Liste Der Parenteralen Antineoplastischen Wirkstoffe Stand

Total Page:16

File Type:pdf, Size:1020Kb

Liste Der Parenteralen Antineoplastischen Wirkstoffe Stand Liste der parenteralen antineoplastischen Wirkstoffe Stand: 29.06.2021 gemäß der Vereinbarung über die qualifizierte ambulante Versorgung krebskranker Patienten Rechtsbereinigte und ergänzte Fassung der Onkologie-Vereinbarung vom 15. Mai 2008 unter Berücksichtigung aller Vertragsänderungen „Onkologie-Vereinbarung“ gemäß § 73a SGB V Die Leistung nach der Abrechnungsnummern 96502 und 96503 sind nur unter Angabe des verwendeten Wirkstoffes, Fertigarzneimittels oder Therapieschemas (FK 5002 oder 5009) berechnungsfähig. Neben den in der nachfolgenden Liste aufgeführten Wirkstoffen mit dem ATC-Code L01 wurden folgende weitere Wirkstoffe vereinbart: ATC Wirkstoff Fertigarzneimittelname L03AX03 BCG Impfstoff BCG medac Trockensubstanz mit Lösungsmittel L03AX03 BCG Impfstoff ONCOTICE 2-8x100 Mio. vermehrungsf. Einheiten Pulv. L04AA25 Eculizumab SOLIRIS Infusionslösungskonzentrat Liste parenteraler antineoplastischer Wirkstoffe Stand 29.06.2021 Wirkstoff Standardaggregat FAM-Name Drf ATC-Code Cyclophosphamid Cyclophosphamid Cyclophosphamid Hexal 2000 mg PII L01AA01 HEXAL P.z.H.e.Inf.-/Inj.L. Cyclophosphamid Hexal 500 mg PII P.z.H.e.Inf.-/Inj.-L. Endoxan ENDOXAN 500 MG PIJ ENDOXAN 1 G PIJ ENDOXAN 1 g PIJ ENDOXAN 1.0 G PIJ ENDOXAN 200 MG PIJ ENDOXAN 500 MG PIJ Endoxan 1 g Tr.Subst.o.Lsg.mtl. CC- PIJ Pharma Endoxan 1 g Trockensubstanz ohne PIJ Lösungsmittel Kohl Ph. Endoxan 1 g trockensubstanz ohne PIJ lösungsmittel Kohl Ph. Endoxan 1,0 g Tr.Subst.o.Lsg.M.Emra TSS Endoxan 1.0 g Emra Tr.Sub.o.Lsg.Mtl. TSS Endoxan 200 mg PIJ Endoxan 200 mg o.Lsg.Mtl. CC Pharma PIJ Endoxan 500 mg Tr.Subst.o.Lsg.mtl. TSS CC-Pharma Endoxan Lyophilisat 1 g Pulver PIJ z.Herst.e.Inj.-Lsg. Endoxan Lyophilisat 2 g Pulver PIJ z.Herst.e.Inj.-Lsg. Melphalan Alkeran Alkeran 50 i.v. TRS L01AA03 Melphalan Sun Melphalan Sun 50 mg P.u.Lm z.H.e.Inj./ PLH Inf.L.Dsfl. Melphalan Tillomed Melphalan Tillomed 50 mg P.u.LM PLH z.H.e.Inj./Inf.l. Melphalan-ratiopharm Melphalan-ratiopharm 50 mg P.u.LM PLH H.e.Inj./Inf.L. Ifosfamid Holoxan HOLOXAN 1 G PII L01AA06 HOLOXAN 2 G Trockensubst. PII HOLOXAN 2 G Trockensubstanz PII HOLOXAN 500 MG PII Holoxan 3 g Tr.Subst.o.Lsg.M. PII IFO-cell IFO Cell 2 g Infusionskonzentrat 10 ml IFK IFO Cell 5 g Infusionskonzentrat 25 ml IFK Seite 1 von 56 Wirkstoff Standardaggregat FAM-Name Drf ATC-Code IFO Cell N 1000 25 ml INF IFO Cell N 2000 50 ml INF Bendamustin Benda NC Benda NC 2,5 mg/ml 100mg PIK L01AA09 Plv.f.e.Konz.z.H.e.Inf.L. Benda NC 2,5 mg/ml 25mg PIK Plv.f.e.Konz.z.H.e.Inf.L. Bendamustin Accord Bendamustin Accord 2,5mg/ml 100mg PIK Plv.Inf.