APPENDIX M SUMMARY of MAJOR TYPES of Carfg2 REFINERY
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of Market for Octane Enhancers
May 2000 • NREL/SR-580-28193 Review of Market for Octane Enhancers Final Report J.E. Sinor Consultants, Inc. Niwot, Colorado National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 May 2000 • NREL/SR-580-28193 Review of Market for Octane Enhancers Final Report J.E. Sinor Consultants, Inc. Niwot, Colorado NREL Technical Monitor: K. Ibsen Prepared under Subcontract No. TXE-0-29113-01 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.doe.gov/bridge Available for a processing fee to U.S. -
Chemical Kinetic Research on HCCI & Diesel Fuels
Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI), Charles K. Westbrook, Marco Mehl, M. Lee Davisson Lawrence Livermore National Laboratory May 12, 2009 Project ID # ace_13_pitz DOE National Laboratory Advanced Combustion Engine R&D Merit Review and Peer Evaluation Washington, DC This presentation does not contain any proprietary or confidential information This work performed under the auspices of the U.S. Department of Energy by LLNL-PRES-411416 Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Overview Timeline Barriers • Ongoing project with yearly • Increases in engine efficiency and direction from DOE decreases in engine emissions are being inhibited by an inadequate ability to simulate in-cylinder combustion and emission formation processes • Chemical kinetic models are critical for Budget improved engine modeling and ultimately for engine design • Funding received in FY08 and expected in FY09: Partners • 800K (DOE) • Interactions/ collaborations: DOE Working Group, National Labs, many universities, FACE Working group. Lawrence Livermore National Laboratory 2 LLNL-PRES-411416LLNL-PRES- 411416 2009 DOE Merit Review Relevance to DOE objectives Support DOE objectives of petroleum-fuel displacement by • Improving engine models so that further improvements in engine efficiency can be made • Developing models for alternative fuels (biodiesel, ethanol, other biofuels, oil-sand derived fuels, Fischer-Tropsch derived fuels) so that they can be better used -
Exposure Investigation Protocol: the Identification of Air Contaminants Around the Continental Aluminum Plant in New Hudson, Michigan Conducted by ATSDR and MDCH
Exposure Investigation Protocol - Continental Aluminum New Hudson, Lyon Township, Oakland County, Michigan Exposure Investigation Protocol: The Identification of Air Contaminants Around the Continental Aluminum Plant in New Hudson, Michigan Conducted by ATSDR and MDCH MDCH/ATSDR - 2004 Exposure Investigation Protocol - Continental Aluminum New Hudson, Lyon Township, Oakland County, Michigan TABLE OF CONTENTS OBJECTIVE/PURPOSE..................................................................................................... 3 RATIONALE...................................................................................................................... 4 BACKGROUND ................................................................................................................ 5 AGENCY ROLES .............................................................................................................. 6 ESTABLISHING CRITERIA ............................................................................................ 7 “Odor Events”................................................................................................................. 7 Comparison Values......................................................................................................... 7 METHODS ....................................................................................................................... 12 Instantaneous (“Grab”) Air Sampling........................................................................... 12 Continuous Air Monitoring.......................................................................................... -
Olefins Recovery CRYO–PLUS ™ TECHNOLOGY 02
Olefins Recovery CRYO–PLUS ™ TECHNOLOGY 02 Refining & petrochemical experience. Linde Engineering North America Inc. (LENA) has constructed more than twenty (20) CRYO-PLUS™ units since 1984. Proprietary technology. Higher recovery with less energy. Refinery configuration. Designed to be used in low-pressure hydrogen-bearing Some of the principal crude oil conversion processes are off-gas applications, the patented CRYO-PLUS™ process fluid catalytic cracking and catalytic reforming. Both recovers approximately 98% of the propylene and heavier processes convert crude products (naphtha and gas oils) components with less energy required than traditional into high-octane unleaded gasoline blending components liquid recovery processes. (reformate and FCC gasoline). Cracking and reforming processes produce large quantities of both saturated and Higher product yields. unsaturated gases. The resulting incremental recovery of the olefins such as propylene and butylene by the CRYO-PLUS™ process means Excess fuel gas in refineries. that more feedstock is available for alkylation and polym- The additional gas that is produced overloads refinery erization. The result is an overall increase in production of gas recovery processes. As a result, large quantities of high-octane, zero sulfur, gasoline. propylene and propane (C3’s), and butylenes and butanes (C4’s) are being lost to the fuel system. Many refineries Our advanced design for ethylene recovery. produce more fuel gas than they use and flaring of the ™ The CRYO-PLUS C2= technology was specifically excess gas is all too frequently the result. designed to recover ethylene and heavier hydrocarbons from low-pressure hydrogen-bearing refinery off-gas streams. Our patented design has eliminated many of the problems associated with technologies that predate the CRYO-PLUS C2=™ technology. -
Transition Metal Hydrides That Mediate Catalytic Hydrogen Atom Transfers
