Geometrydiscrete & Computational © 1997 Springer-Verlag New York Inc

Total Page:16

File Type:pdf, Size:1020Kb

Geometrydiscrete & Computational © 1997 Springer-Verlag New York Inc Discrete Comput Geom 17:449–478 (1997) GeometryDiscrete & Computational © 1997 Springer-Verlag New York Inc. Regular Polytopes in Ordinary Space P. McMullen1 and E. Schulte2 1Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England [email protected] 2Department of Mathematics, Northeastern University, Boston, MA 02115, USA [email protected] Abstract. The three aims of this paper are to obtain the proof by Dress of the completeness of the enumeration of the Gr¨unbaum–Dress polyhedra (that is, the regular apeirohedra, or 3 apeirotopes of rank 3) in ordinary space E in a quicker and more perspicuous way, to give presentations of those of their symmetry groups which are affinely irreducible, and to 3 describe all the discrete regular apeirotopes of rank 4 in E . The paper gives a complete classification of the discrete regular polytopes in ordinary space. 1. Introduction The theory of regular polytopes has undergone a number of changes since its origins in the classification by the Greeks of the five regular (“Platonic”) solids, but most particularly during this century. At the forefront of this development is Coxeter, whose book Regular Polytopes [3] covers what might be called the classical theory. However, already in Coxeter’s work a more abstract approach begins to be manifested. One generalization of regular polyhedron is that of a regular map (see, for example, [4]). The starting point of the present paper is 1926, when Petrie found the two dual regular apeirohedra (infinite polyhedra) 4, 6 4 and 6, 4 4 in E3, which have planar faces but skew vertex-figures (these technical{ | } terms{ are| defined} in Section 2). Immediately afterwards, Coxeter discovered a third such example: 6, 6 3 (see [2]). Around 1975 Gr¨unbaum (see [8]) restored the symmetry by allowing{ skew| } faces as well (although implicitly these were permitted by Coxeter also in using the Petrie operation); he found The second author was partially supported by NSA Grant MDA904-96-1-0027 and Northeastern Uni- versity’s RDS Fund. 450 P. McMullen and E. Schulte 20 more regular apeirohedra in E3. A final instance was discovered by Dress around 1980 (see [5] and [6]), who also proved the completeness of the enumeration. Our aims here are threefold. First, we describe a far quicker method of arriving at Dress’s characterization result. The key to this method is a “trick” employed in the proofs of Theorems 4.5 and 6.2, the essence of which is to replace a reflexion whose mirror is a line by one whose mirror is a perpendicular plane. This idea also leads to new pairings between the finite regular polyhedra. Second, we give presentations of the symmetry groups of those discrete regular apeirohedra in E3 whose groups are affinely irreducible; an important ingredient here is Theorem 2.5, which says that such a presentation arises solely from the vertex-figure and the edge-circuits. Third, we describe seven new discrete regular apeirotopes of rank 4 in E3, to add to the familiar honeycomb 4, 3, 4 of cubes, and prove that there are no others. Thus the paper contains a complete{ classification} of the discrete regular polytopes in ordinary space. 2. Abstract Regular Polytopes Since we discuss regular polytopes on the abstract as well as the geometric level, we begin with a brief introduction to the underlying general theory (see, for example, [12] and [13]). An (abstract) polytope of rank n, or simply an n-polytope, satisfies the following properties. It is a partially ordered set with a strictly monotone rank function whose range is 1, 0,...,n . The elements ofP rank j are called the j-faces of , and the family { } P of such j-faces is denoted j .For j 0, 1, n 2, or n 1, we also call j-faces vertices, edges, ridges, and facets,P respectively.