-L.-K. Bendamustin Accord 2,5mg/ml 25mg PIK Plv.Inf.-L.-K. Bendamustin Axios Bendamustin Axios 2,5 mg/ml 100 mg PIK Plv.Inf.-L.-K. Bendamustin Axios 2,5 mg/ml 25 mg PIK Plv.Inf.-L.-K. Bendamustin Baxter Bendamustin Baxter 2,5 mg/ml 100 mg PLK Plv. Inf.-L.-K. Bendamustin Baxter 2,5 mg/ml 25 mg PLK Plv. Inf.-L.-K. Bendamustin Cell pharm Bendamustin Cell pharm 2,5 mg/ml 100 PIK mg Pulver Bendamustin Cell pharm 2,5mg/ml PIK 25mg Plv.Inf.L.K. Bendamustin Cell pharm 2,5mg/ml PIK 25mg Pulver Bendamustin Hikma Bendamustin Hikma 2,5 mg/ml 100 mg PIK Plv. Inf.-L.-K. Bendamustin Hikma 2,5 mg/ml 25mg PIK Plv. Inf.-L.-K. Bendamustin Kabi Bendamustin Kabi 2,5 mg/ml 100 mg PIK Plv.Inf.-L.-K. Bendamustin Kabi 2,5 mg/ml 25 mg PIK Plv.Inf.-L.-K. Bendamustin Mylan Bendamustin Mylan 2,5 mg/ml 100 mg PIK Plv.Inf.-L.-K. Bendamustin Mylan 2,5 mg/ml 25 mg PIK Plv.Inf.-L.-K. Bendamustin Omnicare Bendamustin Omnicare 2,5mg/ml PIK 100mg Plv.Inf.-L.-K. Bendamustin Omnicare 2,5mg/ml 25mg PIK Plv.Inf.-L.-K. Bendamustin Onkovis Bendamustin Onkovis 2,5mg/ml 100mg PIK Plv.Inf.-L.-K. Bendamustin Onkovis 2,5mg/ml 25mg PIK Plv.Inf.-L.-K. Seite 2 von 56 Wirkstoff Standardaggregat FAM-Name Drf ATC-Code Bendamustin Onkovis 2,5mg/ml 25mg PIK Plv.Inf.-L.-k. Bendamustin Onkovis 2,5mg/ml 25mg PIK Plv.Inf.-L.K. Bendamustin Bendamustin Riboseph.2,5mg/ml 100mg PIK AV Ribosepharm Plv.Inf.-L.-K. Bendamustin Riboseph.2,5mg/ml 25mg PIK AV Plv.Inf.-L.-K. Bendamustin Riboseph.2,5mg/ml 25mg PIK AV Plv.Inf.-L.K. Bendamustin beta Bendamustin beta 180 mg/4 ml IFK Konz.z.H.e.Inf.-Lsg. Bendamustin beta 2,5 mg/ml 100 mg PIK AV Plv.Inf.-L.-K. Bendamustin beta 2,5 mg/ml 25 mg PIK AV Plv.Inf.-L.-K. Bendamustin medac Bendamustin Medac 2,5mg/ml 100mg PIK Plv.Inf.-L.-K. Bendamustin Medac 2,5mg/ml 25mg PIK Plv.Inf.-L.-K. Levact Levact 2,5 mg/ml 100 mg PIK z.Herst.e.Inf.Lsg. Levact 2,5 mg/ml 100 mg PIF Plv.z.Herstell.e.Inf.-Lsg. CC Ph Levact 2,5 mg/ml 25 mg PIK z.Herst.e.Inf.Lg. Levact 2,5 mg/ml 25 mg PIK z.Herst.e.Inf.Lsg. Levact 2,5 mg/ml 25 mg PIF Plv.z.Herstell.e.Inf.-Lsg. CC Ph. Levact 2,5 mg/ml 25 mg PIF Plv.z.Herstell.e.inf.-lsg. CC Ph. Levact 2,5 mg/ml 25 mg PIK plv.z.herstell.e.inf.-lsg. Busulfan Busilvex Busilvex 6mg/ml Konzentrat 10ml DFL L01AB01 Durchstechflasche Busulfan Accord Busulfan accord 6 mg/ml IFK Konz.z.Herst.e.Inf.