Real World Treatment Practices for Chronic Lymphocytic Leukemia in Japan: an Observational Database Research Study (CLIMBER-DBR)

Total Page:16

File Type:pdf, Size:1020Kb

Real World Treatment Practices for Chronic Lymphocytic Leukemia in Japan: an Observational Database Research Study (CLIMBER-DBR) lin Journal of clinical and experimental hematopathology JC Vol. 61 No.X, XXX-XXX, 2021 EH xp ematopathol Original Article Real World Treatment Practices for Chronic Lymphocytic Leukemia in Japan: An Observational Database Research Study (CLIMBER-DBR) Jun Takizawa,1) Koji Izutsu,2) Hirokazu Nagai,3) Kenjiro Fukase,4) Maki Nakamura,4) Masahisa Jinushi,4) Junji Suzumiya5) There are limited real-world data on the treatment practices and healthcare resource utilization associated with chronic lympho- cytic leukemia (CLL) in Japan. In this study (CLIMBER-DBR), we performed retrospective analyses of the Japanese Medical Data Vision database, and extracted data for 2562 patients with newly diagnosed CLL (CLL-1 cohort) and 930 patients receiv- ing CLL treatment (CLL-2 cohort) registered between March 1, 2013 and February 28, 2018. The median follow-up in the CLL-1 cohort was 721 (quartile 1–3: 363–1267) days and the median time to initial (first-line) treatment was 1331 (quartile 1–3: 189–not reached) days. In the CLL-2 cohort, the most frequently used regimens were fludarabine alone (17.7%), cyclo- phosphamide alone (13.7%), and bendamustine/rituximab (8.2%). The median (quartile 1–3) times to second-line and third- line treatments were 1066 (273–not reached) and 1795 (631–not reached) days, respectively. The CLIMBER-DBR was the first database research study to assess current treatment practices for CLL in Japan, where the treatment patterns were driven by the approval/reimbursement status of drugs in the study period. Our study provides an important benchmark for future studies of CLL in Japan. Keywords: Chronic lymphocytic leukemia, Japan, real world, treatment patterns, resource utilization Lymphocytic Leukemia guidelines.8 The JSH guidelines INTRODUCTION recommend a “watch and wait” approach initially for patients Chronic lymphocytic leukemia (CLL) is a relatively rare without active disease. For patients who do require treat- disease, with an annual age-adjusted incidence of approxi- ment, the recommended regimens include ibrutinib, fludara- mately 0.2 cases per 100,000 people in Japan1 and an esti- bine + cyclophosphamide rituximab (FCR) and bendamus- mated 2000 patients nationwide.2 It is estimated that CLL tine + rituximab (BR). accounts for ~3% of all cases of malignant lymphomas in In recent years, there have been marked changes to the Japan,1,3 a much lower rate than that of ~25% in Western treatment landscape in Japan, with the approval of rituximab countries.4 for CLL in 2019 (previously approved for B-cell non-Hodg- CLL has a long clinical course, and avoiding treatment- kin lymphoma in 2003), bendamustine in 2016, ibrutinib for related deaths or adverse events (AEs) is an important aspect relapsed/refractory CLL in 2016 and as first-line treatment in of its management. Therefore, it is important to start treat- 2018, and venetoclax for relapsed/refractory CLL in 2019.5 ment by identifying the disease stage and activity. A recent Overseas, other new treatments have been incorporated into review proposed an evolution of initial CLL therapy in the 2020 National Comprehensive Cancer Network Clinical Japan,5 extending the previous 2018 guidelines issued by the Practice Guidelines,9 which recommend ibrutinib, acalabruti- Japanese Society of Hematology (JSH),6,7 which are now nib ± obinutuzumab, or venetoclax + obinutuzumab as first- mostly in line with the International Workshop on Chronic line treatment, of which only ibrutinib is approved in this set- Received: September 11, 2020. Revised: February 18, 2021. Accepted: April 4, 2021. J-STAGE Advance Published: June 5, 2021 DOI: 10.3960/jslrt.20044 1)Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan, 2)Department of Hematology, National Cancer Center Hospital, Tokyo, Japan, 3)Department of Hematology, National Hospital Organization Nagoya Medical Center, Nagoya, Japan, 4)AstraZeneca K.K., Osaka, Japan, 5)Innovative Cancer Center, Shimane University