Snub Cell Tetricosa

Total Page:16

File Type:pdf, Size:1020Kb

Snub ���Cell �Tetricosa E COLE NORMALE SUPERIEURE ________________________ A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS ________________________ Département de Mathématiques et Informatique CNRS URA 1327 A Zo o of ` embeddable Polytopal Graphs Michel DEZA VP GRISHUHKIN LIENS January Lab oratoire dInformatique de lEcole Normale Superieure rue dUlm PARIS Cedex Tel Adresse electronique dmiensfr CEMI Russian Academy of Sciences Moscow A zo o of l embeddable p olytopal graphs MDeza CNRS Ecole Normale Superieure Paris VPGrishukhin CEMI Russian Academy of Sciences Moscow Abstract A simple graph G V E is called l graph if for some n 2 IN there 1 exists a vertexaddressing of each vertex v of G by a vertex av of the n cub e H preserving up to the scale the graph distance ie d v v n G d av av for all v 2 V We distinguish l graphs b etween skeletons H 1 n of a variety of well known classes of p olytop es semiregular regularfaced zonotop es Delaunay p olytop es of dimension and several generalizations of prisms and antiprisms Introduction Some notation and prop erties of p olytopal graphs and hypermetrics Vector representations of l metrics and hypermetrics 1 Regularfaced p olytop es Regular p olytop es Semiregular not regular p olytop es Regularfaced not semiregularp olytop es of dimension Prismatic graphs Moscow and Glob e graphs Stellated k gons Cup olas Antiwebs Capp ed antiprisms towers and fullerenes regularfaced not semiregular p olyhedra Zonotop es Delaunay p olytop es Small l p olyhedra and examples of p olytopal hypermetrics 1 tembedding in l 1 App endix gures The authors has b een supp orted by DFGSonderforschungsberich DISKRETE STRUK TUREN IN DER MATHEMATIK UNIVERSITAT Bielefeld as well as by DIMANETTHE EU ROPEAN NETWORK ON DISCRETE MATHEMATICS EU Contract ERBCHRXCT Introduction A connected simple graph G is called an l graph if its shortest path distance 1 matrix d seen as a metric space d X on the set X of vertices of G is embeddable G m m m isometrically into some l space The l space is IR with l metric 1 1 1 m X jx y j x y jjx y jj d i i l l 1 1 i=1 Equivalently see AsDe G is an l graph i d is embedded isometrically into the 1 G n restriction of l on an ncub e up to a certain scale Clearly resp ectively 1 means that G is an isometric subgraph of the ncub e graph resp ectively of the nhalfcub e graph We denote these embeddings by G H resp ectively n 1 G H n 2 m Any metric subspace A of l is see Dez hypermetric ie it satises 1 X b b d x x i j l i j 1 1ij n P n n for every distinct x x x A b b b ZZ and b 1 2 n 1 n i i=1 Clearly in the sp ecial case b the ab ove inequality is the classical tri angle inequality Call the ab ove inequality gonal kgonal resp ectively if P jb j k resp ectively Call a graph G hypermet b i i ric gonal kgonal if d is hypermetric resp ectively satises gonal the G k gonal inequalities Any k gonal graph is k gonal Dez but K C is an example of a k gonal which is not k gonal for 2k +1 k +1 any k So for a graph G the following chain of implications holds G H G H l graph hypermetric k gonal gonal n n 1 2 1 In this pap er we systematically study well known p olytopal graphs in connec tion within the ab ove chain of notions in particular lo oking for l graphs within 1 skeletons of p olytop es with a degree of Euclidean regularity These p olytop es in clude regularfaced p olyhedra semiregular p olytop es zonotop es Delaunay p oly top es of dimension and some generalizations of prisms and antiprisms In DeSt one can nd a related study of isometric up to a scale embeddings of skeletons of innite graphs of Archimedean and Laves plane tilings into cubic lattices Here are other instances of embeddings of graphs which are related to our sub ject well known cubical graphs induced subgraphs of hypercub es and a hypercub e embedding with a smal l distortion of distances used in computer architecture isometric or isometric with a small distortion embeddings of graphs into other than l spaces normed spaces see LLR and the huge bibliography there 1 The following criterion for a graph G to b e an l graph is known Shp 1 DeGr G is an l graph i it is an isometric subgraph of the direct pro duct of 1 halfcub es and Co cktailParty graphs K skeleton of the crossp olytop e m2 m Even a go o d p olynomial algorithm for a recognition of l graphs is