-Lsg. Busulfan Fresenius Kabi Busulfan Fresenius Kabi 6 mg/ml INF Kon.z.Her.e.Inf 10 ml Busulfan Tillomed Busulfan Tillomed 6 mg/ml IFK Konz.z.Herst.e.Inf.-Lsg. 10 ml Busulfan-ratiopharm Busulfan-ratiopharm 6 mg/ml IFK Konz.z.Her.e.Inf.-Lsg.10 ml Treosulfan Ovastat Ovastat 1000 mg plv.z.herst.e.inf.lsg. PIF L01AB02 Seite 3 von 56 Wirkstoff Standardaggregat FAM-Name Drf ATC-Code Ovastat 5000 mg plv.z.herst.e.inf.lsg. PIF Trecondi Trecondi 1 g Pulver z.Herstell.e.Inf.- PIF Lsg.Dsfl. Trecondi 5 g Pulver z.Herstell.e.Inf.- PIF Lsg.Dsfl. Treosulfan Tillomed Treosulfan Tillomed 5 g PIF Plv.z.Herstell.e.Inf.-Lsg. Thiotepa Tepadina Tepadina 100 mg TSS L01AC01 Tepadina 15 mg TSS Tepadina 400 mg Plv.u.LM PLF z.Herst.e.Inf.-lsg. Carmustin Carmubris Carmubris Plv. 3 ml PLF L01AD01 u.Lösungsm.z.Herst.e.Inf.-Lsg. Carmustin Obvius Carmustin Obvius 100 mg Plv.+Lm PLK H.e.Kon.f.e.Inf.l. Carmustin-ratiopharm Carmustin-ratiopharm 100mg P.u.Lm PLK f.e.K.z.H.e.Inf. Streptozocin Zanosar Zanosar 1 g f.e.Konz.z.Herst.e.Inf-.Lsg. PIK L01AD04 Temozolomid Temodal Temodal 2,5 mg/ml Konz. 100 mg PIF L01AX03 Dacarbazin Dacarbazin Lipomed Dacarbazin Lipomed 100 mg PII L01AX04 Durchstechfl. Dacarbazin Lipomed 1000 mg PIF Plv.z.H.e.Infus.-Lsg. Dacarbazin Lipomed 200 mg PII Durchstechfl. Dacarbazin Lipomed 500 mg PIF Plv.z.H.e.Infus.-Lsg. Detimedac Detimedac 100 Tr.Subst.o.Lsg. PII Detimedac 1000 Tr.Subst.o.Lsg PIF Detimedac 200 Tr.Subst.o.Lsg. PII Detimedac 500 Tr.Subst.o.Lsg. PIF Methotrexat Bendatrexat Bendatrexat 50mg ILO AV L01BA01 MTX HEXAL Injekt/ MTX 10 HEXAL injekt ILO AV Methotrexat HEXAL MTX 15 mg HEXAL Injekt ILO Methotrexat Accord Methotrexat accord 1000 mg/10 ml IFK Konz.z.e.Inf.-Lsg Methotrexat accord 1000 mg/40 ml Inj.- ILO lösung Methotrexat accord 50 mg/2 ml ILO Injektionslösung Methotrexat accord 500 mg/20 ml Inj.- ILO lösung Seite 4 von 56 Wirkstoff Standardaggregat FAM-Name Drf ATC-Code Methotrexat accord 5000 mg/50 ml IFK Konz.z.H.e.Inj.L. Methotrexat Lederle Methotrexat Lederle 25 mg IFL Amp. Methotrexat Lederle 50 mg IFL Methotrexat parenteral METHOTREXAT 15 MEDAC DFL Methotrexat Medac 100 mg/ml 1000 mg ILO Inj.-Lsg.Dsfl. Methotrexat Medac 100 mg/ml 5000 mg ILO Inj.-Lsg.Dsfl. Methotrexat Medac 25 mg/ml 1000 mg ILO Inj.-Lsg.Dsfl. Methotrexat Medac 25 mg/ml 50 mg ILO Inj.-Lsg.Dsfl. Methotrexat medac 25 mg/ml 5000 mg ILO inj.-lsg.dsfl. Methotrexat-GRY Amp. Methotrexat-GRY 1000 10 ml IFK Methotrexat-GRY 5 2 ml ILO Methotrexat-GRY 50 2 ml ILO Methotrexat-GRY 500 20 ml IFK Methotrexat-GRY 5000 50 ml IFK Pemetrexed Albotiva Albotiva 25 mg/ml Konz.z.H.e.Inf.