Magazine Issue 29 2015 Australian Antarctic Magazine Issue 29 2015

Total Page:16

File Type:pdf, Size:1020Kb

Magazine Issue 29 2015 Australian Antarctic Magazine Issue 29 2015 AUSTRALIAN ANTARCTIC MAGAZINE ISSUE 29 2015 AUSTRALIAN ANTARCTIC MAGAZINE ISSUE 29 2015 The Australian Antarctic Division, a Division of the Department of the Environment, leads Australia’s Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having ‘Antarctica valued, protected and understood’. It does this by managing Australian government activity in Antarctica, providing transport and logistic support to Australia’s Antarctic research program, maintaining four permanent Australian research stations, and conducting scientific research SCIENCE programs both on land and in the Southern Ocean. 12 Measuring algae in the fast ice Australia’s Antarctic national interests are to: • Preserve our sovereignty over the Australian Antarctic ICEBREAKER HISTORY Territory, including our sovereign rights over the 16 New icebreaker plans unveiled 24 Two-wheeled Antarctic adventures adjacent offshore areas. • Take advantage of the special opportunities Antarctica offers for scientific research. • Protect the Antarctic environment, having regard to its special qualities and effects on our region. • Maintain Antarctica’s freedom from strategic and/or political confrontation. • Be informed about and able to influence developments in a region geographically proximate to Australia. • Derive any reasonable economic benefits from living and non-living resources of the Antarctic (excluding deriving such benefits from mining and oil drilling). Australian Antarctic Magazine seeks to inform the Australian and international Antarctic community about the activities of the Australian Antarctic program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent the position of the Australian CONTENTS Government. Australian Antarctic Magazine is produced twice a year DIRECTOR’S MESSAGE POLICY (June and December). All text and images published in the Australia’s Antarctic future 1 Antarctic Treaty Consultative Meeting 19 magazine are copyright of the Commonwealth of Australia, unless otherwise stated. Editorial enquiries, including SCIENCE EXPEDITIONERS requests to reproduce material, or contributions, should be Spotlight on the K-Axis 2 Building Team Mawson 20 addressed to: DNA barcoding plankton 4 Expeditioner with an eye to the sky 22 The Editor Visionary approach to ageing Antarctic krill 5 Australian Antarctic Magazine HISTORY Australian Antarctic Division Krill focus for inaugural Fellow 6 Two-wheeled Antarctic adventures 24 203 Channel Highway Sizing up marine ecosystems 8 Lost: Antarctic history etched in a bottle 26 Kingston, 7050 Time Machine earth reveals icy past and Commemorating Antarctic ANZACs 28 Tasmania, Australia. future sea level 10 Australian Antarctic Division Measuring algae in the fast ice 12 ANTARCTIC ART Telephone: (03) 6232 3209 Adélie penguins on the rise in East Antarctica 14 Ice in your paintbrush 29 IN BRIEF (International 61 3 6232 3209) ICEBREAKER email: [email protected] New icebreaker plans unveiled 16 FREEZE FRAME Facsimile: (03) 6232 3288 POLAR MEDICINE (International 61 3 6232 3288) Editor: Wendy Pyper Remote medicine 18 Production: Sally Chambers, Jessica Fitzpatrick Graphic Design: WOOF Creative Solutions Issue 29: December 2015 ABOUT THE COVER ISSN 1445-1735 (print version) Building Services Supervisor, Peter Layt, took the Australian Antarctic Magazine is printed on Monza satin cover photo of ice crystals growing on a window recycled paper; a 50% post consumer waste and 50% FSC at Mawson station just after mid-winter. The back- certified fibre stock. lighting by the low-level sun gave the crystals a gold colour. During winter the crystals formed in Australian Antarctic Magazine can be viewed online: an endless array of different shapes and patterns, www.antarctica.gov.au/magazine which looked absolutely stunning when the detail was revealed under magnification. Peter used a Nikon D800 camera set at f7.1, 1/320s, ISO 400, with a Micro (macro) 200 mm 1:4D lens. 1. Australian Antarctic Division Director, 1 Dr Nick Gales, at the launch of the AAD Antarctic Gateway Partnership in September. The Partnership aims to consolidate Tasmania’s place as a global leader in Antarctic and Southern Ocean science and get more scientists on the ice. Australia’s Antarctic future In August I was privileged to take on the role of Director of the Australian Antarctic Division, at one of the most