Hospital, Izumo, Japan Present affiliation: JS, Department of Hematology, Koga Community Hospital, Yaizu, Japan Corresponding author: Jun Takizawa, MD, PhD, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan. E-mail: [email protected] Copyright © 2021 The Japanese Society for Lymphoreticular Tissue Research This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 1 Takizawa J, et al. ting in Japan. International Classification of Diseases 10th Edition (ICD- Currently, there is limited evidence on how physicians in 10) codes and treatments are recorded using Anatomical Japan treat CLL patients in real-world settings. In particular, Therapeutic Chemical Classification (ATC) codes. it is unclear how long physicians wait until they prescribe Patients and definition of study cohorts first-line treatment for patients with newly diagnosed CLL. In addition, it remains largely obscure which treatment regi- We searched the MDV database for patients with an ICD- mens are used or preferred by physicians in real-world prac- 10 diagnosis code of C83 for non-follicular lymphoma or tice, especially considering the recent changes to the treat- C91 for lymphocytic leukemia, filtered with the Japanese ment landscape in Japan.5 Information is also needed on the claim code ‘8847359’, with a study period of March 1, 2013 impact of CLL on healthcare resource utilization and to February 28, 2018. As a “watch and wait” approach is expenditure. often appropriate for patients without symptoms, we estab- Some insight into the real-world management of CLL lished two cohorts, CLL-1 and CLL-2, which were defined as came from a US study using a commercial healthcare insur- follows: The CLL-1 cohort comprised patients with a diagno- ance claims database of patients diagnosed between July sis of CLL recorded during the study period who were aged 2012 and June 2015.10 In that study, BR was the most com- ≥18 years at diagnosis. The objectives of this cohort were to mon first-line treatment regimen (28.1%), with a median time assess the characteristics of patients with newly diagnosed to initial (first-line) treatment (TIT) of 3.3 months (versus CLL and to determine the TIT from diagnosis. The CLL-2 16.4 and 7.7 months for ibrutinib and rituximab, respec- cohort comprised patients with a diagnosis of CLL who tively).10 The authors also revealed a high cost of treating received treatment for CLL during the study period at ≥18 CLL, with mean monthly all-cause and CLL-related costs of years of age. The objectives of this cohort were to assess the $7943 and $5185, respectively, among patients prescribed characteristics of patients who received antineoplastic agents systemic treatment. as first-line or second-/third-line treatments, and to evaluate Similar data are therefore needed in Japan in order to bet- the characteristics of patients under treatment, and the times ter understand the current clinical practices for CLL and its from the first prescription of antineoplastic treatment to first healthcare resource utilization. Accordingly, the CLIMBER- subsequent (second-line) treatment (TFST) and second sub- DBR study was performed with the objectives of determining sequent (third-line) treatment (TSST). Both cohorts were the characteristics, treatment patterns, and healthcare also used to evaluate healthcare resource utilization and fre- resource utilization of CLL in a real-world clinical setting in quency of Richter’s transformation. The index date was Japan using a secondary data source. defined as the date of the first diagnosis of CLL in the CLL-1 cohort and as the date of first treatment in the CLL-2 cohort. Some overlap of the CLL-1 and CLL-2 cohorts was expected MATERIALS AND METHODS because of the possibility that some patients were first diag- nosed and received antineoplastic treatment in the study Ethics period; patients who were first diagnosed but did not receive The MDV database (Medical Data Vision Co., Ltd., antineoplastic treatment in the study period were included in Tokyo, Japan), the database used in this study, comprises data the CLL-1 cohort. Patients who were diagnosed before the collected under contract from the participating institutions. study period but who received treatment during the study All data