known DeSp 1 So the raisons detre for this pap er are the following To classify l graphs within imp ortant classes of graphs Until now this has 1 b een achieved only for strongly regular graphs DeGr Ko o and two classes of planar mainly non p olyhedral graphs PSC DeTu To nd b etter criteria and algorithms for the recognition of l graphs within 1 sp ecial classes of graphs Since an l embedding pro duces a binary matrix we want to lo ok for new 1 co des having in particular symmetries of the original p olytop es Besides l 1 embeddings for example of chains of hexagons b enzenoid chains and some fullerenes see x give new ways of an enco ding of chemicallyrelevant p olyhedra and counting molecular parameters dep ending only on graph distances To confront metrics of skeletons of p olytop es distinguished by their Eu clidean l prop erties to a larger l metric We remind that an l space is a metric 2 1 p subspace of an l space for any p For example we shall see b elow how 1 strong l ness o ccurs in zonotop es and interesting p olytop es 1 The somewhat surprising but easy observation that interesting p olyhedra have l skeletons was one of the origins of this work 1 1 P H if P is one of Platonic solids 10 2 P H if P is one of Voronoi p olyhedra see x 6 1 H if P is one of Delaunay p olyhedra P r ism P y r P 6 3 3 3 3 4 2 1 P H if P is one of chemically imp ortant for main group elements 6 2 co ordination p olyhedra icosahedron P r ism P y r 3 3 3 4 P H if P is one of isozonohedra ie zonohedra with the same rhombic faces 6 see x rhombic do decahedron second Bilinskis rhombic do decahedron 3 rhombic icosahedron and triacontahedron See Cox for names of those p olyhedra Also skeletons of regular partitions of a plane are scale isometrically em 4 b eddable into the cubic lattice ZZ But in IR interesting non gonal p olytop es 6 app ear for example the cell which is regular and is a Voronoi p olytop e and a co ordination p olytop e for the ro ot lattice D D 4 4 We are grateful to the SFB University of Bielefeld for their hospitality while we carried out much of this work We would like to thank Walter Deub er for his kind invitation interest and supp ort We are grateful to Andrea Walz for drawing the computer artwork Some notation prop erties of p olytopal graphs and hypermetrics Here we give denitions and notation of graphs and p olytop es that we use b elow A p olytop e of dimension n is called np olytop e A p olytop e is called a polyhe dron The p olytop e P is dual of the p olytop e P and P P For a p olytop e P we denote by GP its skeleton In other words GP is a graph on vertices of P such that two vertices are adjacent in GP i they are endp oints of an edge of P We use the following usual notation of graphs K is the complete graph on n vertices n is the multipartite graph with n parts of sizes k k If n and K 1 n k k n 1 k p k q we have K the bipartite graph 1 2 pq If k for all i then we have K the Co cktail Party graph i n2 n T n is the triangular graph on vertices the line graph of K n 2 J n k k n is the Johnson graph in particular J n K J n n T n is the cycle on n vertices i i in this order C C 1 n n i i n 1 is the path on the m vertices i i in this order P P 1 m m i i m 1 1 H is the cub egraph H is the halfcub egraph n n 2 G e is the graph G without its edge e rG denotes the susp ension of G ie the graph G with a vertex which is not in G and is adjacent to all vertices of G m G r G rrr z m The rst of the following notation of p olytop es are used in Cox is the nsimplex and G K n n n+1 is the ncrossp olytop e and G K n n n2 is the ncub e and G H n n n 1 1 1 is the nhalf cub e and G H n n n 2 2 2 ambo is the convex hull of the midp oints of all edges of and Gambo n n T n n C is a planar ngon and GC C n n n 1 1 ambo C Note that ambo 2 3 2 3 3 4 4 3 3 2 2 If P is an np olytop e then P y r P is the n pyramid with the base P and GP y r P rGP The ap ex of P y r P is its vertex which do es not lie in the nspace spanned by P and is adjacent to all vertices of P An n bipyramid B P y r P with the nbase P We have m m m P P y r P and GP y r P r GP P y r P y r P y r z m P y r P y r C is a pyramid and GP y r rC n n n n B P y r P is n bipyramid with the nbase P It has two ap exes which are 2 opp osite with resp ect to the hyperplane spanned by P GB P y r P r GP e 2 where e is the edge connected in r GP the two ap exes A tcapped p olyhedron is one obtained from a p olyhedron P as follows Cho ose some t faces of P usually with a maximal number of vertices To each chosen face add a vertex so that this vertex do es not lie in the plane spanned by the face and is connected by an edge to each vertex of the face If P is an n p olytop e i then the direct pro duct P P is an n n i i 1 2 1 2 p olytop e and GP P GP GP 1 2 1 2 P r ismP P is the prism with the base P 1 P r ism P r ismC n n AP r ism is the antiprism with the base C It is a p olyhedron having two n n ngon faces n