exciting times in Australia’s Antarctic history. Top of my ‘to do’ list is continuing the good work started by our previous Director, Dr Tony Fleming, to support the delivery of an Australian Antarctic strategy and, as part of that strategy, replace our ageing icebreaker ship, Aurora Australis, with a new research and resupply vessel. You will not be surprised that I will bring to the Division’s Airbus. And our science projects role of Director a strong focus on our Antarctic this season will involve collaborations Australia has maintained an active interest science. I want to ensure that our opportunities with 21 countries and 150 international in Antarctica for more than 100 years and to conduct our world class research are institutions. Our vision to see Hobart grow as these two significant projects will enable us maximised and that we deliver the information an international gateway to Antarctica and an to further our leadership in Antarctic science, we need to protect and understand Antarctica Antarctic science hub is happening! policy and operations over the coming decades. and our climate. It is through this research As you’ll discover in this issue of the Australian As the backbone of the Australian Antarctic that our strategic collaborations with our Antarctic Magazine, this season will involve a program, our new icebreaker will play a critical neighbours are delivered. major marine science project south of Heard role in Australia’s Antarctic future. The ship My Executive and I will also continue to lead Island to assess habitats, productivity and will provide a world-class scientific platform Australia’s engagement with the international food webs on the Kerguelen Axis in the Indian for conducting multi-disciplinary research in Antarctic community to maintain and further Sector of the Southern Ocean (page 2). DIRECTOR’S MESSAGE the Southern Ocean and sea-ice zone, and a develop relationships with other nations to A wide-ranging geodesy research program flexible logistical platform for station resupply. achieve our scientific, environmental and will be active in the Prince Charles Mountains, The icebreaking performance alone (1.65 m operational goals. This will include negotiations east of Davis and in the Bunger Hills (page 10). of ice at a speed of three knots, compared to through international bodies such as the Land-fast sea ice studies off Davis will employ the Aurora Australis’ 1.23 m of ice) will extend 2015 Committee for the Conservation of Antarctic remotely operated vehicles underneath the our potential operating season, while the 1200 29 Marine Living Resources, the Antarctic Treaty sea ice (page 12). And an airborne geophysics tonne cargo capacity will increase our ability to Consultative Meeting, and the Council of program conducted over a number of years carry equipment and infrastructure by 50 per ISSUE Managers of National Antarctic Programs. will continue to use airborne instruments to cent. Our new ship will change the way we are investigate the Antarctic ice sheet over vast able to work in Antarctica. Our Australian Antarctic Program is already distances. These are just a few of the 94 active truly international and highly collaborative. This Continuing this vision, this Antarctic season science projects across the program. season, for example, we are involved in logistic will see us explore a new aerial logistics collaborations with the United States, China, capability as we conduct up to five proof of Dr NICK GALES New Zealand, France and Italy, and recently we concept flights to Wilkins aerodrome, in a C17A Director, Australian Antarctic Division reached formal agreements to share logistics Globemaster, with the Royal Australian Air with the US, China, New Zealand and France Force (RAAF). These flights have the potential during the 2015–16 season. to enhance Australia’s logistical and scientific capabilities in the region and improve the Chinese, French and Italian expeditioners will RAAF’s capability for search and rescue and also use Hobart as a gateway for flights to MAGAZINE ANTARCTIC AUSTRALIAN multi-casualty air evacuation. and from Wilkins aerodrome on the Antarctic 1 Marion Dufresne, the Japanese Umitaka The productivity component of the work Maru and CSIRO’s new national research will focus primarily on iron sources in each Spotlight facility, Investigator. There will also be some habitat area. oceanographic input from the US vessel Roger ‘Each of these areas has different potential Revelle. The data collected will help address a sources of iron, which is critical for blooms number of research questions. on the of phytoplankton at different times,’ Dr The first area of research will investigate Constable said. the factors that affect the distribution of ‘However, the sources of iron in the Southern K-Axis Antarctic krill and determine the species’ Ocean are a big question at present. It could northern limits. These factors could include come from the adjacent continents via the temperature, the distribution of their food wind, or be concentrated in sea ice through Draw a line from the South Pole, through the source (phytoplankton),
