A Report of the ACM Curriculum Committee on Computer Education for Management

Total Page:16

File Type:pdf, Size:1020Kb

A Report of the ACM Curriculum Committee on Computer Education for Management ACM Recommended Curricula for Computer Science and Information Processing Programs in Colleges and Universities, 1968-1981 Compiled by the Committees on Computer Curricula of the ACM Education Board Association for Computing Machinery acm Association for Computing Machinery 1133 Avenue of the Americas New York, NY 10036 Price: ACM Members: $15.00 Non-members: $20.00 Copies may be ordered, prepaid, from: ACM Order Department P.O. Box 64145 Baltimore, MD 21264 Use order #201813 Copyright ©1981 by the Association for Computing Machinery ISBN: 0-89791-058-3 CONTENTS Page Curriculum 68: Recommendations for Academic Programs in Computer Science 1 Curriculum Recommendations for Graduate Professional Programs in Information Systems 49 A Computer Science Course Program for Small Colleges 85 Curriculum Recommendations for Undergraduate Programs in Information Systems 95 Curriculum 78: Recommendations for the Undergraduate Program in Computer Science 119 Recommendations for Master's Level Programs in Computer Science 139 Educational Programs in Information Systems 149 Recommendations and Guidelines for an Associate Level Degree Program in Computer Programming 159 PREFACE When we enter the twenty-first century, computers This volume includes all the curricula published as of will have influenced our lives more than any other tech- June 1981, plus the final version of the "Curriculum on nology known to civilization. The need for knowledge Computer Programming for Community and Junior Col- about computers, computer technology, and the theoretical leges" which appeared in draft version in the June 1977 aspects of computers has grown exponentially. Since its SIGCSE Bulletin. These curricula are printed in order of founding in 1947, the Association for Computing Machinery publication dates. We realize that some of the recent has attempted to address this need for computer knowledge. curricula included will soon be updated — nothing is The study of computers is an endeavor demanding absolute, nothing is final. ACM's efforts in the develop- careful, thorough, and organized development. Recognizing ment of curricula will not end, they will be ongoing. the need for a comprehensive model curriculum for the Two new curricula, A Model Curriculum for Doc- growing number of institutions offering computer science toral-Level Programs in Health Computing and Recom- courses, ACM, in the mid-sixties, established the Curricu- mendations and Guidelines for Vocation-Technical Career lum Committee on Computer Science to make recom- Programs for Computer Personnel in Operations were mendations and provide guidelines to institutions. Chaired published in July 1981 and are available from ACM sep- by Dr. William Atchison of the University of Maryland, this arately. dedicated group of forward-thinking people published ACM is aware that there are demands for education preliminary recommendations in September 1965. With about computers in areas other than formal, theoretical financial assistance from the National Science Foundation, programs. In the middle of 1981, when the computer's they published their final report, "Recommendations for impact on society is so clear, we realize computer study Academic Programs in Computer Science," in Communi- cannot be confined to the post-secondary area. Work is cations of the ACM in March 1968. This curriculum, known now in progress to develop viable programs for the secon- as "Curriculum '68," formed the basis of formal computer dary and elementary schools. science study in colleges and universities for the next ten No author of a preface should close without giving years. thanks. Over the past 15 years, each ACM administra- Circumstances in the world of computers change con- tion has supported curriculum activity; those administra- stantly. As soon as a new idea emerges, as soon as a new tions are to be thanked. Also, thanks should be given to the principle is stated, as soon as a new technology is devel- staffs of ACM Headquarters who helped publish each oped, it is outdated. Such is the case with curricula. As curricula, the authors of each curriculum published, as soon as "Curriculum '68" was published, many realized well as to the committees that supported them. I would that there were other avenues to take, and as a conse- like to list all those who have given their time and energy quence, other curricula were developed. to make these curricula a reality, but I fear if I mention Since many small colleges could not afford a computer one name, than I shall forget another. Therefore, a blanket science program similar to the one outlined in "Curri- thank you is given to each person who has contributed to culum '68," a small college curriculum was developed. The the development of these curricula. need for information systems curricula, quite different from computer science curricula, was recognized; those curricula were published in 1972, 1973, and 1981. In William B. Gruener, Chairman addition, specialized curricula for Associate Degree pro- ACM Curriculum Committee grams in Community and Junior Colleges and Doctoral on Computer Education level programs in Health Computing were developed, November 1981 and "Curriculum '68" was updated by "Curriculum '78". CURRICULUM 68 Recommendations for Academic Programs in Computer Science A REPORT OF THE ACM CURRICULUM COMMITTEE ON COMPUTER SCIENCE Dedicated to the Memory of Silvio 0. Navarro This report contains recommendations on academic programs in computer science which were developed by the ACM Curriculum Committee on Computer Science. A classification of the subject areas contained in computer science is presented and twenty-two courses in these areas are described. Prerequisites, catolog descriptions, detailed outlines, and annotated bibliographies for these courses are included. Spe- cific recommendations which have evolved from the Committee's 1965 Preliminary Recommendations are given for undergraduate programs. Graduate programs in computer science are discussed, and some recommendations are presented for the development of master's degree programs. Ways of developing guidelines for doctoral programs are discussed, but no specific recommendations are made. The importance of service courses, minors, and continuing education in computer science is empha- sized. Attention is given to the organization, staff requirements, computer resources, and other facilities needed to implement computer science educational programs. KEY WORDS AND PHRASES: computer science courses, computer science curriculum, computer science education, computer science academic programs, computer science graduate programs, computer science undergraduate programs, computer science course bibliographies CR CATEGORIES: 1.52 Preface The Curriculum Committee on Computer Science (C3S) was initially formed in 1962 as a subcommittee of the Education Committee of the As- sociation for Computing Machinery. In the first few years of its existence this subcommittee functioned rather informally by sponsoring a number of panel discussions and other sessions at various national computer meetings. The Curriculum Committee became an independent committee of the ACM in 1964 and began an active effort to formulate detailed recommendations for curricula in computer science. Its first report, "An Undergraduate Pro- gram in Computer Science—Preliminary Recommendations" [1], was pub- lished in the September 1965 issue of Communications of the ACM. The work of the Committee during the last two years has been devoted to revising these recommendations on undergraduate programs and develop- ing recommendations for graduate programs as contained in this report. The primary support for this work has been from the National Science Founda- tion under Grant Number GY-305, received in July 1965. The Committee membership during the preparation of this report was: William F. Atchison, University of Maryland (Chairman) Samuel D. Conte, Purdue University John W. Hamblen, SREB and Georgia Institute of Technology Thomas E. Hull, University of Toronto Thomas A. Keenan, EDUCOM and the University of Rochester William B. Kehl, University of California at Los Angeles Edward J. McCluskey, Stanford University Silvio O. Navarro,* University of Kentucky Werner C. Rheinboldt, University of Maryland Earl J. Schweppe, University of Maryland (Secretary) William Viavant, University of Utah David M. Young, Jr., University of Texas * Dr. Navarro was killed in an airplane crash on April 3, 1967. In addition to these members many others have made valuable contribu- tions to the work of the Committee. Their names and affiliations are listed at the end of this report. Robert Ashenhurst and Peter Wegner have given especial assistance in the preparation of this report. CONTENTS 1. Introduction 2. Subject Classification 3. Description of Courses 4. Undergraduate Programs 5. Master's Degree Programs 6. Doctoral Programs 7. Service Courses, Minors, and Continuing Education 8. Implementation References Acknowledgments Appendix. Course Outlines and Bibliographies 2 1. Introduction Following the appearance of its Preliminary Recom- liographies in the Appendix—on a total of twenty-two mendations [1], the Curriculum Committee on Com- courses. puter Science received many valuable comments, Another important issue which concerned the Cur- criticisms, and suggestions on computer science edu- riculum Committee is the extent to which undergrad- cation. From these, the advice of numerous consul- uate programs as opposed to graduate programs in tants, and the ideas of many
Recommended publications
  • Software Tools: a Building Block Approach
    SOFTWARE TOOLS: A BUILDING BLOCK APPROACH NBS Special Publication 500-14 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards ] NATIONAL BUREAU OF STANDARDS The National Bureau of Standards^ was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to pro- mote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, the Office for Information Programs, and the ! Office of Experimental Technology Incentives Program. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consist- ent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essen- tial services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, and the following center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Center for Radiation Research — Lab- oratory Astrophysics^ — Cryogenics^ — Electromagnetics^ — Time and Frequency*. THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measure- ment, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational insti- tutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials.