Recommended publications
  • A Fun Approach to Teaching Geometry and Inspiring Creativity
    Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture A Fun Approach to Teaching Geometry and Inspiring Creativity Ioana Browne, Michael Browne, Mircea Draghicescu*, Cristina Draghicescu, Carmen Ionescu ITSPHUN LLC 2023 NW Lovejoy St. Portland, OR 97209, USA [email protected] Abstract ITSPHUNTM geometric shapes can be easily combined to create an infinite number of structures both decorative and functional. We introduce this system of shapes, and discuss its use for teaching mathematics. At the workshop, we will provide a large number of pieces of various shapes, demonstrate their use, and give all participants the opportunity to build their own creations at the intersection of art and mathematics. Introduction Connecting pieces of paper by sliding them together along slits or cuts is a well-known method of building 3D objects ([2], [3], [4]). Based on this idea we developed a system of shapes1 that can be used to build arbitrarily complex structures. Among the geometric objects that can be built are Platonic, Archimedean, and Johnson solids, prisms and antiprisms, many nonconvex polyhedra, several space-filling tessellations, etc. Guided by an user’s imagination and creativity, simple objects can then be connected to form more complex constructs. ITSPHUN pieces made of various materials2 can be used for creative play, for making functional and decorative objects such as jewelry, lamps, furniture, and, in classroom, for teaching mathematical concepts.3 1Patent pending. 2We used many kinds of paper, cardboard, foam, several kinds of plastic, wood and plywood, wood veneer, fabric, and felt. 3In addition to models of geometric objects, ITSPHUN shapes have been used to make birds, animals, flowers, trees, houses, hats, glasses, and much more - see a few examples in the photo gallery at www.itsphun.com.
    [Show full text]
  • Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
    Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166).
    [Show full text]
  • Binary Icosahedral Group and 600-Cell
    Article Binary Icosahedral Group and 600-Cell Jihyun Choi and Jae-Hyouk Lee * Department of Mathematics, Ewha Womans University 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3277-3346 Received: 10 July 2018; Accepted: 26 July 2018; Published: 7 August 2018 Abstract: In this article, we have an explicit description of the binary isosahedral group as a 600-cell. We introduce a method to construct binary polyhedral groups as a subset of quaternions H via spin map of SO(3). In addition, we show that the binary icosahedral group in H is the set of vertices of a 600-cell by applying the Coxeter–Dynkin diagram of H4. Keywords: binary polyhedral group; icosahedron; dodecahedron; 600-cell MSC: 52B10, 52B11, 52B15 1. Introduction The classification of finite subgroups in SLn(C) derives attention from various research areas in mathematics. Especially when n = 2, it is related to McKay correspondence and ADE singularity theory [1]. The list of finite subgroups of SL2(C) consists of cyclic groups (Zn), binary dihedral groups corresponded to the symmetry group of regular 2n-gons, and binary polyhedral groups related to regular polyhedra. These are related to the classification of regular polyhedrons known as Platonic solids. There are five platonic solids (tetrahedron, cubic, octahedron, dodecahedron, icosahedron), but, as a regular polyhedron and its dual polyhedron are associated with the same symmetry groups, there are only three binary polyhedral groups(binary tetrahedral group 2T, binary octahedral group 2O, binary icosahedral group 2I) related to regular polyhedrons.
    [Show full text]
  • Can Every Face of a Polyhedron Have Many Sides ?
    Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1.