Recommended publications
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Why the 'Infrastructure PM' Can't Give Antarctica the Cold Shoulder
    Please do not remove this page Why the ‘infrastructure PM’ can’t give Antarctica the cold shoulder McCallum, Adrian B https://research.usc.edu.au/discovery/delivery/61USC_INST:ResearchRepository/12126045700002621?l#13127312320002621 McCallum, A. B. (2013). Why the “infrastructure PM” can’t give Antarctica the cold shoulder. The Conversation, 5 December 2013. https://research.usc.edu.au/discovery/fulldisplay/alma99448982602621/61USC_INST:ResearchRepository Document Type: Published Version USC Research Bank: https://research.usc.edu.au [email protected] CC BY V4.0 Copyright © 2013 The Conversation Media Group. This work is licensed under a Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) Downloaded On 2021/10/02 23:37:22 +1000 Please do not remove this page 26/02/2016 Why the 'infrastructure PM' can't give Antarctica the cold shoulder Why the ‘infrastructure PM’ can’t give Antarctica the cold shoulder December 6, 2013 6.35am AEDT Tractors and quad bikes – seen here at Australia’s Mawson Station – are only two of many forms of transport used in Antarctica. Chris Wilson/Australian Antarctic Division Adrian McCallum Lecturer in Science and Engineering, University of the Sunshine Coast Prime Minister Tony Abbott recently declared that he wanted to be known as the “infrastructure prime minister”. But what of Australia’s iciest infrastructure – that located in Antarctica? A 20­year strategic plan for Australia’s Antarctic future was recently commissioned by the federal government, but it will be another six months before Tony Press, ex­director of the Australian Antarctic Division, reveals his “blueprint”. So what is best practice when it comes to polar infrastructure, and where should Australia be heading to maintain our status as a leader in Antarctic science and operations? Stations The British Antarctic Survey completed construction of their new Halley VI Station on the floating Brunt Ice Shelf, atop the Weddell Sea, East Antarctica in 2012.
    [Show full text]
  • Postal Bulletin 22137 (9-16-04)
    NATIONAL STAMP COLLECTING MONTH PUBLICITY KIT, PAGE 9 PUBLISHED SINCE MARCH 4, 1880 PB 22137, September 16, 2004 2 POSTAL BULLETIN 22137 (9-16-04) CONTENTS The Postal Bulletin is also available on the World Wide Finance Web at http://www.usps.com/cpim/ftp/bulletin/pb.htm for Notice: Household Diary Study. 81 customers and at http://blue.usps.gov for employees. International Mail ICM Updates: International Customized Mail. 82 USPSNEWS@WORK . 3 Licensing Administrative Services Promotions. 86 Directives and Forms Update. 5 Philately Customer Relations Stamp Announcement 04-31: Christmas: Madonna and Mail Alert. 7 Child by Lorenzo Monaco Stamp. 88 Publicity Kit: National Stamp Collecting Month. 9 Stamp Announcement 04-32: Hanukkah Stamp. 90 Stamp Announcement 04-33: Kwanzaa Stamp. 92 Domestic Mail The Postal Service Guide to U.S. Stamps, 31st DMM Revision: Labeling List Changes. 36 Edition. 94 DMM Revision: Periodicals Combined Mailing. 38 Pictorial Cancellations Announcement. 96 DMM Revision: Realignment of ZIP Codes: Destination Special Cancellation Die Hubs. 104 Entry and BMC Service Areas. 39 DMM Revision: Periodicals Irregular Parcels. 40 Post Offices New Form: PS Form 3811-I, Instructions for Requesting Post Office Changes. 106 Return Receipt (Electronic) . 41 Mover’s Guide News: September 2004 Mover’s Guide Fall Mailing Season. 42 Now Available. 108 Field Information Kit: Return Receipt (Electronic). 43 Deliver It Right. 109 Retail ReadyPost Sales Contest: Everyone Sells, Everyone Pull-Out Section Wins!. 110 Fraud Alert Postal Bulletin Index Withholding of Mail Orders. 45 Semiannual Index. PB 22132 (7-8-04) Invalid Express Mail Corporate Account Numbers. 46 Missing, Lost, or Stolen U.S.