    [Show full text]
  • Edsger W. Dijkstra: a Commemoration
    Edsger W. Dijkstra: a Commemoration Krzysztof R. Apt1 and Tony Hoare2 (editors) 1 CWI, Amsterdam, The Netherlands and MIMUW, University of Warsaw, Poland 2 Department of Computer Science and Technology, University of Cambridge and Microsoft Research Ltd, Cambridge, UK Abstract This article is a multiauthored portrait of Edsger Wybe Dijkstra that consists of testimo- nials written by several friends, colleagues, and students of his. It provides unique insights into his personality, working style and habits, and his influence on other computer scientists, as a researcher, teacher, and mentor. Contents Preface 3 Tony Hoare 4 Donald Knuth 9 Christian Lengauer 11 K. Mani Chandy 13 Eric C.R. Hehner 15 Mark Scheevel 17 Krzysztof R. Apt 18 arXiv:2104.03392v1 [cs.GL] 7 Apr 2021 Niklaus Wirth 20 Lex Bijlsma 23 Manfred Broy 24 David Gries 26 Ted Herman 28 Alain J. Martin 29 J Strother Moore 31 Vladimir Lifschitz 33 Wim H. Hesselink 34 1 Hamilton Richards 36 Ken Calvert 38 David Naumann 40 David Turner 42 J.R. Rao 44 Jayadev Misra 47 Rajeev Joshi 50 Maarten van Emden 52 Two Tuesday Afternoon Clubs 54 2 Preface Edsger Dijkstra was perhaps the best known, and certainly the most discussed, computer scientist of the seventies and eighties. We both knew Dijkstra |though each of us in different ways| and we both were aware that his influence on computer science was not limited to his pioneering software projects and research articles. He interacted with his colleagues by way of numerous discussions, extensive letter correspondence, and hundreds of so-called EWD reports that he used to send to a select group of researchers.
    [Show full text]
  • A Common Programming Language for the Depart Final Ment of Defenses-Background and Technical January -December 1975 1 Requirements «
    Approved for public release; distribution unlimited I 1 PAPER P-1191 A COMMON PROGRAMMING LANGUAGE 1 FOR THE DEPARTMENT OF DEFENSE - - I BACKGROUND AND TECHNICAL REQUIREMENTS I I D. A. Fisher June 1976 I 1 I I I I INSTITUTE FOR DEFENSE ANALYSES I SCIENCE AND TECHNOLOGY DIVISION I I IDA Log No. HQ 76-18215 I Cop-)*- > . -JJ . of 155. cop I ess Approved for public release; distribution unlimited I I I I The work reported in this document was conducted under contract DAHC15 73 C 0200 for the Department of Defense. The publication I of this IDA Paper does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official position of that agency. I I I I This document has been approved for public release, distribution is unlimited. I I 1 1 1 I I I Copyright IDA/Scanned June 2007 I 1 Approved for public release; distribution unlimited UNCLASSIFIED - ©; ; ; : ;" -; .©, . 1 SECURITY CLASSIFICATION OF THIS PAGE CWnen DM* Entered; READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM ). RECIPIENT©S CATALOG NUMBER 1 Paper P-J.191. 4. TITLE fend Subtitle.) 5. TYPE Of REPORT e PERIOD COVERED A Common Programming Language for the Depart Final ment of Defenses-Background and Technical January -December 1975 1 Requirements «. PERFORMING ORG. REPORT NUMBER P-1191 I. CONTRACT OR GRANT NUMBERflJ 1 DAHC15 73 C 0200 D.A, Fisher 10. PROGRAM ELEMENT. PROJECT TASK 1 INSTITUTE FOR DEFENSE ANALYSES AREA * WORK UNIT NUMBERS 400 Army-Navy Drive Task T-36 Arlington. Virginia 22202 11.