= The flags (maximal totally ordered subsets) of each contain exactly n 2 faces, including the unique minimal face F 1 and unique P + maximal face Fn of . Further, is strongly flag-connected, meaning that any two flags P P 8 and 9 of can be joined by a sequence of flags 8 80,81,...,8k 9, where P = = 8i 1 and 8i are adjacent (differ by one face), and 8 9 8i for each i. Finally, if F and G are a ( j 1)-face and a ( j 1)-face with F∩< G, then there are exactly two j-faces H such that F < H < G. + When F and G are two faces of a polytope with F G, we call G/F : H F H G asection of . We may usually safelyP identify a face F with the={ section| } P F/F 1.ForafaceFthe section Fn/F is called the co-face of at F,orthevertex-figure at F if F is a vertex. P An n-polytope is regular if its (automorphism) group 0( ) is transitive on its P P flags. Let 8 : F 1,F0,...,Fn 1,Fn beafixedorbase flag of . The group 0( ) ={ } P P of a regular n-polytope is generated by distinguished generators 0,...,n 1 (with P respect to 8), where j is the unique automorphism which keeps all but the j-face of 8 fixed. These generators satisfy relations pij (2.1) (i j ) ε(i,j0,...,n 1), = = with (2.2) pii 1, pij pji 2 (i j), = = 6= and (2.3) pij 2ifij2. = || Regular Polytopes in Ordinary Space 451 The numbers pj : pj 1, j ( j 1,...,n 1) determine the (Schlafli¨ ) type p1,...,pn 1 of . Further, 0(=) has the intersection= property (with respect to the distinguished{ gen- } erators),P namely,P (2.4) i i I i i J i i I J for all I, J 0,...,n 1 . h | ∈ i∩h | ∈ i=h | ∈ ∩ i { } Observe that, in a natural way, the group of the facet of is 0,...,n 2 , while P h i that of the vertex-figure is 1,...,n 1 . By a C-group, we meanh a group which i is generated by involutions such that (2.1), (2.2), and (2.4) hold. If, in addition, (2.3) holds, then the group is called a string C-group. The group of a regular polytope is a string C-group. Conversely, given a string C-group, there is an associated regular polytope of which it is the automorphism group [12]. In verifying that a given group is a C-group, it is usually only the intersection property which causes difficulty. Note that Coxeter groups are examples of C-groups (see [12] and [21]). Given regular n-polytopes 1 and 2 such that the vertex-figures of 1 are isomorphic P P P to the facets of 2, we denote by 1, 2 the class of all regular (n 1)-polytopes P hP P i + P with facets isomorphic to 1 and vertex-figures isomorphic to 2.If 1, 2 , then P P hP P i6=∅ any such is a quotient of a universal member of 1, 2 ; this universal polytope is P hP P i denoted by 1, 2 (see [12], [17], and [20]). We end the{P generalP } discussion of regular polytopes and their groups with a useful remark. Let 0 0,...,n 1 be the group of a regular n-polytope , and suppose that 0. Then=h we can express i in the form P ∈ 0010 k 10k, = with i 00 : 1,...,n 1 , the group of the vertex-figure of at its base vertex ∈ =h i P v : F0, for i 0,...,k. With , we can associate a path in with k edges leading from = = P v to v.Ifk 0, the path consists of v ( v0) alone. For k > 0, let (E10 ,...,Ek0 1) = = be an edge-path associated with 0010 k 1. With is then associated the path (E1,...,Ek), given by E1 : Ek ( E0k ), = = Ei : Ei0 10k for i 2,...,k, = = where E : F1 is the base edge of . Of course, this path will not generally be unique, since it depends= on the particular expressionP for . Conversely, an edge-path (E1,...,Ek)from v corresponds to such an element 0, ∈ in which 0 occurs k times. If k > 0, then there is an k 00 such that E1 Ek . The ∈ = shorter path (E10 ,...,Ek0 1), given by 1 Ei0 : Ei 1k 0 = + for i 1,...,k 1, also starts at v, and we can repeat to obtain as above, with a free = choice of 0. 452 P. McMullen and E. Schulte In the context of group presentations, we deduce: (2.5) Theorem. Let P be a regular polytope. Then the group 0 0( ) of is determined by the group of its vertex-figure, and the relations on the= distinguishedP P generators of 0 induced by the edge-circuits of which contain the initial vertex. P Proof. A relation on 0 can be written in the form 0010 k 10 ε, = with i 00 for i 0,...,k 1, which corresponds to an edge-circuit starting and ∈ = ending at v. Conversely, such an edge-circuit is equivalent under 00 to one beginning with E, and this gives rise to a relation as above (now the element 0 will be determined by the circuit). This is the result. We now come to the geometric aspects of the theory. Following [10] and [11], a realization of a regular polytope is a mapping : 0 E of the vertex-set 0 into some euclidean space E, such thatP each automorphismP → of induces an isometryP of P V : 0; such an isometry extends to one of all of E, uniquely if we make the natural assumption= P that E aff V , the affine hull of V .