    [Show full text]
  • Prydz Bay Region, East Antarctica J.M
    Antarctic Science 18 (1), 83–99 (2006) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102006000083 A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben–Prydz Bay region, East Antarctica J.M. WHITEHEAD1*, P.G. QUILTY2, B.C. MCKELVEY3 and P.E. O’BRIEN4 1Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia 2School of Earth Sciences University of Tasmania, Private Bag 79, Hobart, TAS 7001, Australia 3Division of Earth Sciences, University of New England, Armidale, NSW 2351, Australia 4Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia *[email protected] Abstract: The Cenozoic glacial history of East Antarctica is recorded in part by the stratigraphy of the Prydz Bay–Lambert Graben region. The glacigene strata and associated erosion surfaces record at least 10 intervals of glacial advance (with accompanying erosion and sediment compaction), and more than 17 intervals of glacial retreat (enabling open marine deposition in Prydz Bay and the Lambert Graben). The number of glacial advances and retreats is considerably less than would be expected from Milankovitch frequencies due to the incomplete stratigraphic record. Large advances of the Lambert Glacier caused progradation of the continental shelf edge. At times of extreme glacial retreat, marine conditions reached > 450 km inland from the modern ice shelf edge. This review presents a partial reconstruction of Cenozoic glacial extent within Prydz Bay and the Lambert Graben that can be compared to eustatic sea-level records from the southern Australian continental margin. Received 1 December 2004, accepted 15 July 2005 Key words: glaciation, ice sheet, Milankovitch, Prince Charles Mountains Introduction Study area In recent years there has been considerable investigation of This paper reviews the Cenozoic stratigraphy of the the Cenozoic geology of the Lambert Graben and Prydz Antarctic continent and margin from 60°E to 80°E.
    [Show full text]
  • Tectonic Subdivision of the Prince Charles Mountains: a Review of Geologic and Isotopic Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Published in: Fütterer, D K, Damaske, D, Kleinschmidt, G, Miller, H & Tessensohn, F (eds.), Antarctica: contributions to global earth sciences, Springer, Berlin, Heidelberg, New York, 63-68 http://dx.doi.org/10.1007/3-540-32934-X The original publication is available at http://www.springerlink.com see http://dx.doi.org/10.1007/3-540-32934-X_9 Data are available at: http://dx.doi.org/10.1594/PANGAEA.611692 Tectonic Subdivision of the Prince Charles Mountains: A Review of Geologic and Isotopic Data Evgeny V. Mikhalsky1 · Anatoly A. Laiba2 · Boris V. Beliatsky3 1 (1) VNIIOkeangeologia, Angliysky Avenue1, St. Petersburg 190121, Russia (2) PMGRE, Pobeda Street 24, Lomonosov 189510, Russia (3) IGGP, Makarova emb. 2, 199034 St. Petersburg 199034, Russia Abstract. The Prince Charles Mountains have been subject to extensive geological and geophysical inves- tigations by former Soviet,Russian and Australian scientists from the early 1970s. In this paper we sum- marise, and review available geological and isotopic data, and report results of new isotopic studies (Sm- Nd, Pb-Pb, and U-Pb SHRIMP analyses); field geological data obtained during the PCMEGA 2002/2003 are utilised. The structure of the region is described in terms of four tectonic terranes. Those include Ar- chaean Ruker, Palaeoproterozoic Lambert, Mesoproterozoic Fisher, and Meso- to Neoproterozoic Beaver Terranes. Pan-African activities (granite emplacement and probably tectonics) in the Lambert Terrane are reported. We present a summary of the composition of these terranes, discuss their origin and relations- hips.