- IFK AV L01BA04 L.g.Dsfl. 850mg 34 ml Albotiva 25 mg/ml Konz.z.H.e.Inf.- IFK AV Lsg.Dsfl.1000mg 40 ml Albotiva 25 mg/ml Konz.z.H.e.Inf.- IFK AV Lsg.Dsfl.100mg 4 ml Albotiva 25 mg/ml Konz.z.H.e.Inf.- IFK AV Lsg.Dsfl.500mg 20 ml Alimta Alimta 100 mg Kohl Ph. TSS Alimta 100 mg PIK z.herstell.e.infusionsloesung Westen Ph. Alimta 100 mg Axicorp TSS Alimta 100 mg Durchstechflasche PIK Alimta 100 mg Haemato-Ph. PIK Alimta 100 mg Plv.z.Herst.e.Konz.z. PIK H.e.Inf.-L. Paranova Alimta 100 mg PIK Plv.z.Herst.e.Konz.z.Herst.e.Inf.-L. Abacu Alimta 100 mg PIK Plv.z.Herst.e.Konz.z.Herst.e.Inf.-L. CC Ph Seite 5 von 56 Wirkstoff Standardaggregat FAM-Name Drf ATC-Code Alimta 100 mg PIK Plv.z.Herst.e.Konz.z.Herst.e.Inf.-L. Eurim Alimta 100 mg PIK Plv.z.Herst.e.Konz.z.Herst.e.Inf.Lö.
Recommended publications
  • Access to High-Quality Oncology Care Across Europe
    ACCESS TO HIGH-QUALITY ONCOLOGY CARE ACROSS EUROPE Thomas Hofmarcher, IHE Bengt Jönsson, Stockholm School of Economics IHE REPORT Nils Wilking, Karolinska Institutet and Skåne University Hospital 2014:2 Access to high-quality oncology care across Europe Thomas Hofmarcher IHE – The Swedish Institute for Health Economics, Lund, Sweden Bengt Jönsson Stockholm School of Economics, Stockholm, Sweden Nils Wilking Karolinska Institutet, Stockholm, Sweden and Skåne University Hospital, Lund/Malmö, Sweden IHE Report 2014:2 Print-ISSN 1651-7628 e-ISSN 1651-8187 The report can be downloaded from IHE’s website. Please cite this report as: Hofmarcher, T., Jönsson, B., Wilking, N., Access to high-quality oncology care across Europe. IHE Report. 2014:2, IHE: Lund. Box 2127 | Visit: Råbygatan 2 SE-220 02 Lund | Sweden Phone: +46 46-32 91 00 This report was commissioned and funded by Janssen Fax: +46 46-12 16 04 pharmaceutica NV and based on independent research delivered by IHE. Janssen has had no E-mail: [email protected] influence or editorial control over the content of this www.ihe.se report, and the views and opinions of the authors are Org nr 556186-3498 not necessarily those of Janssen. Vat no SE556186349801 Access to high-quality oncology care across Europe 2 Table of contents Executive Summary 4 6. Access to quality care in oncology – Treatment 57 1. Introduction 5 6.1. Review and summary of published studies 58 1.1. Purpose and scope of the report 5 6.1.1. Availability of new cancer drugs 58 1.2. The EU’s role in the fight against cancer 5 6.1.2.