Recommended publications
  • And Twelve-Pointed Star Polygon Design of the Tashkent Scrolls
    Bridges 2011: Mathematics, Music, Art, Architecture, Culture A Nine- and Twelve-Pointed Star Polygon Design of the Tashkent Scrolls B. Lynn Bodner Mathematics Department Cedar Avenue Monmouth University West Long Branch, New Jersey, 07764, USA E-mail: [email protected] Abstract In this paper we will explore one of the Tashkent Scrolls’ repeat units, that, when replicated using symmetry operations, creates an overall pattern consisting of “nearly regular” nine-pointed, regular twelve-pointed and irregularly-shaped pentagonal star polygons. We seek to determine how the original designer of this pattern may have determined, without mensuration, the proportion and placement of the star polygons comprising the design. We will do this by proposing a plausible Euclidean “point-joining” compass-and-straightedge reconstruction. Introduction The Tashkent Scrolls (so named because they are housed in Tashkent at the Institute of Oriental Studies at the Academy of Sciences) consist of fragments of architectural sketches attributed to an Uzbek master builder or a guild of architects practicing in 16 th century Bukhara [1, p. 7]. The sketch from the Tashkent Scrolls that we will explore shows only a small portion, or the repeat unit , of a nine- and twelve-pointed star polygon design. It is contained within a rectangle and must be reflected across the boundaries of this rectangle to achieve the entire pattern. This drawing, which for the remainder of this paper we will refer to as “T9N12,” is similar to many of the 114 Islamic architectural and ornamental design sketches found in the much larger, older and better preserved Topkapı Scroll, a 96-foot-long architectural scroll housed at the Topkapı Palace Museum Library in Istanbul.
    [Show full text]
  • Snub Cell Tetricosa
    E COLE NORMALE SUPERIEURE ________________________ A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS ________________________ Département de Mathématiques et Informatique CNRS URA 1327 A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS January Lab oratoire dInformatique de lEcole Normale Superieure rue dUlm PARIS Cedex Tel Adresse electronique dmiensfr CEMI Russian Academy of Sciences Moscow A zo o of l embeddable p olytopal graphs MDeza CNRS Ecole Normale Superieure Paris VPGrishukhin CEMI Russian Academy of Sciences Moscow Abstract A simple graph G V E is called l graph if for some n 2 IN there 1 exists a vertexaddressing of each vertex v of G by a vertex av of the n cub e H preserving up to the scale the graph distance ie d v v n G d av av for all v 2 V We distinguish l graphs b etween skeletons H 1 n of a variety of well known classes of p olytop es semiregular regularfaced zonotop es Delaunay p olytop es of dimension and several generalizations of prisms and antiprisms Introduction Some notation and prop erties of p olytopal graphs and hypermetrics Vector representations of l metrics and hypermetrics 1 Regularfaced p olytop es Regular p olytop es Semiregular not regular p olytop es Regularfaced not semiregularp olytop es of dimension Prismatic graphs Moscow and Glob e graphs Stellated k gons Cup olas Antiwebs Capp ed antiprisms towers and fullerenes regularfaced not semiregular p olyhedra Zonotop es Delaunay p olytop es Small
    [Show full text]
  • Applying the Polygon Angle
    POLYGONS 8.1.1 – 8.1.5 After studying triangles and quadrilaterals, students now extend their study to all polygons. A polygon is a closed, two-dimensional figure made of three or more non- intersecting straight line segments connected end-to-end. Using the fact that the sum of the measures of the angles in a triangle is 180°, students learn a method to determine the sum of the measures of the interior angles of any polygon. Next they explore the sum of the measures of the exterior angles of a polygon. Finally they use the information about the angles of polygons along with their Triangle Toolkits to find the areas of regular polygons. See the Math Notes boxes in Lessons 8.1.1, 8.1.5, and 8.3.1. Example 1 4x + 7 3x + 1 x + 1 The figure at right is a hexagon. What is the sum of the measures of the interior angles of a hexagon? Explain how you know. Then write an equation and solve for x. 2x 3x – 5 5x – 4 One way to find the sum of the interior angles of the 9 hexagon is to divide the figure into triangles. There are 11 several different ways to do this, but keep in mind that we 8 are trying to add the interior angles at the vertices. One 6 12 way to divide the hexagon into triangles is to draw in all of 10 the diagonals from a single vertex, as shown at right. 7 Doing this forms four triangles, each with angle measures 5 4 3 1 summing to 180°.