regarding personal information were anonymized by period were included in the CLL-2 cohort. We excluded each institution and the database does not include the loca- patients aged <18 years at the index date, patients with an tion of institution. Therefore, patient information cannot be index date outside the study period, and patients who under- retrieved from the database. This complies with the Act on went stem cell transplantation before the index date. the Protection of Personal Information in Japan. The con- Measures and outcomes tracts between MDV and the institutions permit this MDV database to be used for research purposes. The study was All data and clinical records, including diagnostic proce- also approved by the Institutional Review Board of the dures, were retrospectively collected from the MDV data- Clinical Research Promotion Network-Japan (Osaka, Japan; base. Follow-up data were recorded for all patients until approval number: 7625-NIS-8326-00; date: June 20, 2019). February 28, 2019, or until their last recorded visit or death. Baseline data included age, sex, body weight, and modified MDV database
Recommended publications
  • A Prospective, Multicenter, Phase-II Trial of Ibrutinib Plus Venetoclax In
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open HOVON 141 CLL Version 4, 20 DEC 2018 A prospective, multicenter, phase-II trial of ibrutinib plus venetoclax in patients with creatinine clearance ≥ 30 ml/min who have relapsed or refractory chronic lymphocytic leukemia (RR-CLL) with or without TP53 aberrations HOVON 141 CLL / VIsion Trial of the HOVON and Nordic CLL study groups PROTOCOL Principal Investigator : Arnon P Kater (HOVON) Carsten U Niemann (Nordic CLL study Group)) Sponsor : HOVON EudraCT number : 2016-002599-29 ; Page 1 of 107 Levin M-D, et al. BMJ Open 2020; 10:e039168. doi: 10.1136/bmjopen-2020-039168 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open Levin M-D, et al. BMJ Open 2020; 10:e039168. doi: 10.1136/bmjopen-2020-039168 BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Open HOVON 141 CLL Version 4, 20 DEC 2018 LOCAL INVESTIGATOR SIGNATURE PAGE Local site name: Signature of Local Investigator Date Printed Name of Local Investigator By my signature, I agree to personally supervise the conduct of this study in my affiliation and to ensure its conduct in compliance with the protocol, informed consent, IRB/EC procedures, the Declaration of Helsinki, ICH Good Clinical Practices guideline, the EU directive Good Clinical Practice (2001-20-EG), and local regulations governing the conduct of clinical studies.
    [Show full text]
  • The New Therapeutic Strategies in Pediatric T-Cell Acute Lymphoblastic Leukemia
    International Journal of Molecular Sciences Review The New Therapeutic Strategies in Pediatric T-Cell Acute Lymphoblastic Leukemia Marta Weronika Lato 1 , Anna Przysucha 1, Sylwia Grosman 1, Joanna Zawitkowska 2 and Monika Lejman 3,* 1 Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] (M.W.L.); [email protected] (A.P.); [email protected] (S.G.) 2 Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; [email protected] 3 Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland * Correspondence: [email protected] Abstract: Childhood acute lymphoblastic leukemia is a genetically heterogeneous cancer that ac- counts for 10–15% of T-cell acute lymphoblastic leukemia (T-ALL) cases. The T-ALL event-free survival rate (EFS) is 85%. The evaluation of structural and numerical chromosomal changes is important for a comprehensive biological characterization of T-ALL, but there are currently no ge- netic prognostic markers. Despite chemotherapy regimens, steroids, and allogeneic transplantation, relapse is the main problem in children with T-ALL. Due to the development of high-throughput molecular methods, the ability to define subgroups of T-ALL has significantly improved in the last few years. The profiling of the gene expression of T-ALL has led to the identification of T-ALL subgroups, and it is important in determining prognostic factors and choosing an appropriate treatment. Novel therapies targeting molecular aberrations offer promise in achieving better first remission with the Citation: Lato, M.W.; Przysucha, A.; hope of preventing relapse.