    [Show full text]
  • Systematic Identification and Assessment of Therapeutic Targets
    G C A T T A C G G C A T genes Article Systematic Identification and Assessment of Therapeutic Targets for Breast Cancer Based on Genome-Wide RNA Interference Transcriptomes Yang Liu 1,†, Xiaoyao Yin 2,†, Jing Zhong 3,†, Naiyang Guan 2, Zhigang Luo 2, Lishan Min 3, Xing Yao 3, Xiaochen Bo 4, Licheng Dai 3,* and Hui Bai 4,5,* 1 Research Center for Clinical & Translational Medicine, Beijing 302 Hospital, Beijing 100039, China; [email protected] 2 Science and technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China; [email protected] (X.Y.); [email protected] (N.G.); [email protected] (Z.L.) 3 Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou 313000, China; [email protected] (J.Z.); [email protected] (L.M.); [email protected] (X.Y.) 4 Beijing Institute of Radiation Medicine, Beijing 100850, China; [email protected] 5 No. 451 Hospital of PLA, Xi’an 710054, China * Correspondence: [email protected] (L.D.); [email protected] (H.B.); Tel.: +86-572-2555800 (L.D.); +86-010-66932251 (H.B.) † These authors contributed equally to this work Academic Editor: Wenyi Gu Received: 1 December 2016; Accepted: 13 February 2017; Published: 24 February 2017 Abstract: With accumulating public omics data, great efforts have been made to characterize the genetic heterogeneity of breast cancer. However, identifying novel targets and selecting the best from the sizeable lists of candidate targets is still a key challenge for targeted therapy, largely owing to the lack of economical, efficient and systematic discovery and assessment to prioritize potential therapeutic targets.
    [Show full text]
  • Effects of Removing Reimbursement Restrictions on Targeted Therapy Accessibility for Non-Small Cell Lung Cancer Treatment in Taiwan: an Interrupted Time Series Study
    Open access Research BMJ Open: first published as 10.1136/bmjopen-2018-022293 on 15 March 2019. Downloaded from Effects of removing reimbursement restrictions on targeted therapy accessibility for non-small cell lung cancer treatment in Taiwan: an interrupted time series study Jason C Hsu, 1 Chen-Fang Wei,2 Szu-Chun Yang3 To cite: Hsu JC, Wei C-F, ABSTRACT Strengths and limitations of this study Yang S-C. Effects of removing Interventions Targeted therapies have been proven to reimbursement restrictions provide clinical benefits to patients with metastatic non-small ► Both prescription rate and speed (time to prescrip- on targeted therapy cell lung cancer (NSCLC). Gefitinib was initially approved and accessibility for non-small tion) were used to measure drug accessibility. reimbursed as a third-line therapy for patients with advanced cell lung cancer treatment ► An interrupted time-series design, a strong qua- NSCLC by the Taiwan National Health Insurance (NHI) in 2004; in Taiwan: an interrupted si-experimental method, was applied. subsequently it became a second-line therapy (in 2007) time series study. BMJ Open ► A segmented linear regression model was used to and further a first-line therapy (in 2011) for patients with 2019;9:e022293. doi:10.1136/ estimate postpolicy changes in both the level and epidermal growth factor receptor mutation-positive advanced bmjopen-2018-022293 trend of these study outcomes. NSCLC. Another targeted therapy, erlotinib, was initially ► Prepublication history for ► Data from the claims' database of the Taiwan approved as a third-line therapy in 2007, and it became a this paper is available online.