    [Show full text]
  • Abstract Regular Polytopes
    ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS Abstract Regular Polytopes PETER MMULLEN University College London EGON SCHULTE Northeastern University PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org c Peter McMullen and Egon Schulte 2002 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2002 Printed in the United States of America Typeface Times New Roman 10/12.5 pt. System LATEX2ε [] A catalog record for this book is available from the British Library. Library of Congress Cataloging in Publication Data McMullen, Peter, 1955– Abstract regular polytopes / Peter McMullen, Egon Schulte. p. cm. – (Encyclopedia of mathematics and its applications) Includes bibliographical references and index. ISBN 0-521-81496-0 1. Polytopes. I. Schulte, Egon, 1955– II. Title. III. Series. QA691 .M395 2002 516.35 – dc21 2002017391 ISBN 0 521 81496 0 hardback Contents Preface page xiii 1 Classical Regular Polytopes 1 1A The Historical Background 1 1B Regular Convex Polytopes 7 1C Extensions
    [Show full text]
  • Polygon Review and Puzzlers in the Above, Those Are Names to the Polygons: Fill in the Blank Parts. Names: Number of Sides
    Polygon review and puzzlers ÆReview to the classification of polygons: Is it a Polygon? Polygons are 2-dimensional shapes. They are made of straight lines, and the shape is "closed" (all the lines connect up). Polygon Not a Polygon Not a Polygon (straight sides) (has a curve) (open, not closed) Regular polygons have equal length sides and equal interior angles. Polygons are named according to their number of sides. Name of Degree of Degree of triangle total angles regular angles Triangle 180 60 In the above, those are names to the polygons: Quadrilateral 360 90 fill in the blank parts. Pentagon Hexagon Heptagon 900 129 Names: number of sides: Octagon Nonagon hendecagon, 11 dodecagon, _____________ Decagon 1440 144 tetradecagon, 13 hexadecagon, 15 Do you see a pattern in the calculation of the heptadecagon, _____________ total degree of angles of the polygon? octadecagon, _____________ --- (n -2) x 180° enneadecagon, _____________ icosagon 20 pentadecagon, _____________ These summation of angles rules, also apply to the irregular polygons, try it out yourself !!! A point where two or more straight lines meet. Corner. Example: a corner of a polygon (2D) or of a polyhedron (3D) as shown. The plural of vertex is "vertices” Test them out yourself, by drawing diagonals on the polygons. Here are some fun polygon riddles; could you come up with the answer? Geometry polygon riddles I: My first is in shape and also in space; My second is in line and also in place; My third is in point and also in line; My fourth in operation but not in sign; My fifth is in angle but not in degree; My sixth is in glide but not symmetry; Geometry polygon riddles II: I am a polygon all my angles have the same measure all my five sides have the same measure, what general shape am I? Geometry polygon riddles III: I am a polygon.
    [Show full text]
  • Contractions of Polygons in Abstract Polytopes
    Contractions of Polygons in Abstract Polytopes by Ilya Scheidwasser B.S. in Computer Science, University of Massachusetts Amherst M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy March 31, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Acknowledgements First, I would like to thank my advisor, Professor Egon Schulte. From the first class I took with him in the first semester of my Masters program, Professor Schulte was an engaging, clear, and kind lecturer, deepening my appreciation for mathematics and always more than happy to provide feedback and answer extra questions about the material. Every class with him was a sincere pleasure, and his classes helped lead me to the study of abstract polytopes. As my advisor, Professor Schulte provided me with invaluable assistance in the creation of this thesis, as well as career advice. For all the time and effort Professor Schulte has put in to my endeavors, I am greatly appreciative. I would also like to thank my dissertation committee for taking time out of their sched- ules to provide me with feedback on this thesis. In addition, I would like to thank the various instructors I've had at Northeastern over the years for nurturing my knowledge of and interest in mathematics. I would like to thank my peers and classmates at Northeastern for their company and their assistance with my studies, and the math department's Teaching Committee for the privilege of lecturing classes these past several years.