    [Show full text]
  • Magazine Issue 32 2017
    AUSTRALIAN ANTARCTIC MAGAZINE ISSUE 32 2017 ANTARCTICA valued, protected and understood www.antarctica.gov.au The Australian Antarctic Division, a Division of the Department of the Environment and Energy, leads Australia’s Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having ‘Antarctica valued, protected and understood’. It does this by managing Australian government activity in Antarctica, providing transport and logistic support to Australia’s Antarctic research program, maintaining four permanent Australian research stations, and conducting scientific research programs both on land and in the Southern Ocean. Australia’s Antarctic national interests are to: • Preserve our sovereignty over the Australian Antarctic Territory, including our sovereign rights over the adjacent From the OPERATIONS offshore areas. 5 A taste for shipping • Take advantage of the special opportunities Antarctica offers for scientific research. Director SCIENCE • Protect the Antarctic environment, having regard to its special qualities and effects on our region. 19 ‘Whale cams’ reveal secret • Maintain Antarctica’s freedom from strategic and/or life of ocean giants political confrontation. As this magazine went to press, entries for the “Name our Icebreaker” • Be informed about and able to influence developments in a competition were flooding in from schools around Australia. The region geographically proximate to Australia. competition is a unique and exciting opportunity for Australian • Derive any reasonable economic benefits from living and students in grades 5 to 8 to play a role in Australia’s Antarctic history non-living resources of the Antarctic (excluding deriving such benefits from mining and oil drilling). and to learn more about the Australian Antarctic Program through associated classroom materials aligned with the curriculum.
    [Show full text]
  • Early Diagenetic Siderite in the Panorama Point Beds (Radok Conglomerate, Early to Middle Permian), Prince Charles Mountains, East Antarctica
    vol. 31, no. 2, pp. 169–194, 2010 doi: 10.4202/ppres.2010.10 Early diagenetic siderite in the Panorama Point Beds (Radok Conglomerate, Early to Middle Permian), Prince Charles Mountains, East Antarctica Krzysztof P. KRAJEWSKI 1,3*, Nikolai A. GONZHUROV 2, Anatoly A. LAIBA2 and Andrzej TATUR3 1 Instytut Nauk Geologicznych PAN, Twarda 51/55, 00−818 Warszawa, Poland <[email protected]> *corresponding author 2 Polar Marine Geological Research Expedition, Pobedy 24, 198412 St. Petersburg, Russia 3 Zakład Biologii Antarktyki PAN, Ustrzycka 10/12, 02−141 Warszawa, Poland Abstract: The Panorama Point Beds represent a subfacies of the Early to Middle Permian Radok Conglomerate, which is the oldest known sedimentary unit in the Prince Charles Mountains, MacRobertson Land, East Antarctica. This unit records clastic sedimentation in fresh−water depositional system during the early stages of development of the Lambert Graben, a major structural valley surrounded by crystalline highlands in the southern part of Gondwana. It contains common siderite precipitated through early diagenetic processes in the swamp, stagnant water, and stream−flow environments. There are two types of siderite in the Panorama Point Beds: (1) disseminated cement that occurs throughout the sedimentary suc− cession; and (2) concretions that occur at recurrent horizons in fine−grained sediments. The cement is composed of Fe−depleted siderite (less than 90 mol % FeCO3) with an elevated con− d13 tent of magnesium, and trace and rare earth elements. It has negative CVPDB values (−4.5 to −1.5‰). The concretions are dominated by Fe−rich siderite (more than 90 mol % FeCO3), with d13 positive CVPDB values (+1 to +8‰).