    [Show full text]
  • Methotrexate 25 Mg/Ml Solution for Injection
    METHOTREXATE 25 MG/ML SOLUTION FOR INJECTION (Methotrexate) PL 18727/0015 UKPAR TABLE OF CONTENTS Lay Summary Page 2 Scientific discussion Page 3 Steps taken for assessment Page 11 Steps taken after authorisation – summary Page 12 Summary of Product Characteristics Page 13 Product Information Leaflet Page 25 Labelling Page 27 MHRA PAR – Methotrexate 25 mg/ml Solution for Injection (PL 18727/0015) 1 - METHOTREXATE 25 MG/ML SOLUTION FOR INJECTION PL 18727/0015 LAY SUMMARY The MHRA granted Fresenius Kabi Oncology Plc a Marketing Authorisation (licence) for the medicinal product Methotrexate 25 mg/ml Solution for Injection on 22 November 2011. This product is a prescription-only medicine (POM). Methotrexate 25 mg/ml Solution for Injection is an antimetabolite medicine (medicine which affects the growth of body cells) and immunosuppressant (medicine which reduces the activity of the immune system). Methotrexate is used in large doses (on its own or in combination with other medicines) to treat certain types of cancer. In smaller doses it can be used to treat severe psoriasis (a skin disease with thickened patches of inflamed red skin, often covered by silvery scales), when it has not responded to other treatment. No new or unexpected safety concerns arose from this application and it was therefore judged that the benefits of taking Methotrexate 25 mg/ml Solution for Injection outweigh the risks and a Marketing Authorisation was granted. MHRA PAR – Methotrexate 25 mg/ml Solution for Injection (PL 18727/0015) 2 - METHOTREXATE 25 MG/ML SOLUTION
    [Show full text]
  • Helsana Arzneimittelreport 2019
    Ausgabe 2019 Helsana- Arzneimittel- Report Ausgabe 2019 Helsana-Arzneimittelreport The rise of antimicro- bial resistance is a global crisis, that must be managed with the utmost urgency Dr. Margaret Chan, Former Director-General of the World Health Organization (2006 – 2017) Der Helsana-Arzneimittelreport wird im Auftrag von Helsana vom Universitätsspital Basel (USB) und dem Institut für Pharmazeutische Medizin (ECPM) der Universität Basel erstellt. Unser Dank gilt den Mitarbeiterinnen und Mitarbeitern des USB und des ECPM für alle vorgenommenen Auswertungen und für die Erstellung des Reports. Helsana-Arzneimittelreport 2019 3 November 2019 Helsana-Arzneimittelreport für die Schweiz 2019 Auswertungsergebnisse der Helsana Arzneimitteldaten aus den Jahren 2015 bis 2018 Rahel Schneider 1,2 Nadine Schur 3 Daphne Reinau 1,2 Matthias Schwenkglenks 3 Christoph R. Meier 1,2,4 1 Basel Pharmacoepidemiology Unit Abteilung Klinische Pharmazie und Epidemiologie Departement Pharmazeutische Wissenschaften Universität Basel & 2 Spital-Pharmazie Universitätsspital Basel & 3 Institut für Pharmazeutische Medizin (ECPM) Universität Basel & 4 Boston Collaborative Drug Surveillance Program (BCSDP) Lexington, MA, USA Helsana-Arzneimittelreport 2019 4 Helsana-Arzneimittelreport 2019 5 Inhaltsverzeichnis Vorwort .................................................................................................................................................................................... 7 Préface ...................................................................................................................................................................................
    [Show full text]
  • WO 2017/050939 A2 30 March 2017 (30.03.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/050939 A2 30 March 2017 (30.03.2017) P O P C T (51) International Patent Classification: (74) Agents: SANDERSON, Andrew et al; Potter Clarkson G01N33/5 74 (2006.01) LLP, The Belgrave Centre, Talbot Street, Nottingham Not tinghamshire NG1 5GG (GB). (21) International Application Number: PCT/EP20 16/0726 17 (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (22) Date: International Filing AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 22 September 2016 (22.09.201 6) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (26) Publication Language: English KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 15 16801 .6 22 September 2015 (22.09.2015) GB OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (71) Applicant: IMMUNOVIA AB [SE/SE]; Medicon Village, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, SE-223 8 1 Lund (SE). ZW. (72) Inventors: BORREBAECK, Carl Arne Krister; Hel- (84) Designated States (unless otherwise indicated, for every gonavagen 21, S-223 63 Lund (SE).