    [Show full text]
  • Four-Dimensional Regular Polytopes
    faculty of science mathematics and applied and engineering mathematics Four-dimensional regular polytopes Bachelor’s Project Mathematics November 2020 Student: S.H.E. Kamps First supervisor: Prof.dr. J. Top Second assessor: P. Kiliçer, PhD Abstract Since Ancient times, Mathematicians have been interested in the study of convex, regular poly- hedra and their beautiful symmetries. These five polyhedra are also known as the Platonic Solids. In the 19th century, the four-dimensional analogues of the Platonic solids were described mathe- matically, adding one regular polytope to the collection with no analogue regular polyhedron. This thesis describes the six convex, regular polytopes in four-dimensional Euclidean space. The focus lies on deriving information about their cells, faces, edges and vertices. Besides that, the symmetry groups of the polytopes are touched upon. To better understand the notions of regularity and sym- metry in four dimensions, our journey begins in three-dimensional space. In this light, the thesis also works out the details of a proof of prof. dr. J. Top, showing there exist exactly five convex, regular polyhedra in three-dimensional space. Keywords: Regular convex 4-polytopes, Platonic solids, symmetry groups Acknowledgements I would like to thank prof. dr. J. Top for supervising this thesis online and adapting to the cir- cumstances of Covid-19. I also want to thank him for his patience, and all his useful comments in and outside my LATEX-file. Also many thanks to my second supervisor, dr. P. Kılıçer. Furthermore, I would like to thank Jeanne for all her hospitality and kindness to welcome me in her home during the process of writing this thesis.
    [Show full text]
  • Hwsolns5scan.Pdf
    Math 462: Homework 5 Paul Hacking 3/27/10 (1) One way to describe a polyhedron is by cutting along some of the edges and folding it flat in the plane. The diagram obtained in this way is called a net. For example here is a net for the cube: Draw nets for the tetrahedron, octahedron, and dodecahedron. +~tfl\ h~~1l1/\ \(j [ NJte: T~ i) Mq~ u,,,,, cMi (O/r.(J 1 (2) Another way to describe a polyhedron is as follows: imagine that the faces of the polyhedron arc made of glass, look through one of the faces and draw the image you see of the remaining faces of the polyhedron. This image is called a Schlegel diagram. For example here is a Schlegel diagram for the octahedron. Note that the face you are looking through is not. drawn, hut the boundary of that face corresponds to the boundary of the diagram. Now draw a Schlegel diagram for the dodecahedron. (:~) (a) A pyramid is a polyhedron obtained from a. polygon with Rome number n of sides by joining every vertex of the polygon to a point lying above the plane of the polygon. The polygon is called the base of the pyramid and the additional vertex is called the apex, For example the Egyptian pyramids have base a square (so n = 4) and the tetrahedron is a pyramid with base an equilateral 2 I triangle (so n = 3). Compute the number of vertices, edges; and faces of a pyramid with base a polygon with n Rides. (b) A prism is a polyhedron obtained from a polygon (called the base of the prism) as follows: translate the polygon some distance in the direction normal to the plane of the polygon, and join the vertices of the original polygon to the corresponding vertices of the translated polygon.
    [Show full text]
  • ADDENDUM the Following Remarks Were Added in Proof (November 1966). Page 67. an Easy Modification of Exercise 4.8.25 Establishes
    ADDENDUM The following remarks were added in proof (November 1966). Page 67. An easy modification of exercise 4.8.25 establishes the follow­ ing result of Wagner [I]: Every simplicial k-"complex" with at most 2 k ~ vertices has a representation in R + 1 such that all the "simplices" are geometric (rectilinear) simplices. Page 93. J. H. Conway (private communication) has established the validity of the conjecture mentioned in the second footnote. Page 126. For d = 2, the theorem of Derry [2] given in exercise 7.3.4 was found earlier by Bilinski [I]. Page 183. M. A. Perles (private communication) recently obtained an affirmative solution to Klee's problem mentioned at the end of section 10.1. Page 204. Regarding the question whether a(~) = 3 implies b(~) ~ 4, it should be noted that if one starts from a topological cell complex ~ with a(~) = 3 it is possible that ~ is not a complex (in our sense) at all (see exercise 11.1.7). On the other hand, G. Wegner pointed out (in a private communication to the author) that the 2-complex ~ discussed in the proof of theorem 11.1 .7 indeed satisfies b(~) = 4. Page 216. Halin's [1] result (theorem 11.3.3) has recently been genera­ lized by H. A. lung to all complete d-partite graphs. (Halin's result deals with the graph of the d-octahedron, i.e. the d-partite graph in which each class of nodes contains precisely two nodes.) The existence of the numbers n(k) follows from a recent result of Mader [1] ; Mader's result shows that n(k) ~ k.2(~) .
    [Show full text]
  • Are Your Polyhedra the Same As My Polyhedra?