Transition Metal Hydrides that Mediate Catalytic Hydrogen Atom Transfers Deven P. Estes Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Deven P. Estes All Rights Reserved ABSTRACT Transition Metal Hydrides that Mediate Catalytic Hydrogen Atom Transfers Deven P. Estes Radical cyclizations are important reactions in organic chemistry. However, they are seldom used industrially due to their reliance on neurotoxic trialkyltin hydride. Many substitutes for tin hydrides have been developed but none have provided a general solution to the problem. Transition metal hydrides with weak M–H bonds can generate carbon centered radicals by hydrogen atom transfer (HAT) to olefins. This metal to olefin hydrogen atom transfer (MOHAT) reaction has been postulated as the initial step in many hydrogenation and hydroformylation reactions. The Norton group has shown MOHAT can mediate radical cyclizations of α,ω dienes to form five and six membered rings. The reaction can be done catalytically if 1) the product metalloradical reacts with hydrogen gas to reform the hydride and 2) the hydride can perform MOHAT reactions. The Norton group has shown that both CpCr(CO)3H and Co(dmgBF2)2(H2O)2 can catalyze radical cyclizations. However, both have significant draw backs. In an effort to improve the catalytic efficiency of these reactions we have studied several potential catalyst candidates to test their viability as radical cyclization catalysts. I investigate the hydride CpFe(CO)2H (FpH). FpH has been shown to transfer hydrogen atoms to dienes and styrenes. I measured the Fe–H bond dissociation free energy (BDFE) to be 63 kcal/mol (much higher than previously thought) and showed that this hydride is not a good candidate for catalytic radical cyclizations. -
Energy and the Hydrogen Economy
Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself. -
Thermal Conductivity Correlations for Minor Constituent Fluids in Natural
Fluid Phase Equilibria 227 (2005) 47–55 Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decaneଝ M.L. Huber∗, R.A. Perkins Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA Received 21 July 2004; received in revised form 29 October 2004; accepted 29 October 2004 Abstract Natural gas, although predominantly comprised of methane, often contains small amounts of heavier hydrocarbons that contribute to its thermodynamic and transport properties. In this manuscript, we review the current literature and present new correlations for the thermal conductivity of the pure fluids n-octane, n-nonane, and n-decane that are valid over a wide range of fluid states, from the dilute-gas to the dense liquid, and include an enhancement in the critical region. The new correlations represent the thermal conductivity to within the uncertainty of the best experimental data and will be useful for researchers working on thermal conductivity models for natural gas and other hydrocarbon mixtures. © 2004 Elsevier B.V. All rights reserved. Keywords: Alkanes; Decane; Natural gas constituents; Nonane; Octane; Thermal conductivity 1. Introduction 2. Thermal conductivity correlation Natural gas is a mixture of many components. Wide- We represent the thermal conductivity λ of a pure fluid as ranging correlations for the thermal conductivity of the lower a sum of three contributions: alkanes, such as methane, ethane, propane, butane and isobu- λ ρ, T = λ T + λ ρ, T + λ ρ, T tane, have already been developed and are available in the lit- ( ) 0( ) r( ) c( ) (1) erature [1–6]. -
Providing a Guide
Lydia Miller, Emerson Automation Solutions, USA, explores how guided wave radar instruments can help a refinery make accurate level measurements in a corrosive environment. he alkylation process has long been an important The first two product streams come out of the main technique for refiners to create economical fractionator and are sent on for additional refinement. The gasoline blending components capable of raising propane is part of a mixed stream coming out of the acid the octane rating. There are two main process settler, also containing unrecovered HF and unreacted Tapproaches that are distinguished from one another by isobutane. This stream is sent to a de-propanising stage, their catalyst, either sulfuric acid or hydrofluoric acid (HF). which is effectively a large trayed distillation column, Both approaches take lighter components – primarily where propane is separated from the liquid and sent on for isobutane and olefins (various low-molecular-weight purification. The liquid stream is recycled back to the alkenes) – and, using one of the acids as a catalyst, convert original reactor and mixed with fresh feedstocks. The them to alkylate, which can be added to gasoline. highest possible degree of separation is desirable because This octane booster can be used year-round as it does when the propane is sold as a product it must not have HF not cause vapour pressure problems that are common to residues, and returning propane to the reactor reduces its alternative additives. Both processes were developed efficiency. during World War II to help increase the supply of high-octane aviation fuel available to allied air forces, and The de-propanising tower both have been in use ever since. -
Optimization of Refining Alkylation Process Unit Using Response