    [Show full text]
  • S-Algol Reference Manual Ron Morrison
    S-algol Reference Manual Ron Morrison University of St. Andrews, North Haugh, Fife, Scotland. KY16 9SS CS/79/1 1 Contents Chapter 1. Preface 2. Syntax Specification 3. Types and Type Rules 3.1 Universe of Discourse 3.2 Type Rules 4. Literals 4.1 Integer Literals 4.2 Real Literals 4.3 Boolean Literals 4.4 String Literals 4.5 Pixel Literals 4.6 File Literal 4.7 pntr Literal 5. Primitive Expressions and Operators 5.1 Boolean Expressions 5.2 Comparison Operators 5.3 Arithmetic Expressions 5.4 Arithmetic Precedence Rules 5.5 String Expressions 5.6 Picture Expressions 5.7 Pixel Expressions 5.8 Precedence Table 5.9 Other Expressions 6. Declarations 6.1 Identifiers 6.2 Variables, Constants and Declaration of Data Objects 6.3 Sequences 6.4 Brackets 6.5 Scope Rules 7. Clauses 7.1 Assignment Clause 7.2 if Clause 7.3 case Clause 7.4 repeat ... while ... do ... Clause 7.5 for Clause 7.6 abort Clause 8. Procedures 8.1 Declarations and Calls 8.2 Forward Declarations 2 9. Aggregates 9.1 Vectors 9.1.1 Creation of Vectors 9.1.2 upb and lwb 9.1.3 Indexing 9.1.4 Equality and Equivalence 9.2 Structures 9.2.1 Creation of Structures 9.2.2 Equality and Equivalence 9.2.3 Indexing 9.3 Images 9.3.1 Creation of Images 9.3.2 Indexing 9.3.3 Depth Selection 9.3.4 Equality and Equivalence 10. Input and Output 10.1 Input 10.2 Output 10.3 i.w, s.w and r.w 10.4 End of File 11.
    [Show full text]
  • User's Manual for the ALCR-ILLINIS-7090 ALGL-60
    •::../. ; '-> v.- V. -V.' skss Hi *lSn i'-fh B£H*wffi H HI BBfiffli? •LN. fln WW* WSMmm Ml H II B RAI^Y OF THE UN IVLRSITY Of ILLINOIS SlO.84 XSibus 1964 The person charging this material is re- sponsible for its return on or before the Latest Date stamped below. Theft, mutilation, and underlining of books are reasons for disciplinary action and may result in dismissal from the University. University of Illinois Library i 1970 LI61— O-10Q6 Digitized by the Internet Archive in 2013 http://archive.org/details/usersmanualforalOOuniv »" DIGITAL COMPUTER LABORATORY GRADUATE COLLEGE UNIVERSITY OF ILLINOIS User's Manual for the ALCpR-ILLIN0IS-7O9O ALG0L-6O Translator University of Illinois 2nd Edition Manual Written and Revised by R. Bayer E. Murphree, Jr. D. Gries September 28, I96U . : Preface In June, 19^2, by arrangement between the University of Illinois and the ALCOR group in Europe, Dr. Manfred Paul, Johannes Gutenberg Universitat, Mainz, and Dr. Rudiger Wiehle, Munchen Technische Hochschule, Munich, began the design of the ALC0R-ILLIN0IS-7O9O ALGOL-60 Translator, the use of which is described in this Manual. They were joined in July, I962, by David Gries and the writer and later by Michael Rossin, Theresa Wang and Rudolf Bayer, all graduate students at the University of Illinois This manual is an effort to explain the differences which exist between publication ALGOL-60 as it is defined by the Revised Report on the Algorithmic Language ALGOL-60 (as published in the January I963 issue of Communications of the Association for Computing Machinery) and as it actually has been implemented by the group named above, Relatively few features of ALGOL-60 have not been implemented, so this manual consists mostly of an explanation of the "hardware" representation of true ALGOL rather than deviations from it.
    [Show full text]
  • A Static Analysis Framework for Security Properties in Mobile and Cryptographic Systems
    A Static Analysis Framework for Security Properties in Mobile and Cryptographic Systems Benyamin Y. Y. Aziz, M.Sc. School of Computing, Dublin City University A thesis presented in fulfillment of the requirements for the degree of Doctor of Philosophy Supervisor: Dr Geoff Hamilton September 2003 “Start by doing what’s necessary; then do what’s possible; and suddenly you are doing the impossible” St. Francis of Assisi To Yowell, Olivia and Clotilde Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of the degree of Doctor of Philosophy (Ph.D.) is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: I.D. No.: Date: Acknowledgements I would like to thank all those people who were true sources of inspiration, knowledge, guidance and help to myself throughout the period of my doctoral research. In particular, I would like to thank my supervisor, Dr. Geoff Hamilton, without whom this work would not have seen the light. I would also like to thank Dr. David Gray, with whom I had many informative conversations, and my colleagues, Thomas Hack and Fr´ed´ericOehl, for their advice and guidance. Finally, I would like to mention that the work of this thesis was partially funded by project IMPROVE (Enterprise Ireland Strategic Grant ST/2000/94). Benyamin Aziz Abstract We introduce a static analysis framework for detecting instances of security breaches in infinite mobile and cryptographic systems specified using the languages of the π-calculus and its cryptographic extension, the spi calculus.