    Are Your Polyhedra the Same as My Polyhedra? Branko Gr¨unbaum 1 Introduction “Polyhedron” means different things to different people. There is very little in common between the meaning of the word in topology and in geometry. But even if we confine attention to geometry of the 3-dimensional Euclidean space – as we shall do from now on – “polyhedron” can mean either a solid (as in “Platonic solids”, convex polyhedron, and other contexts), or a surface (such as the polyhedral models constructed from cardboard using “nets”, which were introduced by Albrecht D¨urer [17] in 1525, or, in a more mod- ern version, by Aleksandrov [1]), or the 1-dimensional complex consisting of points (“vertices”) and line-segments (“edges”) organized in a suitable way into polygons (“faces”) subject to certain restrictions (“skeletal polyhedra”, diagrams of which have been presented first by Luca Pacioli [44] in 1498 and attributed to Leonardo da Vinci). The last alternative is the least usual one – but it is close to what seems to be the most useful approach to the theory of general polyhedra. Indeed, it does not restrict faces to be planar, and it makes possible to retrieve the other characterizations in circumstances in which they reasonably apply: If the faces of a “surface” polyhedron are sim- ple polygons, in most cases the polyhedron is unambiguously determined by the boundary circuits of the faces. And if the polyhedron itself is without selfintersections, then the “solid” can be found from the faces. These reasons, as well as some others, seem to warrant the choice of our approach.
    [Show full text]
  • [ENTRY POLYHEDRA] Authors: Oliver Knill: December 2000 Source: Translated Into This Format from Data Given In
    ENTRY POLYHEDRA [ENTRY POLYHEDRA] Authors: Oliver Knill: December 2000 Source: Translated into this format from data given in http://netlib.bell-labs.com/netlib tetrahedron The [tetrahedron] is a polyhedron with 4 vertices and 4 faces. The dual polyhedron is called tetrahedron. cube The [cube] is a polyhedron with 8 vertices and 6 faces. The dual polyhedron is called octahedron. hexahedron The [hexahedron] is a polyhedron with 8 vertices and 6 faces. The dual polyhedron is called octahedron. octahedron The [octahedron] is a polyhedron with 6 vertices and 8 faces. The dual polyhedron is called cube. dodecahedron The [dodecahedron] is a polyhedron with 20 vertices and 12 faces. The dual polyhedron is called icosahedron. icosahedron The [icosahedron] is a polyhedron with 12 vertices and 20 faces. The dual polyhedron is called dodecahedron. small stellated dodecahedron The [small stellated dodecahedron] is a polyhedron with 12 vertices and 12 faces. The dual polyhedron is called great dodecahedron. great dodecahedron The [great dodecahedron] is a polyhedron with 12 vertices and 12 faces. The dual polyhedron is called small stellated dodecahedron. great stellated dodecahedron The [great stellated dodecahedron] is a polyhedron with 20 vertices and 12 faces. The dual polyhedron is called great icosahedron. great icosahedron The [great icosahedron] is a polyhedron with 12 vertices and 20 faces. The dual polyhedron is called great stellated dodecahedron. truncated tetrahedron The [truncated tetrahedron] is a polyhedron with 12 vertices and 8 faces. The dual polyhedron is called triakis tetrahedron. cuboctahedron The [cuboctahedron] is a polyhedron with 12 vertices and 14 faces. The dual polyhedron is called rhombic dodecahedron.
    [Show full text]
  • The Geometry of Colour
    The Geometry of Colour Paul Centore The Geometry of Colour Paul Centore Suggested Cataloging Data Centore, Paul The Geometry of Colour/P. Centore 221 p., 21.6 by 14.0 cm ISBN 978-0-9990291-0-7 1. Color 2. Color—Mathematics 3. Colorimetry 4. Convex Geometry I. Centore, Paul, 1968- II. Title QC495.C397 2017 535.6 Coopyright c 2017 by Paul Centore • All rights reserved Printed in the United States of America ISBN 978-0-9990291-0-7 ISBN 9780999029107 9 780999 029107 Introduction Colour is a universal experience, which has been investigated since an- tiquity. Today, colour science rests firmly on both empirical findings and theoretical development. Unlike many technical fields, colour sci- ence considers not only physical factors, but also human perception, and the relationships between the two. A basic part of colour science is colour matching, which identifies when two side-by-side lights, viewed in isolation through an aperture, produce the same colour. The Geometry of Colour formulates colour matching mathematically, emphasizing geometric constructions and understanding. The motiva- tion for writing it was the unifying insight that many apparently dis- parate objects in colour science share a common zonohedral structure. The book aims at both rigor and intuition. Fortunately, many colour science objects can be explicitly constructed in a three-dimensional vector space, and, while linear algebra insures rigorous definitions, a premium is placed on a concrete visual and spatial presentation— ideally, a motivated reader could build literal models, for example with foam board and glue. This book is intended for mathematicians, colour scientists, and, as much as possible, curious non-specialists.