    [Show full text]
  • Example to Make a Scientific Poster
    MANAGEMENT OF NON-ADMINISTERED CHEMOTHERAPY PREPARATION: AN OPPORTUNITY TO MINIMIZE DRUG WASTE IN ONCOLOGY PHARMACY A. EL ASSIL1*, C. ADADE1, R. ISSA1, H. BECHAR2, A. ZEDOU2, A. FASSI FIHRI2, Y. RAHALI1,2. 1MOHAMED V UNIVERSITY- FACULTY OF MEDECINE AND PHARMACY, DEPARTMENT OF PHARMACY, RABAT, MOROCCO. 2NATIONAL INSTITUTE OF ONCOLOGY- IBN SINA UNIVERSITY HOSPITAL, DEPARTMENT OF PHARMACY, RABAT, MOROCCO * Corresponding author : [email protected] 3PC3PC-012-012 Background The non-administration of cytotoxic preparations contributes significantly to the drug waste and its cost in the Centralized Cytotoxic Preparation Units (CCPU) . Monitoring and proper management of returns of preparations could reduce drug wastage. The aim of this study was to analyze the reasons of returns and quantify the reused cytotoxic preparations before and after the implementation of corrective measures . Material and methods A prospective study was conducted at our Hospital Pharmacy of the National Institute of Oncology over tow -8 months periods (January to August of 2018 and 2019). Data on the reasons , content and fate of returns were collected and analyzed by Excel software . (Figure 1) Results At the end of the first period, 125 preparations corresponding to 90 prescription were returned. Absence of patient was the most common reason (56%), followed by crystallization of product (19%), mainly Taxanes. Docetaxel was the most returned preparation (17.6%) (Figure 2,4) . The corrective measures taken were: optimization of communication between the CCPU and clinical services, strict dilution of Taxanes and Etoposide in glass vials and updating of physico-chemical and microbiological stability sheets for cytotoxics. During the two study periods, we found a similar number of returns (0.6%) corresponding to 15851 € and 16874 €.
    [Show full text]
  • Impact of Germline and Somatic Missense Variations on Drug Binding Sites
    OPEN The Pharmacogenomics Journal (2017) 17, 128–136 www.nature.com/tpj ORIGINAL ARTICLE Impact of germline and somatic missense variations on drug binding sites CYan1,5, N Pattabiraman2,5, J Goecks3, P Lam1, A Nayak1,YPan1, J Torcivia-Rodriguez1, A Voskanian1,QWan1 and R Mazumder1,4 Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein’s gene. To identify the nsSNVs that may affect drug binding, protein–drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein–drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein–drug binding sites. Using this method we identified 12 993 amino acid–drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid–drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid–drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid–drug binding sites.
    [Show full text]
  • Feasibility of Large-Scale Observational Cancer Research Using the OHDSI Network—Aim 2 Findings
    Feasibility of Large-Scale Observational Cancer Research using the OHDSI Network—Aim 2 Findings George Hripcsak, MD, MS RuiJun Chen, MD Thomas Falconer, MS Biomedical Informatics, Columbia University Medical Informatics Services, NewYork-Presbyterian NCI Contract Aims ´ Aim 1. Understand the sequence of treatments in cancer patients with diabetes, depression or high blood pressure ´ Presentation and webinar at NCI on 2/14/18 ´ Aim 2. Understand the feasibility of using existing data infrastructure to conduct cancer treatment and outcomes research. Aim 1 example: Depression treatment pathways in cancer care Truven CCAE Columbia IMS France IMS Germany Truven Medicaid Truven Medicare Optum Extended SES Stanford Aim 1 example: Type II DM treatment pathways in cancer care Truven CCAE Columbia IMS France IMS Germany Truven Medicaid Truven Medicare Optum Extended SES Stanford Aim 1 example: Hypertension treatment pathways in cancer care Truven CCAE Columbia IMS France IMS Germany Truven Medicaid Truven Medicare Optum Extended SES Stanford Aim 2: Phenotyping and Validation of Cancer Diagnoses Any cancer, AML, CLL, pancreatic, and prostate cancer Diagnoses Treatments Characterization The Future How good is the data? Cancer Demographics at Columbia University Medical Center (CUMC) ´ 6.38 million unique patient records ´ 5.33 million unique patients with at least 1 diagnosis/condition ´ 667,328 unique patients diagnosed with cancer ´ 38,670 unique patients in cancer registry (NAACCR Tumor Registry) ´ Includes patients with reportable cancers actively
    [Show full text]
  • PHARMACIST ROLE in HEALTH OUTCOME of VD-PACE SAVAGE REGIMEN in ADULT FEMALE PATIENT with RARE RELAPSED and REFRACTORY Igd LAMBDA MULTIPLE MYELOMA