    [Show full text]
  • Lecture Notes in Computer Science
    Orthogonal Persistence Revisited Alan Dearle, Graham N.C. Kirby and Ron Morrison School of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SX, Scotland {al, graham, ron}@cs.st-andrews.ac.uk Abstract. The social and economic importance of large bodies of programs and data that are potentially long-lived has attracted much attention in the commercial and research communities. Here we concentrate on a set of methodologies and technologies called persistent programming. In particular we review programming language support for the concept of orthogonal persistence, a technique for the uniform treatment of objects irrespective of their types or longevity. While research in persistent programming has become unfashionable, we show how the concept is beginning to appear as a major component of modern systems. We relate these attempts to the original principles of orthogonal persistence and give a few hints about how the concept may be utilised in the future. 1 Introduction The aim of persistent programming is to support the design, construction, maintenance and operation of long-lived, concurrently accessed and potentially large bodies of data and programs. When research into persistent programming began, persistent application systems were supported by disparate mechanisms, each based upon different philosophical assumptions and implementation technologies [1]. The mix of technologies typically included naming, type and binding schemes combined with different database systems, storage architectures and query languages. The incoherence in these technologies increased the cost both intellectually and mechanically of building persistent application systems. The complexity distracted the application builder from the task in hand to concentrate on mastering the multiplicity of programming systems, and the mappings amongst them, rather than the application being developed.
    [Show full text]
  • Education in Programming David Gries Dr. Rer. Nat., Munich Institute
    Education in Programming David Gries Dr. rer. nat., Munich Institute of Technology, 1966 Computer Science, Cornell University, Ithaca, NY 1 1 A Glimerick of Hope David Gries, 1995 Abstract Well I got my degree at that place The world is turning to C, And my ancestors came from that race Though at best it is taught awkwardly, Though Great New York C But we don’t have to mope, Was the Birthplace of me There’s a glimmer of hope, And CS at Cornell is my base. In the methods of formality President Mary of Eire So I don't have a real PhD. Was supposed to come to regale ya. It's the Dr. Rer. Nat. that's for me. But matters of State And it's from MIT Made her cancel that date --On your side of the sea So you’re stuck with this guy from Bavaria Munich Inst. of Technolology 2 2 In 1962–63, in Illinois writing the ALCOR-ILLINOIS 7090 ALGOL Compiler I came to Munich to get a PhD (and finish the compiler) Manfred Paul Rudiger Wiehle Elaine and David Gries 3 3 Instrumental in the development of programming languages and their implementation A early as 1952, Bauer: Keller principle Influential in development of Algol 60 Educate the next generation of computer scientists 1968 and 1969 NATO Conferences on Software Engineering (Garmisch and Rome) 4 4 1968 and 1969 NATO Conferences Software Engineering (Garmisch and Rome) 5 5 1968 and 1969 NATO Conferences Software Engineering (Garmisch and Rome) 6 6 Instrumental in the development of programming languages and their implementation Educate the next generation of computer scientists 1968 and 1969 NATO Conferences on Software Engineering (Garmisch and Rome) The Marktoberdorf Summer Schools now led ably by Manfred Broy 7 7 The teaching of programming simplicity elegance perfection intellectual honesty Edsger W.
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. EVALUATION OF FUNCTIONAL DATA MODELS FOR DATABASE DESIGN AND USE by KRISHNARAO GURURAO KULKARNI Ph. D. University of Edinburgh 1983 To my wife, Rama and daughter, Bhuvana Acknowledgements I am deeply indebted to my thesis supervisor, Dr. Malcolm Atkinson, for his constant guidance, help, and encouragement. for his highly incisive comments on the writing of this thesis, and for a host of other reasons. It is indeed a great pleasure to acknowledge his contribution. I am also greatly indebted to Dr. David Rees, who supervised me during the initial six months. His help and guidance during that time was invaluable. I am thankful to many of my friends In the Department for their kind advice from time to time. In particular, I would like to thank Paul Cockshott, Ken Chisholm, Pedro Hepp, Segun Owoso, George Ross, and Rob Procter for many useful discussions.
