Issue 1: Autumn 2001
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Office of Polar Programs
DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1 -
Why the 'Infrastructure PM' Can't Give Antarctica the Cold Shoulder
Please do not remove this page Why the ‘infrastructure PM’ can’t give Antarctica the cold shoulder McCallum, Adrian B https://research.usc.edu.au/discovery/delivery/61USC_INST:ResearchRepository/12126045700002621?l#13127312320002621 McCallum, A. B. (2013). Why the “infrastructure PM” can’t give Antarctica the cold shoulder. The Conversation, 5 December 2013. https://research.usc.edu.au/discovery/fulldisplay/alma99448982602621/61USC_INST:ResearchRepository Document Type: Published Version USC Research Bank: https://research.usc.edu.au [email protected] CC BY V4.0 Copyright © 2013 The Conversation Media Group. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) Downloaded On 2021/10/02 23:37:22 +1000 Please do not remove this page 26/02/2016 Why the 'infrastructure PM' can't give Antarctica the cold shoulder Why the ‘infrastructure PM’ can’t give Antarctica the cold shoulder December 6, 2013 6.35am AEDT Tractors and quad bikes – seen here at Australia’s Mawson Station – are only two of many forms of transport used in Antarctica. Chris Wilson/Australian Antarctic Division Adrian McCallum Lecturer in Science and Engineering, University of the Sunshine Coast Prime Minister Tony Abbott recently declared that he wanted to be known as the “infrastructure prime minister”. But what of Australia’s iciest infrastructure – that located in Antarctica? A 20year strategic plan for Australia’s Antarctic future was recently commissioned by the federal government, but it will be another six months before Tony Press, exdirector of the Australian Antarctic Division, reveals his “blueprint”. So what is best practice when it comes to polar infrastructure, and where should Australia be heading to maintain our status as a leader in Antarctic science and operations? Stations The British Antarctic Survey completed construction of their new Halley VI Station on the floating Brunt Ice Shelf, atop the Weddell Sea, East Antarctica in 2012. -
Chile: a Journey to the End of the World in Search of Temperate Rainforest Giants
Eliot Barden Kew Diploma Course 53 July 2017 Chile: A Journey to the end of the world in search of Temperate Rainforest Giants Valdivian Rainforest at Alerce Andino Author May 2017 1 Eliot Barden Kew Diploma Course 53 July 2017 Table of Contents 1. Title Page 2. Contents 3. Table of Figures/Introduction 4. Introduction Continued 5. Introduction Continued 6. Aims 7. Aims Continued / Itinerary 8. Itinerary Continued / Objective / the Santiago Metropolitan Park 9. The Santiago Metropolitan Park Continued 10. The Santiago Metropolitan Park Continued 11. Jardín Botánico Chagual / Jardin Botanico Nacional, Viña del Mar 12. Jardin Botanico Nacional Viña del Mar Continued 13. Jardin Botanico Nacional Viña del Mar Continued 14. Jardin Botanico Nacional Viña del Mar Continued / La Campana National Park 15. La Campana National Park Continued / Huilo Huilo Biological Reserve Valdivian Temperate Rainforest 16. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 17. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued 18. Huilo Huilo Biological Reserve Valdivian Temperate Rainforest Continued / Volcano Osorno 19. Volcano Osorno Continued / Vicente Perez Rosales National Park 20. Vicente Perez Rosales National Park Continued / Alerce Andino National Park 21. Alerce Andino National Park Continued 22. Francisco Coloane Marine Park 23. Francisco Coloane Marine Park Continued 24. Francisco Coloane Marine Park Continued / Outcomes 25. Expenditure / Thank you 2 Eliot Barden Kew Diploma Course 53 July 2017 Table of Figures Figure 1.) Valdivian Temperate Rainforest Alerce Andino [Photograph; Author] May (2017) Figure 2. Map of National parks of Chile Figure 3. Map of Chile Figure 4. Santiago Metropolitan Park [Photograph; Author] May (2017) Figure 5. -
Bio 308-Course Guide
COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit. -
Biodiversity of the Antarctic Flora