    [Show full text]
  • Draft Matrix Post Referral PDF 189 KB
    Appendix C NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE Proposed Single Technology Appraisal Venetoclax with a hypomethylating agent or low dose cytarabine for untreated acute myeloid leukaemia unsuitable for intensive chemotherapy [ID1564] Provisional stakeholder list of consultees and commentators Consultees Commentators (no right to submit or appeal) Company General • AbbVie (venetoclax) • All Wales Therapeutics and Toxicology Centre Patient/carer groups • Allied Health Professionals Federation • African Caribbean Leukaemia Trust • British National Formulary • Anthony Nolan • Care Quality Commission • Black Health Agency • Department of Health, Social Services • Bloodwise and Public Safety for Northern Ireland • Cancer Black Care • Hospital Information Services – • Cancer Equality Jehovah’s Witnesses • Cancer52 • Healthcare Improvement Scotland • DKMS • Medicines and Healthcare products • HAWC Regulatory Agency • Helen Rollason Cancer Charity • National Association of Primary Care • Independent Cancer Patients Voice • National Pharmacy Association • Leukaemia Cancer Society • NHS Alliance • Leukaemia CARE • NHS Blood and Transplant • Lymphoma Action • NHS Confederation • Macmillan Cancer Support • Scottish Medicines Consortium • Maggie’s Centres • Welsh Health Specialised Services • Marie Curie Committee • Muslim Council of Britain • South Asian Health Foundation Possible comparator companies • Specialised Healthcare Alliance • Accord Healthcare Ltd (cytarabine) • Tenovus Cancer Care • Bristol-Meyers Squibb Pharmaceuticals Ltd
    [Show full text]
  • A Novel CDK9 Inhibitor Increases the Efficacy of Venetoclax (ABT-199) in Multiple Models of Hematologic Malignancies
    Leukemia (2020) 34:1646–1657 https://doi.org/10.1038/s41375-019-0652-0 ARTICLE Molecular targets for therapy A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies 1 1 2,3 4 1 5 6 Darren C. Phillips ● Sha Jin ● Gareth P. Gregory ● Qi Zhang ● John Xue ● Xiaoxian Zhao ● Jun Chen ● 1 1 1 1 1 1 Yunsong Tong ● Haichao Zhang ● Morey Smith ● Stephen K. Tahir ● Rick F. Clark ● Thomas D. Penning ● 2,7 3 5 1 4 2,7 Jennifer R. Devlin ● Jake Shortt ● Eric D. Hsi ● Daniel H. Albert ● Marina Konopleva ● Ricky W. Johnstone ● 8 1 Joel D. Leverson ● Andrew J. Souers Received: 27 November 2018 / Revised: 18 October 2019 / Accepted: 13 November 2019 / Published online: 11 December 2019 © The Author(s) 2019 Abstract MCL-1 is one of the most frequently amplified genes in cancer, facilitating tumor initiation and maintenance and enabling resistance to anti-tumorigenic agents including the BCL-2 selective inhibitor venetoclax. The expression of MCL-1 is maintained via P-TEFb-mediated transcription, where the kinase CDK9 is a critical component. Consequently, we developed a series of potent small-molecule inhibitors of CDK9, exemplified by the orally active A-1592668, with CDK selectivity profiles 1234567890();,: 1234567890();,: that are distinct from related molecules that have been extensively studied clinically. Short-term treatment with A-1592668 rapidly downregulates RNA pol-II (Ser 2) phosphorylation resulting in the loss of MCL-1 protein and apoptosis in MCL-1- dependent hematologic tumor cell lines. This cell death could be attenuated by either inhibiting caspases or overexpressing BCL-2 protein.
    [Show full text]
  • Access to High-Quality Oncology Care Across Europe
    ACCESS TO HIGH-QUALITY ONCOLOGY CARE ACROSS EUROPE Thomas Hofmarcher, IHE Bengt Jönsson, Stockholm School of Economics IHE REPORT Nils Wilking, Karolinska Institutet and Skåne University Hospital 2014:2 Access to high-quality oncology care across Europe Thomas Hofmarcher IHE – The Swedish Institute for Health Economics, Lund, Sweden Bengt Jönsson Stockholm School of Economics, Stockholm, Sweden Nils Wilking Karolinska Institutet, Stockholm, Sweden and Skåne University Hospital, Lund/Malmö, Sweden IHE Report 2014:2 Print-ISSN 1651-7628 e-ISSN 1651-8187 The report can be downloaded from IHE’s website. Please cite this report as: Hofmarcher, T., Jönsson, B., Wilking, N., Access to high-quality oncology care across Europe. IHE Report. 2014:2, IHE: Lund. Box 2127 | Visit: Råbygatan 2 SE-220 02 Lund | Sweden Phone: +46 46-32 91 00 This report was commissioned and funded by Janssen Fax: +46 46-12 16 04 pharmaceutica NV and based on independent research delivered by IHE. Janssen has had no E-mail: [email protected] influence or editorial control over the content of this www.ihe.se report, and the views and opinions of the authors are Org nr 556186-3498 not necessarily those of Janssen. Vat no SE556186349801 Access to high-quality oncology care across Europe 2 Table of contents Executive Summary 4 6. Access to quality care in oncology – Treatment 57 1. Introduction 5 6.1. Review and summary of published studies 58 1.1. Purpose and scope of the report 5 6.1.1. Availability of new cancer drugs 58 1.2. The EU’s role in the fight against cancer 5 6.1.2.