    [Show full text]
  • Australian Antarctic Magazine
    AusTRALIAN MAGAZINE ISSUE 23 2012 7317 AusTRALIAN ANTARCTIC ISSUE 2012 MAGAZINE 23 The Australian Antarctic Division, a Division of the Department for Sustainability, Environment, Water, Population and Communities, leads Australia’s CONTENTS Antarctic program and seeks to advance Australia’s Antarctic interests in pursuit of its vision of having PROFILE ‘Antarctica valued, protected and understood’. It does Charting the seas of science 1 this by managing Australian government activity in Antarctica, providing transport and logistic support to SEA ICE VOYAGE Australia’s Antarctic research program, maintaining four Antarctic science in the spring sea ice zone 4 permanent Australian research stations, and conducting scientific research programs both on land and in the Sea ice sky-lab 5 Southern Ocean. Search for sea ice algae reveals hidden Antarctic icescape 6 Australia’s four Antarctic goals are: Twenty metres under the sea ice 8 • To maintain the Antarctic Treaty System and enhance Australia’s influence in it; Pumping krill into research 9 • To protect the Antarctic environment; Rhythm of Antarctic life 10 • To understand the role of Antarctica in the global SCIENCE climate system; and A brave new world as Macquarie Island moves towards recovery 12 • To undertake scientific work of practical, economic and national significance. Listening to the blues 14 Australian Antarctic Magazine seeks to inform the Bugs, soils and rocks in the Prince Charles Mountains 16 Australian and international Antarctic community Antarctic bottom water disappearing 18 about the activities of the Australian Antarctic Antarctic bioregions enhance conservation planning 19 program. Opinions expressed in Australian Antarctic Magazine do not necessarily represent the position of Antarctic ice clouds 20 the Australian Government.
    [Show full text]
  • Prydz Bay Region, East Antarctica J.M
    Antarctic Science 18 (1), 83–99 (2006) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102006000083 A review of the Cenozoic stratigraphy and glacial history of the Lambert Graben–Prydz Bay region, East Antarctica J.M. WHITEHEAD1*, P.G. QUILTY2, B.C. MCKELVEY3 and P.E. O’BRIEN4 1Institute of Antarctic and Southern Ocean Studies, University of Tasmania, Private Bag 77, Hobart, TAS 7001, Australia 2School of Earth Sciences University of Tasmania, Private Bag 79, Hobart, TAS 7001, Australia 3Division of Earth Sciences, University of New England, Armidale, NSW 2351, Australia 4Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia *[email protected] Abstract: The Cenozoic glacial history of East Antarctica is recorded in part by the stratigraphy of the Prydz Bay–Lambert Graben region. The glacigene strata and associated erosion surfaces record at least 10 intervals of glacial advance (with accompanying erosion and sediment compaction), and more than 17 intervals of glacial retreat (enabling open marine deposition in Prydz Bay and the Lambert Graben). The number of glacial advances and retreats is considerably less than would be expected from Milankovitch frequencies due to the incomplete stratigraphic record. Large advances of the Lambert Glacier caused progradation of the continental shelf edge. At times of extreme glacial retreat, marine conditions reached > 450 km inland from the modern ice shelf edge. This review presents a partial reconstruction of Cenozoic glacial extent within Prydz Bay and the Lambert Graben that can be compared to eustatic sea-level records from the southern Australian continental margin. Received 1 December 2004, accepted 15 July 2005 Key words: glaciation, ice sheet, Milankovitch, Prince Charles Mountains Introduction Study area In recent years there has been considerable investigation of This paper reviews the Cenozoic stratigraphy of the the Cenozoic geology of the Lambert Graben and Prydz Antarctic continent and margin from 60°E to 80°E.
    [Show full text]
  • Australian Antarctic Strategy and 20 Year Action Plan Australian Antarctic Strategy and 20 Year Action Plan Prime Minister’S Foreword
    Australian Antarctic Strategy and 20 Year Action Plan Australian Antarctic Strategy and 20 Year Action Plan Prime Minister’s Foreword Australia has inherited a proud legacy from Sir Douglas Significant progress has already been made by the Mawson and the generations of Australian Antarctic Government on improving aviation access to Antarctica. expeditioners who have followed in his footsteps - a We have undertaken C-17A trial flights to provide an option legacy of heroism, scientific endeavour and environmental for a new heavy-lift cargo capability. Work will continue stewardship. across Government to further build support for the Australian Antarctic programme. Mawson’s legacy has forged, for all Australians, a profound and significant connection with Antarctica. The Australian The Government’s investment in Antarctic capability, in Antarctic Territory occupies a unique place in our national support of Antarctic science, represents a step change in identity. our Antarctic programme and will equip us to be a partner of choice in East Antarctica and to work even more closely Australia’s Antarctic science programme is one of our most with other countries within the Antarctic Treaty system. iconic and enduring national endeavours. Antarctica is of great importance to Australians, and Antarctic science will A strong and effective Antarctic Treaty system is in continue to be one of our national priorities. Australia’s national interest. The Government will use our international engagement to build and maintain strong and Antarctica is an extreme and hostile environment. Modern effective relationships with other nations in support of the and effective Antarctic operations and logistics capabilities Antarctic Treaty system.