CORE Metadata, citation and similar papers at core.ac.uk Provided by NERC Open Research Archive 1 1 Original Article 2 Diversity and biogeography of the Antarctic flora 3 4 Helen J. Peat, Andrew Clarke & Peter Convey 5 6 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Rd, 7 Cambridge, CB3 0ET, UK. 8 E-mail: [email protected] 9 __________________________________________________________________________ 10 11 ABSTRACT 12 13 Aim To establish how well the terrestrial flora of the Antarctic has been sampled, how well 14 the flora is known, and to determine the major patterns in diversity and biogeography. 15 16 Location Antarctica south of 60°S, together with the South Sandwich Islands, but excluding 17 South Georgia, Bouvetøya and the periantarctic islands. 18 19 Methods Plant occurrence data were collated from herbarium specimens and literature 20 records, and assembled into the Antarctic Plant Database. Distributional patterns were 21 analysed using a geographic information system. Biogeographic patterns were determined 22 with a variety of multivariate statistics. 23 24 Results Plants have been recorded from throughout the Antarctic including all latitudes 25 between 60°S and 86°S. Species richness declines with latitude along the Antarctic 26 Peninsula, but there was no evidence for a similar cline in Victoria Land and the 27 Transantarctic mountains. MDS ordinations showed that the species composition of the 28 South Orkney, South Shetland Islands and the north western Antarctic Peninsula are very 29 similar to each other, as are the floras of different regions in continental Antarctica. However 30 they also suggest that the eastern Antarctic Peninsula flora is more similar to the flora of the 31 southern Antarctic Peninsula than to the continental flora (with which it has traditionally been 32 linked). -
Gregory J. Jordan, 7 J. M. Kale Sniderman, 8 Andrew Allen
American Journal of Botany 101 ( 12 ): 2121 – 2135 , 2014 . P ALEO-ANTARCTIC RAINFOREST INTO THE MODERN OLD WORLD TROPICS: THE RICH PAST AND THREATENED FUTURE OF THE “SOUTHERN WET FOREST SURVIVORS” 1 R OBERT M. KOOYMAN , 2,3,12 P ETER W ILF , 4 V IVIANA D. BARREDA , 5 R AYMOND J. CARPENTER , 6 G REGORY J. JORDAN , 7 J. M. KALE S NIDERMAN , 8 A NDREW A LLEN , 2 T IMOTHY J. BRODRIBB , 7 D ARREN C RAYN , 9 T AYLOR S. FEILD , 9 S HAWN W . L AFFAN , 10 C HRISTOPHER H. LUSK , 11 M AURIZIO R OSSETTO , 3 AND P ETER H . W ESTON 3 2 Department of Biological Sciences, Macquarie University, North Ryde 2113, Sydney, Australia; 3 National Herbarium of NSW, Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney 2000, Australia; 4 Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA; 5 Museo Argentino de Ciencias Naturales, CONICET, División Paleobot ánica, Av. Ángel Gallardo 470, C1405DJR Buenos Aires, Argentina; 6 School of Earth and Environmental Sciences, Benham Bldg DX 650 312, University of Adelaide, South Australia, Australia; 7 School of Biological Sciences, University of Tasmania, Private Bag 55 Hobart, 7001 Tasmania, Australia; 8 School of Earth Sciences, University of Melbourne, Melbourne 3010, Australia; 9 Australian Tropical Herbarium, School of Marine and Tropical Biology, James Cook University, Cairns, Australia; 10 Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington 2052, Sydney, Australia; and 11 School of Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand • Premise of study: Have Gondwanan rainforest fl oral associations survived? Where do they occur today? Have they survived continuously in particular locations? How signifi cant is their living fl oristic signal? We revisit these classic questions in light of signifi cant recent increases in relevant paleobotanical data. -
Australian Antarctic Magazine
AusTRALIAN MAGAZINE ISSUE 23 2012 7317 AusTRALIAN ANTARCTIC ISSUE 2012 MAGAZINE 23 The Australian Antarctic Division, a Division of the Department for Sustainability, Environment, Water, Population and Communities, leads Australia’s CONTENTS Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having PROFILE ‘Antarctica valued, protected and understood’. It does Charting the seas of science 1 this by managing Australian government activity in Antarctica, providing transport and logistic support to SEA ICE VOYAGE Australia’s Antarctic research program, maintaining four Antarctic science in the spring sea ice zone 4 permanent Australian research stations, and conducting scientific research programs both on land and in the Sea ice sky-lab 5 Southern Ocean. Search for sea ice algae reveals hidden Antarctic icescape 6 Australia’s four Antarctic goals are: Twenty metres under the sea ice 8 • To maintain the Antarctic Treaty System and enhance Australia’s influence in it; Pumping krill into research 9 • To protect the Antarctic environment; Rhythm of Antarctic life 10 • To understand the role of Antarctica in the global SCIENCE climate system; and A brave new world as Macquarie Island moves towards recovery 12 • To undertake scientific work of practical, economic and national significance. Listening to the blues 14 Australian Antarctic Magazine seeks to inform the Bugs, soils and rocks in the Prince Charles Mountains 16 Australian and international Antarctic community Antarctic bottom water disappearing 18 about the activities of the Australian Antarctic Antarctic bioregions enhance conservation planning 19 program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent the position of Antarctic ice clouds 20 the Australian Government. -