    [Show full text]
  • Systematic Identification and Assessment of Therapeutic Targets
    G C A T T A C G G C A T genes Article Systematic Identification and Assessment of Therapeutic Targets for Breast Cancer Based on Genome-Wide RNA Interference Transcriptomes Yang Liu 1,†, Xiaoyao Yin 2,†, Jing Zhong 3,†, Naiyang Guan 2, Zhigang Luo 2, Lishan Min 3, Xing Yao 3, Xiaochen Bo 4, Licheng Dai 3,* and Hui Bai 4,5,* 1 Research Center for Clinical & Translational Medicine, Beijing 302 Hospital, Beijing 100039, China; [email protected] 2 Science and technology on Parallel and Distributed Processing Laboratory, National University of Defense Technology, Changsha 410073, China; [email protected] (X.Y.); [email protected] (N.G.); [email protected] (Z.L.) 3 Huzhou Key Laboratory of Molecular Medicine, Huzhou Central Hospital, Huzhou 313000, China; [email protected] (J.Z.); [email protected] (L.M.); [email protected] (X.Y.) 4 Beijing Institute of Radiation Medicine, Beijing 100850, China; [email protected] 5 No. 451 Hospital of PLA, Xi’an 710054, China * Correspondence: [email protected] (L.D.); [email protected] (H.B.); Tel.: +86-572-2555800 (L.D.); +86-010-66932251 (H.B.) † These authors contributed equally to this work Academic Editor: Wenyi Gu Received: 1 December 2016; Accepted: 13 February 2017; Published: 24 February 2017 Abstract: With accumulating public omics data, great efforts have been made to characterize the genetic heterogeneity of breast cancer. However, identifying novel targets and selecting the best from the sizeable lists of candidate targets is still a key challenge for targeted therapy, largely owing to the lack of economical, efficient and systematic discovery and assessment to prioritize potential therapeutic targets.
    [Show full text]
  • Effects of Removing Reimbursement Restrictions on Targeted Therapy Accessibility for Non-Small Cell Lung Cancer Treatment in Taiwan: an Interrupted Time Series Study
    Open access Research BMJ Open: first published as 10.1136/bmjopen-2018-022293 on 15 March 2019. Downloaded from Effects of removing reimbursement restrictions on targeted therapy accessibility for non-small cell lung cancer treatment in Taiwan: an interrupted time series study Jason C Hsu, 1 Chen-Fang Wei,2 Szu-Chun Yang3 To cite: Hsu JC, Wei C-F, ABSTRACT Strengths and limitations of this study Yang S-C. Effects of removing Interventions Targeted therapies have been proven to reimbursement restrictions provide clinical benefits to patients with metastatic non-small ► Both prescription rate and speed (time to prescrip- on targeted therapy cell lung cancer (NSCLC). Gefitinib was initially approved and accessibility for non-small tion) were used to measure drug accessibility. reimbursed as a third-line therapy for patients with advanced cell lung cancer treatment ► An interrupted time-series design, a strong qua- NSCLC by the Taiwan National Health Insurance (NHI) in 2004; in Taiwan: an interrupted si-experimental method, was applied. subsequently it became a second-line therapy (in 2007) time series study. BMJ Open ► A segmented linear regression model was used to and further a first-line therapy (in 2011) for patients with 2019;9:e022293. doi:10.1136/ estimate postpolicy changes in both the level and epidermal growth factor receptor mutation-positive advanced bmjopen-2018-022293 trend of these study outcomes. NSCLC. Another targeted therapy, erlotinib, was initially ► Prepublication history for ► Data from the claims' database of the Taiwan approved as a third-line therapy in 2007, and it became a this paper is available online.