    [Show full text]
  • Regular Polyhedra of Index 2
    REGULAR POLYHEDRA OF INDEX 2 A dissertation presented by Anthony Cutler to The Department of Mathematics In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Mathematics Northeastern University Boston, Massachusetts April, 2009 1 REGULAR POLYHEDRA OF INDEX 2 by Anthony Cutler ABSTRACT OF DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate School of Arts and Sciences of Northeastern University, April 2009 2 We classify all finite regular polyhedra of index 2, as defined in Section 2 herein. The definition requires the polyhedra to be combinatorially flag transitive, but does not require them to have planar or convex faces or vertex-figures, and neither does it require the polyhedra to be orientable. We find there are 10 combinatorially regular polyhedra of index 2 with vertices on one orbit, and 22 infinite families of combinatorially regular polyhedra of index 2 with vertices on two orbits, where polyhedra in the same family differ only in the relative diameters of their vertex orbits. For each such polyhedron, or family of polyhedra, we provide the underlying map, as well as a geometric diagram showing a representative face for each face orbit, and a verification of the polyhedron’s combinatorial regularity. A self-contained completeness proof is given. Exactly five of the polyhedra have planar faces, which is consistent with a previously known result. We conclude by describing a non-Petrie duality relation among regular polyhedra of index 2, and suggest how it can be extended to other combinatorially regular polyhedra.
    [Show full text]
  • Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
    Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166).
    [Show full text]
  • COXETER GROUPS (Unfinished and Comments Are Welcome)
    COXETER GROUPS (Unfinished and comments are welcome) Gert Heckman Radboud University Nijmegen [email protected] October 10, 2018 1 2 Contents Preface 4 1 Regular Polytopes 7 1.1 ConvexSets............................ 7 1.2 Examples of Regular Polytopes . 12 1.3 Classification of Regular Polytopes . 16 2 Finite Reflection Groups 21 2.1 NormalizedRootSystems . 21 2.2 The Dihedral Normalized Root System . 24 2.3 TheBasisofSimpleRoots. 25 2.4 The Classification of Elliptic Coxeter Diagrams . 27 2.5 TheCoxeterElement. 35 2.6 A Dihedral Subgroup of W ................... 39 2.7 IntegralRootSystems . 42 2.8 The Poincar´eDodecahedral Space . 46 3 Invariant Theory for Reflection Groups 53 3.1 Polynomial Invariant Theory . 53 3.2 TheChevalleyTheorem . 56 3.3 Exponential Invariant Theory . 60 4 Coxeter Groups 65 4.1 Generators and Relations . 65 4.2 TheTitsTheorem ........................ 69 4.3 The Dual Geometric Representation . 74 4.4 The Classification of Some Coxeter Diagrams . 77 4.5 AffineReflectionGroups. 86 4.6 Crystallography. .. .. .. .. .. .. .. 92 5 Hyperbolic Reflection Groups 97 5.1 HyperbolicSpace......................... 97 5.2 Hyperbolic Coxeter Groups . 100 5.3 Examples of Hyperbolic Coxeter Diagrams . 108 5.4 Hyperbolic reflection groups . 114 5.5 Lorentzian Lattices . 116 3 6 The Leech Lattice 125 6.1 ModularForms ..........................125 6.2 ATheoremofVenkov . 129 6.3 The Classification of Niemeier Lattices . 132 6.4 The Existence of the Leech Lattice . 133 6.5 ATheoremofConway . 135 6.6 TheCoveringRadiusofΛ . 137 6.7 Uniqueness of the Leech Lattice . 140 4 Preface Finite reflection groups are a central subject in mathematics with a long and rich history. The group of symmetries of a regular m-gon in the plane, that is the convex hull in the complex plane of the mth roots of unity, is the dihedral group of order 2m, which is the simplest example of a reflection Dm group.