Australian Antarctic Strategy and 20 Year Action Plan Australian Antarctic Strategy and 20 Year Action Plan Prime Minister’S Foreword
Australian Antarctic Strategy and 20 Year Action Plan Australian Antarctic Strategy and 20 Year Action Plan Prime Minister’s Foreword Australia has inherited a proud legacy from Sir Douglas Significant progress has already been made by the Mawson and the generations of Australian Antarctic Government on improving aviation access to Antarctica. expeditioners who have followed in his footsteps - a We have undertaken C-17A trial flights to provide an option legacy of heroism, scientific endeavour and environmental for a new heavy-lift cargo capability. Work will continue stewardship. across Government to further build support for the Australian Antarctic programme. Mawson’s legacy has forged, for all Australians, a profound and significant connection with Antarctica. The Australian The Government’s investment in Antarctic capability, in Antarctic Territory occupies a unique place in our national support of Antarctic science, represents a step change in identity. our Antarctic programme and will equip us to be a partner of choice in East Antarctica and to work even more closely Australia’s Antarctic science programme is one of our most with other countries within the Antarctic Treaty system. iconic and enduring national endeavours. Antarctica is of great importance to Australians, and Antarctic science will A strong and effective Antarctic Treaty system is in continue to be one of our national priorities. Australia’s national interest. The Government will use our international engagement to build and maintain strong and Antarctica is an extreme and hostile environment. Modern effective relationships with other nations in support of the and effective Antarctic operations and logistics capabilities Antarctic Treaty system. -
A Synthesis of the Antarctic Springtail Phylogeographic Record
Insects 2011, 2, 62-82; doi:10.3390/insects2020062 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Extreme Glacial Legacies: A Synthesis of the Antarctic Springtail Phylogeographic Record Angela McGaughran 1, Mark I. Stevens 2,*, Ian D. Hogg 3 and Antonio Carapelli 4 1 Max Planck Institute for Developmental Biology, Department for Evolutionary Biology, Spemannstr. 37-39/IV, Tübingen, D-72076, Germany; E-Mail: [email protected] 2 South Australian Museum, and School of Earth and Environmental Sciences, University of Adelaide, SA 5000, Adelaide, Australia 3 Centre for Biodiversity and Ecology Research, University of Waikato, Hamilton, New Zealand; E-Mail: [email protected] 4 Department of Evolutionary Biology, University of Siena, via A. Moro 2, 53100, Siena, Italy; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-8-8207-7685; Fax: +61-8-8207-7222. Received: 23 December 2010; in revised form: 15 February 2011 / Accepted: 2 April 2011 / Published: 6 April 2011 Abstract: We review current phylogeographic knowledge from across the Antarctic terrestrial landscape with a focus on springtail taxa. We describe consistent patterns of high genetic diversity and structure among populations which have persisted in glacial refugia across Antarctica over both short (<2 Mya) and long (>10 Mya) timescales. Despite a general concordance of results among species, we explain why location is important in determining population genetic patterns within bioregions. We complete our review by drawing attention to the main limitations in the field of Antarctic phylogeography, namely that the scope of geographic focus is often lacking within studies, and that large gaps remain in our phylogeographic knowledge for most terrestrial groups. -
Management Plan for Antarctic Specially Protected Area No
Measure 9 (2011) Annex Management Plan for Antarctic Specially Protected Area No. 167 Hawker Island, Princess Elizabeth Land Introduction Hawker Island (68°38’S, 77°51’E, Map A) is located 7 km south-west from Davis station off the Vestfold Hills on the Ingrid Christensen Coast, Princess Elizabeth Land, East Antarctica. The island was designated as Antarctic Specially Protected Area (ASPA) No. 167 under Measure 1 (2006), following a proposal by Australia, primarily to protect the southernmost breeding colony of southern giant petrels (Macronectes giganteus) (Map B). The Area is one of only four known breeding locations for southern giant petrels on the coast of East Antarctica, all of which have been designated as ASPAs: ASPA 102, Rookery Islands, Holme Bay, Mac.Robertson Land (67º36’S, 62º53’E) – near Mawson Station; ASPA 160, Frazier Islands, Wilkes Land (66°13’S, 110°11’E) – near Casey station; and ASPA 120, Pointe Géologie, Terre Adélie (66º40’S, 140º01’E) – near Dumont d’Urville. Hawker Island also supports breeding colonies of Adélie penguins (Pygocelis adeliae), south polar skuas (Catharacta maccormicki), Cape petrels (Daption capense) and occasionally Weddell seals (Leptonychotes weddellii). 