    [Show full text]
  • Lesson Plans 1.1
    Lesson Plans 1.1 © 2009 Zometool, Inc. Zometool is a registered trademark of Zometool Inc. • 1-888-966-3386 • www.zometool.com US Patents RE 33,785; 6,840,699 B2. Based on the 31-zone system, discovered by Steve Baer, Zomeworks Corp., USA www zometool ® com Zome System Table of Contents Builds Genius! Zome System in the Classroom Subjects Addressed by Zome System . .5 Organization of Plans . 5 Graphics . .5 Standards and Assessment . .6 Preparing for Class . .6 Discovery Learning with Zome System . .7 Cooperative vs Individual Learning . .7 Working with Diverse Student Groups . .7 Additional Resources . .8 Caring for your Zome System Kit . .8 Basic Concept Plans Geometric Shapes . .9 Geometry Is All Around Us . .11 2-D Polygons . .13 Animal Form . .15 Attention!…Angles . .17 Squares and Rectangles . .19 Try the Triangles . .21 Similar Triangles . .23 The Equilateral Triangle . .25 2-D and 3-D Shapes . .27 Shape and Number . .29 What Is Reflection Symmetry? . .33 Multiple Reflection Symmetries . .35 Rotational Symmetry . .39 What is Perimeter? . .41 Perimeter Puzzles . .43 What Is Area? . .45 Volume For Beginners . .47 Beginning Bubbles . .49 Rhombi . .53 What Are Quadrilaterals? . .55 Trying Tessellations . .57 Tilings with Quadrilaterals . .59 Triangle Tiles - I . .61 Translational Symmetries in Tilings . .63 Spinners . .65 Printing with Zome System . .67 © 2002 by Zometool, Inc. All rights reserved. 1 Table of Contents Zome System Builds Genius! Printing Cubes and Pyramids . .69 Picasso and Math . .73 Speed Lines! . .75 Squashing Shapes . .77 Cubes - I . .79 Cubes - II . .83 Cubes - III . .87 Cubes - IV . .89 Even and Odd Numbers . .91 Intermediate Concept Plans Descriptive Writing .
    [Show full text]
  • Paper Models of Polyhedra
    Paper Models of Polyhedra Gijs Korthals Altes Polyhedra are beautiful 3-D geometrical figures that have fascinated philosophers, mathematicians and artists for millennia Copyrights © 1998-2001 Gijs.Korthals Altes All rights reserved . It's permitted to make copies for non-commercial purposes only email: [email protected] Paper Models of Polyhedra Platonic Solids Dodecahedron Cube and Tetrahedron Octahedron Icosahedron Archimedean Solids Cuboctahedron Icosidodecahedron Truncated Tetrahedron Truncated Octahedron Truncated Cube Truncated Icosahedron (soccer ball) Truncated dodecahedron Rhombicuboctahedron Truncated Cuboctahedron Rhombicosidodecahedron Truncated Icosidodecahedron Snub Cube Snub Dodecahedron Kepler-Poinsot Polyhedra Great Stellated Dodecahedron Small Stellated Dodecahedron Great Icosahedron Great Dodecahedron Other Uniform Polyhedra Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron Small Rhombihexahedron Small Rhombidodecahedron S mall Dodecahemiododecahedron Small Ditrigonal Icosidodecahedron Great Dodecahedron Compounds Stella Octangula Compound of Cube and Octahedron Compound of Dodecahedron and Icosahedron Compound of Two Cubes Compound of Three Cubes Compound of Five Cubes Compound of Five Octahedra Compound of Five Tetrahedra Compound of Truncated Icosahedron and Pentakisdodecahedron Other Polyhedra Pentagonal Hexecontahedron Pentagonalconsitetrahedron Pyramid Pentagonal Pyramid Decahedron Rhombic Dodecahedron Great Rhombihexacron Pentagonal Dipyramid Pentakisdodecahedron Small Triakisoctahedron Small Triambic
    [Show full text]