Optimization of Refining Alkylation Process Unit using Response Surface Methods By Jose Bird, Darryl Seillier, Michael Teders, and Grant Jacobson - Valero Energy Corporation Abstract This paper illustrates a methodology to optimize the operations of an alkylation unit based on response surface methods. Trial based process optimization requires the unit to be operated across a wide range of conditions. This approach tends to be opposed by refinery operations as it can disrupt the normal operations of a process unit. Using the methods presented in this paper, the general direction of process improvement is first identified using a first order profit response surface built from available operating data. The performance of the unit is then evaluated at the refinery by making systematic changes to the key factors in the projected direction of process improvement. The operating results are then used to build a localized second order profit response surface to generate a revised set of optimum targets. Multiple linear regression models are used to predict alkylate yield, alkylate octane and Iso-stripper or De-Isobutanizer reboiler duty as a function of key process variables. These models are then used to generate a profit response surface for selection of an optimum target region for step testing at the refinery prior to implementation of the unit targets. 1. Introduction An alkylation unit takes a feed stream with a high olefin content, typically originating from a fluid catalytic cracking (FCC) unit, and adds isobutane (IC4) which reacts with the olefins to produce a high octane alkylate product. Either hydrofluoric or sulfuric acid is used as a catalyst for the alkylation reaction. -
Modeling the HF Alkylation Chemistry Contents
think simulation | getting the chemistry right Modeling the HF alkylation chemistry An OLI Joint Industry Project (JIP) beginning April 2019 Contents Corrosion in the HF alkylation process ............................................................................................................ 2 Current modeling challenge ............................................................................................................................ 2 OLI Systems framework .................................................................................................................................. 2 Proposed Joint Industry Project (JIP) ............................................................................................................... 3 Project approach ............................................................................................................................................ 3 Project feasibility ............................................................................................................................................ 4 Pricing and deliverables ................................................................................................................................. 4 JIP details ....................................................................................................................................................... 5 Why choose OLI? .......................................................................................................................................... -
Alkylation: a Key to Cleaner Fuels and Better Vehicle Mileage
Alkylation A Key to Cleaner Gasoline & Better Vehicle Mileage American Fuel & Petrochemical Manufacturers (AFPM) is the leading trade association representing the majority of U.S. refining and petrochemical manufacturing capacity. Our members produce the fuels that power the U.S. economy and the chemical building blocks integral to millions of products that make modern life possible. U.S. gasoline needs alkylate for (OSHA) Process Safety Management and projects to transition from HF to Refineries that are close to chemical facil- its octane and environmental program and the Environmental even newer alkylation technologies are ities may have the option of selling their properties Protection Agency’s (EPA) Risk still in early phases. Eliminating the use propylene and butylene as feedstocks America’s fuel refiners use a chemical Management Program. But refineries that of either HF or sulfuric acid technology to manufacture plastics and sanitizers. process called alkylation to produce use HF go even further. Because nothing would severely diminish U.S. capacity to For refineries without this option, HF Refinery alkylation alkylate, a component of the cleaner is more important to the refining industry manufacture cleaner gasoline in line with alkylation technology provides an answer Alkylation is a refinery gasoline required by today’s higher- than the safety of our people and consumer demand. where sulfuric acid technology does not. is subject to layers process essential to the efficiency automobiles. Nearly 90 U.S. communities, facilities with HF alkylation HF units can co-process both propylene of regulation and refineries — representing 90% of total U.S. units also adhere to exacting industry and butylene to make alkylate. -
Study of Selected Petroleum Refining Residuals
STUDY OF SELECTED PETROLEUM REFINING RESIDUALS INDUSTRY STUDY Part 1 August 1996 U.S. ENVIRONMENTAL PROTECTION AGENCY Office of Solid Waste Hazardous Waste Identification Division 401 M Street, SW Washington, DC 20460 TABLE OF CONTENTS Page Number 1.0 INTRODUCTION .................................................... 1 1.1 BACKGROUND ............................................... 1 1.2 OTHER EPA REGULATORY PROGRAMS IMPACTING THE PETROLEUM REFINING INDUSTRY ............................. 2 1.3 INDUSTRY STUDY FINDINGS .................................. 3 2.0 INDUSTRY DESCRIPTION ........................................... 8 2.1 PETROLEUM REFINING INDUSTRY PROFILE ..................... 8 2.2 INDUSTRY STUDY ........................................... 10 2.2.1 Site Selection ......................................... 11 2.2.2 Engineering Site Visits .................................. 13 2.2.3 RCRA §3007 Questionnaire .............................. 13 2.2.4 Familiarization Sampling ................................ 14 2.2.5 Record Sampling ....................................... 15 2.2.6 Split Samples Analyzed by API ........................... 20 2.2.7 Synthesis ............................................. 20 3.0 PROCESS AND WASTE DESCRIPTIONS ............................... 21 3.1 REFINERY PROCESS OVERVIEW .............................. 21 3.2 CRUDE OIL DESALTING ...................................... 25 3.2.1 Process Description ..................................... 25 3.2.2 Desalting Sludge ....................................... 26 3.3 HYDROCRACKING