    [Show full text]
  • Phenotype-Based Drug Screening Reveals Association Between Venetoclax Response and Differentiation Stage in Acute Myeloid Leukemia
    Acute Myeloid Leukemia SUPPLEMENTARY APPENDIX Phenotype-based drug screening reveals association between venetoclax response and differentiation stage in acute myeloid leukemia Heikki Kuusanmäki, 1,2 Aino-Maija Leppä, 1 Petri Pölönen, 3 Mika Kontro, 2 Olli Dufva, 2 Debashish Deb, 1 Bhagwan Yadav, 2 Oscar Brück, 2 Ashwini Kumar, 1 Hele Everaus, 4 Bjørn T. Gjertsen, 5 Merja Heinäniemi, 3 Kimmo Porkka, 2 Satu Mustjoki 2,6 and Caroline A. Heckman 1 1Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki; 2Hematology Research Unit, Helsinki University Hospital Comprehensive Cancer Center, Helsinki; 3Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland; 4Department of Hematology and Oncology, University of Tartu, Tartu, Estonia; 5Centre for Cancer Biomarkers, De - partment of Clinical Science, University of Bergen, Bergen, Norway and 6Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland ©2020 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2018.214882 Received: December 17, 2018. Accepted: July 8, 2019. Pre-published: July 11, 2019. Correspondence: CAROLINE A. HECKMAN - [email protected] HEIKKI KUUSANMÄKI - [email protected] Supplemental Material Phenotype-based drug screening reveals an association between venetoclax response and differentiation stage in acute myeloid leukemia Authors: Heikki Kuusanmäki1, 2, Aino-Maija
    [Show full text]
  • Sorafenib and Omacetaxine Mepesuccinate As a Safe and Effective Treatment for Acute Myeloid Leukemia Carrying Internal Tandem Du
    Original Article Sorafenib and Omacetaxine Mepesuccinate as a Safe and Effective Treatment for Acute Myeloid Leukemia Carrying Internal Tandem Duplication of Fms-Like Tyrosine Kinase 3 Chunxiao Zhang, MSc1; Stephen S. Y. Lam, MBBS, PhD1; Garret M. K. Leung, MBBS1; Sze-Pui Tsui, MSc2; Ning Yang, PhD1; Nelson K. L. Ng, PhD1; Ho-Wan Ip, MBBS2; Chun-Hang Au, PhD3; Tsun-Leung Chan, PhD3; Edmond S. K. Ma, MBBS3; Sze-Fai Yip, MBBS4; Harold K. K. Lee, MBChB5; June S. M. Lau, MBChB6; Tsan-Hei Luk, MBChB6; Wa Li, MBChB7; Yok-Lam Kwong, MD 1; and Anskar Y. H. Leung, MD, PhD 1 BACKGROUND: Omacetaxine mepesuccinate (OME) has antileukemic effects against acute myeloid leukemia (AML) carrying an internal tandem duplication of Fms-like tyrosine kinase 3 (FLT3-ITD). A phase 2 clinical trial was conducted to evaluate a combina- tion treatment of sorafenib and omacetaxine mepesuccinate (SOME). METHODS: Relapsed or refractory (R/R) or newly diagnosed patients were treated with sorafenib (200-400 mg twice daily) and OME (2 mg daily) for 7 (first course) or 5 days (second course on- ward) every 21 days until disease progression or allogeneic hematopoietic stem cell transplantation (HSCT). The primary endpoint was composite complete remission, which was defined as complete remission (CR) plus complete remission with incomplete hematologic recovery (CRi). Secondary endpoints were leukemia-free survival (LFS) and overall survival (OS). RESULTS: Thirty-nine R/R patients and 5 newly diagnosed patients were recruited. Among the R/R patients, 28 achieved CR or CRi. Two patients showed partial remission, and 9 patients did not respond.