    [Show full text]
  • Binary Icosahedral Group and 600-Cell
    Article Binary Icosahedral Group and 600-Cell Jihyun Choi and Jae-Hyouk Lee * Department of Mathematics, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3277-3346 Received: 10 July 2018; Accepted: 26 July 2018; Published: 7 August 2018 Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell. We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of a 600-cell by applying the Coxeter–Dynkin diagram of H4. Keywords: binary polyhedral group; icosahedron; dodecahedron; 600-cell MSC: 52B10, 52B11, 52B15 1. Introduction The classification of finite subgroups in SLn(C) derives attention from various research areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE singularity theory [1]. The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron), but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups, there are only three binary polyhedral groups(binary tetrahedral group 2T, binary octahedral group 2O, binary icosahedral group 2I) related to regular polyhedrons.
    [Show full text]
  • Computing Invariants of Hyperbolic Coxeter Groups
    LMS J. Comput. Math. 18 (1) (2015) 754{773 C 2015 Author doi:10.1112/S1461157015000273 CoxIter { Computing invariants of hyperbolic Coxeter groups R. Guglielmetti Abstract CoxIter is a computer program designed to compute invariants of hyperbolic Coxeter groups. Given such a group, the program determines whether it is cocompact or of finite covolume, whether it is arithmetic in the non-cocompact case, and whether it provides the Euler characteristic and the combinatorial structure of the associated fundamental polyhedron. The aim of this paper is to present the theoretical background for the program. The source code is available online as supplementary material with the published article and on the author's website (http://coxiter.rgug.ch). Supplementarymaterialsareavailablewiththisarticle. Introduction Let Hn be the hyperbolic n-space, and let Isom Hn be the group of isometries of Hn. For a given discrete hyperbolic Coxeter group Γ < Isom Hn and its associated fundamental polyhedron P ⊂ Hn, we are interested in geometrical and combinatorial properties of P . We want to know whether P is compact, has finite volume and, if the answer is yes, what its volume is. We also want to find the combinatorial structure of P , namely, the number of vertices, edges, 2-faces, and so on. Finally, it is interesting to find out whether Γ is arithmetic, that is, if Γ is commensurable to the reflection group of the automorphism group of a quadratic form of signature (n; 1). Most of these questions can be answered by studying finite and affine subgroups of Γ, but this involves a huge number of computations.
    [Show full text]
  • Petrie Schemes
    Canad. J. Math. Vol. 57 (4), 2005 pp. 844–870 Petrie Schemes Gordon Williams Abstract. Petrie polygons, especially as they arise in the study of regular polytopes and Coxeter groups, have been studied by geometers and group theorists since the early part of the twentieth century. An open question is the determination of which polyhedra possess Petrie polygons that are simple closed curves. The current work explores combinatorial structures in abstract polytopes, called Petrie schemes, that generalize the notion of a Petrie polygon. It is established that all of the regular convex polytopes and honeycombs in Euclidean spaces, as well as all of the Grunbaum–Dress¨ polyhedra, pos- sess Petrie schemes that are not self-intersecting and thus have Petrie polygons that are simple closed curves. Partial results are obtained for several other classes of less symmetric polytopes. 1 Introduction Historically, polyhedra have been conceived of either as closed surfaces (usually topo- logical spheres) made up of planar polygons joined edge to edge or as solids enclosed by such a surface. In recent times, mathematicians have considered polyhedra to be convex polytopes, simplicial spheres, or combinatorial structures such as abstract polytopes or incidence complexes. A Petrie polygon of a polyhedron is a sequence of edges of the polyhedron where any two consecutive elements of the sequence have a vertex and face in common, but no three consecutive edges share a commonface. For the regular polyhedra, the Petrie polygons form the equatorial skew polygons. Petrie polygons may be defined analogously for polytopes as well. Petrie polygons have been very useful in the study of polyhedra and polytopes, especially regular polytopes.
    [Show full text]