feedstock composition. Also, the effects of temperature and pressure on the mentioned parameters was evaluated. Furthermore, in this study, Smith kinetic model was evaluated. The accuracy of this model was compared with the actual data and Hysys-refinery’s results. The results showed that if the feed stream of catalytic reforming unit supplied with the Heavy Isomax Naphtha can be increased, more than 20% of the current value, the flow rate and octane number of the final product will be increased. Also, we found that the variations of temperature and pressure, under operating condition of the reactors of this unit, has no effect on octane number and final product flow rate. -
5.1 Petroleum Refining1
5.1 Petroleum Refining1 5.1.1 General Description The petroleum refining industry converts crude oil into more than 2500 refined products, including liquefied petroleum gas, gasoline, kerosene, aviation fuel, diesel fuel, fuel oils, lubricating oils, and feedstocks for the petrochemical industry. Petroleum refinery activities start with receipt of crude for storage at the refinery, include all petroleum handling and refining operations and terminate with storage preparatory to shipping the refined products from the refinery. The petroleum refining industry employs a wide variety of processes. A refinery's processing flow scheme is largely determined by the composition of the crude oil feedstock and the chosen slate of petroleum products. The example refinery flow scheme presented in Figure 5.1-1 shows the general processing arrangement used by refineries in the United States for major refinery processes. The arrangement of these processes will vary among refineries, and few, if any, employ all of these processes. Petroleum refining processes having direct emission sources are presented on the figure in bold-line boxes. Listed below are 5 categories of general refinery processes and associated operations: 1. Separation processes a. Atmospheric distillation b. Vacuum distillation c. Light ends recovery (gas processing) 2. Petroleum conversion processes a. Cracking (thermal and catalytic) b. Reforming c. Alkylation d. Polymerization e. Isomerization f. Coking g. Visbreaking 3.Petroleum treating processes a. Hydrodesulfurization b. Hydrotreating c. Chemical sweetening d. Acid gas removal e. Deasphalting 4.Feedstock and product handling a. Storage b. Blending c. Loading d. Unloading 5.Auxiliary facilities a. Boilers b. Waste water treatment c. Hydrogen production d. -
Modified Design for Vacuum Residue Processing
CT&F - Ciencia, Tecnología y Futuro - Vol. 4 Num. 2 Dec. 2010 MODIFIED DESIGN FOR VACUUM RESIDUE PROCESSING Sandro-Faruc González1*, Jesús Carrillo1, Manuel Núñez1, Luis-Javier Hoyos1* and Sonia-A. Giraldo2 1 Ecopetrol S. A. – Instituto Colombiano del Petróleo (ICP), A.A. 4185 Bucaramanga, Santander, Colombia 2 Universidad Industrial de Santander (UIS), Bucaramanga, Santander, Colombia e-mail: [email protected] [email protected] (Received, Feb. 16, 2010; Accepted, Nov. 30, 2010) ABSTRACT he world petroleum industry shows a decreasing in the oil reserves, specially the light kind. For this reason is very important to implement process schemes that give the possibility to improve the re- Tcuperation of valuable products of heavy oil. In this case the residue processing in each one of the petroleum refining stages earns great importance with the purpose of maximizing the quantity of fuel by barrel of feedstock processed. Therefore, it has been proposed the modification of the currently vacuum residues process scheme in the Ecopetrol´s Barrancabermeja refinery (DEMEX-Visbreaker-Hydroprocessing). That modi- fication consists in the incorporation of an additional Visbreaker stage, previous at DEMEX extraction stage. This investigation was developed with plant pilot tests combined with statistical models that predict the yield and the quality of the products obtained in the industrial plants. These models were developed by the Instituto Colombiano del Petróleo (ICP). The modified scheme Visbreaker I-DEMEX- Visbreaker II- Hydroprocessing, gives the possibility to increase the yield of middle distillates. Besides decrease the quantity of demetalized oil produced in DEMEX stage. This reduction is very favorable since environmental point of view, because it allows have a percentage of free capacity in the Hydroprocessing unit in order to removed sulfur of valuable products like Diesel and in this way to respect the environment law to this kind of fuel. -
Section 1 Introduction