    [Show full text]
  • Methotrexate 25 Mg/Ml Solution for Injection
    METHOTREXATE 25 MG/ML SOLUTION FOR INJECTION (Methotrexate) PL 18727/0015 UKPAR TABLE OF CONTENTS Lay Summary Page 2 Scientific discussion Page 3 Steps taken for assessment Page 11 Steps taken after authorisation – summary Page 12 Summary of Product Characteristics Page 13 Product Information Leaflet Page 25 Labelling Page 27 MHRA PAR – Methotrexate 25 mg/ml Solution for Injection (PL 18727/0015) 1 - METHOTREXATE 25 MG/ML SOLUTION FOR INJECTION PL 18727/0015 LAY SUMMARY The MHRA granted Fresenius Kabi Oncology Plc a Marketing Authorisation (licence) for the medicinal product Methotrexate 25 mg/ml Solution for Injection on 22 November 2011. This product is a prescription-only medicine (POM). Methotrexate 25 mg/ml Solution for Injection is an antimetabolite medicine (medicine which affects the growth of body cells) and immunosuppressant (medicine which reduces the activity of the immune system). Methotrexate is used in large doses (on its own or in combination with other medicines) to treat certain types of cancer. In smaller doses it can be used to treat severe psoriasis (a skin disease with thickened patches of inflamed red skin, often covered by silvery scales), when it has not responded to other treatment. No new or unexpected safety concerns arose from this application and it was therefore judged that the benefits of taking Methotrexate 25 mg/ml Solution for Injection outweigh the risks and a Marketing Authorisation was granted. MHRA PAR – Methotrexate 25 mg/ml Solution for Injection (PL 18727/0015) 2 - METHOTREXATE 25 MG/ML SOLUTION
    [Show full text]
  • Potential Biomarkers for Treatment Response to the BCL-2 Inhibitor Venetoclax: State of the Art and Future Directions
    cancers Review Potential Biomarkers for Treatment Response to the BCL-2 Inhibitor Venetoclax: State of the Art and Future Directions Haneen T. Salah 1 , Courtney D. DiNardo 2 , Marina Konopleva 2 and Joseph D. Khoury 3,* 1 College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; [email protected] 2 Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; [email protected] (C.D.D.); [email protected] (M.K.) 3 Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA * Correspondence: [email protected] Simple Summary: Apoptosis dysergulation is vital to oncogenesis. Efforts to mitigate this cancer hallmark have been ongoing for decades, focused mostly on inhibiting BCL-2, a key anti-apoptosis effector. The approval of venetoclax, a selective BCL-2 inhibitor, for clinical use has been a turning point in the field of oncology. While resulting in impressive improvement in objective outcomes, particularly for patients with chronic lymphocytic leukemia/small lymphocytic lymphoma and acute myeloid leukemia, the use of venetoclax has exposed a variety of resistance mechanisms to BCL-2 inhibition. As the field continues to move forward, improved understanding of such mechanisms and the potential biomarkers that could be harnessed to optimize patient selection for therapies that include venetoclax and next-generation BCL-2 inhibitors are gaining increased importance. Abstract: Intrinsic apoptotic pathway dysregulation plays an essential role in all cancers, particularly hematologic malignancies. This role has led to the development of multiple therapeutic agents Citation: Salah, H.T.; DiNardo, C.D.; targeting this pathway.
    [Show full text]
  • (INN) for Pharmaceutical Substances" WHO/EMP/RHT/TSN/2018.1
    INN Working Document 20.484 13/07/2020 Addendum1 to "The use of stems in the selection of International Nonproprietary names (INN) for pharmaceutical substances" WHO/EMP/RHT/TSN/2018.1 Programme on International Nonproprietary Names (INN) Medicines and Health Products World Health Organization, Geneva © World Health Organization 2020 - All rights reserved. The contents of this document may not be reviewed, abstracted, quoted, referenced, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means, without explicit prior authorization of the WHO INN Programme. This document contains the collective views of the INN Expert Group and does not necessarily represent the decisions or the stated policy of the World Health Organization. Addendum1 to "The use of stem s in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" - WHO/EMP/RHT/TSN/2018.1 1 This addendum is a cumulative list of all new stems selected by the INN Expert Group since the publication of "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" 2018. -adenant adenosine receptors antagonists ciforadenant (118), preladenant (99), taminadenant (120), tozadenant (106), vipadenant (103) -caftor cystic fibrosis transmembrane regulator (CFTR) protein modulators, correctors, and amplifiers bamocaftor (121), deutivacaftor (118), elexacaftor (121), galicaftor (119), icenticaftor (122), ivacaftor (104), lumacaftor (105), navocaftor (121), nesolicaftor
    [Show full text]