    [Show full text]
  • Napier88 Reference Manual Release 2.2.1
    Napier88 Reference Manual Release 2.2.1 July 1996 Ron Morrison Fred Brown* Richard Connor Quintin Cutts† Alan Dearle‡ Graham Kirby Dave Munro University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS, Scotland. *Department of Computer Science, University of Adelaide, South Australia 5005, Australia. †University of Glasgow, Lilybank Gardens, Glasgow G12 8QQ, Scotland. ‡University of Stirling, Stirling FK9 4LA, Scotland. This document should be referenced as: “Napier88 Reference Manual (Release 2.2.1)”. University of St Andrews (1996). Contents 1 INTRODUCTION ............................................................................. 5 2 CONTEXT FREE SYNTAX SPECIFICATION.......................................... 8 3 TYPES AND TYPE RULES ................................................................ 9 3.1 UNIVERSE OF DISCOURSE...............................................................................................9 3.2 THE TYPE ALGEBRA..................................................................................................... 10 3.2.1 Aliasing............................................................................................................... 10 3.2.2 Recursive Definitions............................................................................................. 10 3.2.3 Type Operators...................................................................................................... 11 3.2.4 Recursive Operators ..............................................................................................
    [Show full text]
  • Introduction to the Literature on Programming Language Design Gary T
    Computer Science Technical Reports Computer Science 7-1999 Introduction to the Literature On Programming Language Design Gary T. Leavens Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons Recommended Citation Leavens, Gary T., "Introduction to the Literature On Programming Language Design" (1999). Computer Science Technical Reports. 59. http://lib.dr.iastate.edu/cs_techreports/59 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Introduction to the Literature On Programming Language Design Abstract This is an introduction to the literature on programming language design and related topics. It is intended to cite the most important work, and to provide a place for students to start a literature search. Keywords programming languages, semantics, type systems, polymorphism, type theory, data abstraction, functional programming, object-oriented programming, logic programming, declarative programming, parallel and distributed programming languages Disciplines Programming Languages and Compilers This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/59 Intro duction to the Literature On Programming Language Design Gary T. Leavens TR 93-01c Jan. 1993, revised Jan. 1994, Feb. 1996, and July 1999 Keywords: programming languages, semantics, typ e systems, p olymorphism, typ e theory, data abstrac- tion, functional programming, ob ject-oriented programming, logic programming, declarative programming, parallel and distributed programming languages.
    [Show full text]
  • A Conceptual Language for Querying Object Oriented Data
    A Conceptual Language for Querying Ob ject Oriented Data Peter J Barclay and Jessie B Kennedy Computer Studies Dept., Napier University 219 Colinton Road, Edinburgh EH14 1DJ Abstract. Avariety of languages have been prop osed for ob ject oriented database systems in order to provide facilities for ad hoc querying. How- ever, in order to mo del at the conceptual level, an ob ject oriented schema de nition language must itself provide facilities for describing the b ehaviour of data. This pap er demonstrates that with only mo dest extensions, sucha schema de nition language mayserve as a query notation. These extensions are concerned solely with supp orting the interactive nature of ad hoc query- ing, providing facilities for naming and displaying query op erations and their results. 1 Overview Section 2 reviews the background to this work; its ob jectives are outlined in section 3. Section 4 describ es NOODL constructs which are used to de ne behaviour within schemata, and section 5 examines how these may b e extended for interactive use. The resulting query notation is evaluated in section 6. Section 7 outlines some further work and section 8 concludes. 2 Background NOM (the Napier Ob ject Mo del) is a simple data mo del intended to allow ob ject oriented mo delling of data at a conceptual level; it was rst presented in [BK91] and is describ ed fully in [Bar93]. NOM has b een used to mo del [BK92a] and to supp ort the implementation [BFK92] of novel database applications, and also for the investigation of sp eci c mo delling issues such as declarativeintegrity constraints and activeness [BK92b] and the incorp oration of views [BK93] in ob ject oriented data mo dels.
    [Show full text]