SECTION 5.0 REFINING INDUSTRY DAMAGE MECHANISMS 5.1 General ................................................................................................................................ 1 5.1.1 Uniform or Localized Loss in Thickness Phenomena ................................................ 1 5.1.1.1 Amine Corrosion ......................................................................................................... 1 5.1.1.2 Ammonium Bisulfide Corrosion (Alkaline Sour Water) ......................................... 6 5.1.1.3 Ammonium Chloride Corrosion .............................................................................. 10 5.1.1.4 Hydrochloric Acid (HCl) Corrosion ......................................................................... 12 5.1.1.5 High Temp H2/H2S Corrosion ................................................................................... 15 5.1.1.6 Hydrofluoric (HF) Acid Corrosion ........................................................................... 19 5.1.1.7 Naphthenic Acid Corrosion (NAC) .......................................................................... 27 5.1.1.8 Phenol (Carbolic Acid) Corrosion ........................................................................... 31 5.1.1.9 Phosphoric Acid Corrosion ..................................................................................... 32 5.1.1.10 Sour Water Corrosion (Acidic) ............................................................................ 33 5.1.1.11 Sulfuric Acid Corrosion ...................................................................................... -
The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries Chinwendu R
World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering Vol:13, No:7, 2019 The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries Chinwendu R. Nnabalu, Gioia Falcone, Imma Bortone relative to its backup height for sustaining catalyst loads. Abstract—Petroleum refining is a chemical process in which the Increase in capacity and, subsequently, an increase in pressure raw material (crude oil) is converted to finished commercial products drop leads to dipleg plugging with catalysts, and on reaching for end users. The fluid catalytic cracking (FCC) unit is a key asset in the cyclone’s bottom, catalysts losses may occur due to it refineries, requiring optimised processes in the context of engineering being carried over. The inadequate performance of the unit design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in would lead to significant catalyst losses, operation at reduced the gasoline pool with further conversion of the downgraded product capacity intake, and reduced process performance in achieving of crude oil (residue from the distillation tower) using a catalyst in specified product yields and emission limits. FCC separation the FCC process. Effective removal of sulphur oxides, nitrogen systems are installed in a variety of ways such as single, two- oxides, carbon and heavy metals from FCC gasoline requires greater stage, third-stage separation (TSS) and fourth-stage separation separation efficiency and involves an enormous environmental (FSS) [2]-[4]. According to the Climate and Clean Air significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation. -
Waste Edible Oil Fluid Catalytic Cracking in a Downer Reactor
Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering Engineering Conferences International Year 2007 Waste Edible Oil Fluid Catalytic Cracking in a Downer Reactor Xiaoping Tang∗ Fei Weiy ∗Tsinghua University, [email protected] yTsinghua University This paper is posted at ECI Digital Archives. http://dc.engconfintl.org/fluidization xii/77 FLUIDIZATION XII 631 Tang and Wei: Waste Edible Oil Fluid Catalytic Cracking in a Downer Reactor WASTE EDIBLE OIL FLUID CATALYTIC CRACKING IN A DOWNER REACTOR Xiaoping Tang, Fei Wei, Yong Jin Department of Chemical Engineering, Tsinghua University, Beijing, China ABSTRACT The waste edible oil used as feedstock of a downer fluid catalytic cracking process (FCC), an environment friendly process to produce clean fuel and high-value chemical materials, was studied in a small hot model of downer reactor. The process has the similar product distribution to petroleum-based fuel fluid catalytic cracking process. And the desired products with trace sulfur contents have the similar molecular weight and chemical structure to the gasoline and diesel from petroleum- based fuel. Therefore, the waste edible oil fluid catalytic cracking is a promising process, with both economic and environmental benefit. INTRODUCTION The waste edible oil which is mainly from the catering trade is a kind of fluid with high viscosity and acid value. The annual generation of waste edible oil in US is about 4.54~11.35 Million tons(1); in Japan is 0.4 MT(2); in the European Union is 0.71MT(3); in China is more than 1.2 MT(4).Thus, how to treat the waste edible oil becomes one of the focuses to academic community, government and public.