    PHARMACIST ROLE IN HEALTH OUTCOME OF VD-PACE SAVAGE REGIMEN IN ADULT FEMALE PATIENT WITH RARE RELAPSED AND REFRACTORY IgD LAMBDA MULTIPLE MYELOMA Alberto Vergati, Tommaso Gregori, Arturo Cavaliere Hospital Pharmacy, ASL Viterbo, Italy Background Patients with multiple relapses and/or refractory Multiple Myeloma are difficult to manage as the therapeutic options become limited and the response to chemotherapy is often short lived. Despite significant advances in treatment options some patients have ultimately developed resistance to existing therapies. High-risk-MM is considered challenging to treat because of the risk of early relapse and increased mortality. Aim and objectives Material and methods A 60-year-old caucasian female patient with a rare Pharmacists and Physicians have chosen VD - PACE as IgD-lambda-RRMM has received six VTD courses and an savage off - label therapy, using the Stony Brook University autologous stem cell transplant (ASCT) before a three Medical Center, NY, USA regimen, according to guidelines and months new relapse, fourteen KRD cycles and an other available literature. extramedullary relapse. This regimen uses cisplatin and etoposide to which most Then Physicians asked Pharmacists which regimen could patients with MM are not exposed. be used and to explain treatment details. The 24h infusion of PACE was aimed at providing continuously high plasma drug levels to target slowly dividing, resistant plasma cell clones, and to reduce cardiotoxicity related to doxorubicin. The bortezomib in the TOTAL-THERAPY-3 protocol
    [Show full text]
  • Kosten, Prijsstelling En Vergoeding Dure Geneesmiddelen. Hoe Is Het in Theorie Geregeld?
    Kosten, prijsstelling en vergoeding dure geneesmiddelen. Hoe is het in theorie geregeld? KWF Kankerbestrijding September 2013 1 Inhoudsopgave Inhoudsopgave 2 Samenvatting en conclusie 5 1 Achtergrond en aanleiding 7 2 Kosten van dure oncolytica in perspectief 9 2.1 KOSTEN VOOR NIEUWVORMINGEN IN RELATIE TOT DE TOTALE ZORGKOSTEN IN NEDERLAND ................................ 9 2.1.1 KOSTEN VOOR NIEUWVORMINGEN EN ONCOLYTICA BINNEN ZVW IN RELATIE TOT TOTALE ZORGUITGAVEN IN NEDERLAND ......................................................................................................................................................... 9 2.1.2 TRENDS IN DE UITGAVEN VOOR NIEUWVORMINGEN BINNEN DE ZVW VANAF 2003 ............................................ 10 2.2 KOSTEN ONCOLOGISCHE BEHANDELINGEN .............................................................................................. 11 2.2.1 ONCOLYTICA .......................................................................................................................................... 11 2.2.2 RADIOTHERAPIE ...................................................................................................................................... 15 2.3 CONCLUSIE: KOSTEN VAN DURE GENEESMIDDELEN IN PERSPECTIEF ............................................................... 16 3 Toelating, prijsstelling en bekostiging van dure oncologische geneesmiddelen in Nederland 17 3.1 NATIONAAL NIVEAU .........................................................................................................................
    [Show full text]
  • Results of Juvenile Animal Studies (JAS) and Impact on Anti-Cancer Medicine Development and Use in Children Project Report
    15 November 2017 EMA/629174/2017 Human Medicines Evaluation Division Results of juvenile animal studies (JAS) and impact on anti-cancer medicine development and use in children Project report Results summary discussed by Safety Working Party 29 September 2014 Results summary discussed by PDCO 08-10 October 2014 Draft report agreed by PDCO 20-22 July 2016 Draft report discussed and commented by Oncology Working Party* July to September 2016 Draft report discussed and commented by Safety Working Party* July to November 2016 Agreed by Safety Working Party 15 February 2017 Adoption by PDCO 24 February 2017 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5505 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2017. Reproduction is authorised provided the source is acknowledged. Table of contents 1. Summary ........................................................................................................................... 3 2. Introduction ....................................................................................................................... 4 3. Methods ............................................................................................................................. 6 3.1. Data collection ................................................................................................................... 6 3.2. Assessment and comparison of juvenile with other animal data
    [Show full text]