1. Description of values to be protected The total population of southern giant petrels in East Antarctica represents less than 1% of the global breeding population. It is currently estimated at approximately 300 pairs, comprising approximately 45 pairs on Hawker Island (2010), 2-4 pairs on Giganteus Island (Rookery Islands group) (2007), approximately 250 pairs on the Frazier Islands (2001) and 8-9 pairs at Pointe Géologie (2005). Southern giant petrels also breed on other islands in the southern Indian and Atlantic Oceans and at the Antarctic Peninsula. -
Mmymtmmx* a N E W S B U L L E T I N
mmymtmmx* A N E W S B U L L E T I N published b y t h e NEW ZEALAND ANTARCTIC SOCIETY 7i^ ■ I l , U.S.N.S. MAUMEE DOCKED AT McMURDO. Official U.S. Navy photo. Vol. 5, No. 9 MARCH, 1970 AUSTRALIA y»L/ E 'T w / ) WELLINGTONI -SCHRISTCHURCH I NEW ZEALAND TASMANIA VOSS DEPENDED ^ <k \^«**V t\ / Byrd(US)* ANTARCTICA, \ / l\ Ah Pliteiu <US)0<' Alferej Sobnl (Arj) < J,Gtncnl Belfrano \ / W N G M A L ) 0 \ j H . l l t y B a y ( U K ) / ^ < / (USSR)X%*r)\»»A-^ %^D "VVAY) I * aXA Tsplent."xsfi&** ^J#/&**?&- (USSM ^V^X^^ ^'^ 0r< DRAWN BY DEPARTMENT OF LANDS * SURVEY WELLINGTON. NEW ZEALAND. AUG IM9 3rd EDITION MLiHTOA IB ©INKD" (Successor to "Antarctic News Bulletin") Vol. 5. No. 9 57th ISSUE MARCH, 1970 Contributions, enquiries, etc., to the Acting Editor, C/- P.O. Box 2110, Wellington. Business Communications, Subscriptions, etc., to: Secretary, New Zealand Antarctic Society, P.O. Box 2110, Wellington, N.Z. CONTENTS ■ EXPEDITIONS New Zealand The First Year at Vanda Station: S. K. Cutfield U.S.A. France Belgium Australia U.S.S.R. South Africa Japan 389, 406 United Kingdom Argentina Sub-Antarctic Islands Flights to the Pole Antarctic Bookshelf Co-operation in Antarctic Research Antarctic Tourism 403 March, 1970 BAD WEATHER HAMPERS ACTIVITIES AT NEW ZEALAND STATIONS At Scott Base. Vanda Station and in the field, a very extensive summer programme was carried through despite much stormy weather and in the face of unexpected transport and other difficulties. Leader Bruce Willis reported late in AT TERRA NOVA BAY December: Unfortunately not as much ground as "With such a splendid start to the expected was covered by the four-man month as the celebration of the tenth DS1R geological party at Terro Nova anniversary of the signing of the Ant Bay owing to a combination of deep arctic Treaty, it seemed that we were soft snow and warm weather, but never set for a period of concerted activity. -
Spatial and Temporal Variation in Shallow Seawater Temperatures Around Antarctica
ARTICLE IN PRESS Deep-Sea Research II 53 (2006) 853–865 www.elsevier.com/locate/dsr2 Spatial and temporal variation in shallow seawater temperatures around Antarctica David K.A. Barnesa,Ã, Veronica Fuentesb, Andrew Clarkea, Irene R. Schlossc, Margaret I. Wallacea aBritish Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 OET, UK bAlfred-Wegner-Institut, Columbustrasse, D-2750 Bremerhaven, Germany cInstituto Anta´rtico Argentino, Cerrito 1248 (C1010AAZ) Buenos Aires, Argentina, and CONICET, Argentina Received 5 June 2005; accepted 3 March 2006 Abstract The variability of Southern Ocean sea-surface temperatures (SST) are important to understanding coastal biology yet are poorly known amongst biologists. We compare sea temperatures at a constant depth (10–20 m) at coastal localities both sides of the Polar Front (PF), around the Scotia-Arc, the West Antarctic Peninsula and at high oceanic latitudes (around the margins of East Antarctica). We assess the wider context of these values by investigating minimum and maximum temperatures and ranges throughout the Southern Ocean using remotely sensed SST data. Data to date show weekly, daily and hourly variation in shallow sea temperature can be one-third of total annual variability (in the summer) but can be very constant (in winter). From comparison across scales in time and space, the strong seasonal signal is the most striking feature of Antarctic shallow sea temperatures even at highest oceanic latitude sites. The winter sea temperatures at localities within the PF are similar (near freezing), but upper temperatures and thus the annual range vary predictably with latitude in a cline. This amounts to 0.2 1C annual range/100 km of latitude between 541S and 671S.