    [Show full text]
  • Cenozoic Terrestrial Palynological Assemblages in the Glacial Erratics from the Grove Mountains, East Antarctica
    Available online at www.sciencedirect.com Progress in Natural Science 19 (2009) 851–859 www.elsevier.com/locate/pnsc Cenozoic terrestrial palynological assemblages in the glacial erratics from the Grove Mountains, east Antarctica Aimin Fang a,*, Xiaohan Liu b, Weiming Wang c, Feixin Huang b, Lianjun Yu a a Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China b Institute of Tibet Plateau Research, Chinese Academy of Sciences, Beijing 100029, China c Nanjing Institute of Geology and Palaeontology, Chinese Academy of Science, Nanjing 210008, China Received 15 August 2007; received in revised form 12 October 2007; accepted 2 January 2008 Abstract Fossiliferous glacial erratics have been found in moraines of the Grove Mountains, east Antarctica since 1998 by Chinese National Antarctic Research Expedition (CHNARE) teams. These erratics were derived from a suite of glaciogene strata hidden beneath the Ant- arctic Ice Sheet in the Lambert glacier drainage system, and thus provide a record of Cenozoic paleoenvironmental conditions and fossil biotas that are so far unknown from outcrops and drill cores in this region. By microfossil analysis, sparse Neogene spores and pollen grains are revealed, including: Toroisporis (Lygodiaceae), Granulatisporites (Pteridaceae?), Osmunda (Osmundaceae), Polypodiaceae, Magnastriatites (Parkeriaceae), Deltoidospora, Araucariaceae, Taxodiaceae, Podocarpus (Podocarpaceae), Dacrydium (Podocarpaceae), Pinus (Pinaceae), Keteleeria (Pinaceae), Picea (Pinaceae), Tsuga (Pinaceae), Chenopodiaceae,
    [Show full text]
  • Management Plan for Antarctic Specially Protected Area No
    Measure 9 (2011) Annex Management Plan for Antarctic Specially Protected Area No. 167 Hawker Island, Princess Elizabeth Land Introduction Hawker Island (68°38’S, 77°51’E, Map A) is located 7 km south-west from Davis station off the Vestfold Hills on the Ingrid Christensen Coast, Princess Elizabeth Land, East Antarctica. The island was designated as Antarctic Specially Protected Area (ASPA) No. 167 under Measure 1 (2006), following a proposal by Australia, primarily to protect the southernmost breeding colony of southern giant petrels (Macronectes giganteus) (Map B). The Area is one of only four known breeding locations for southern giant petrels on the coast of East Antarctica, all of which have been designated as ASPAs: ASPA 102, Rookery Islands, Holme Bay, Mac.Robertson Land (67º36’S, 62º53’E) – near Mawson Station; ASPA 160, Frazier Islands, Wilkes Land (66°13’S, 110°11’E) – near Casey station; and ASPA 120, Pointe Géologie, Terre Adélie (66º40’S, 140º01’E) – near Dumont d’Urville. Hawker Island also supports breeding colonies of Adélie penguins (Pygocelis adeliae), south polar skuas (Catharacta maccormicki), Cape petrels (Daption capense) and occasionally Weddell seals (Leptonychotes weddellii). 1. Description of values to be protected The total population of southern giant petrels in East Antarctica represents less than 1% of the global breeding population. It is currently estimated at approximately 300 pairs, comprising approximately 45 pairs on Hawker Island (2010), 2-4 pairs on Giganteus Island (Rookery Islands group) (2007), approximately 250 pairs on the Frazier Islands (2001) and 8-9 pairs at Pointe Géologie (2005). Southern giant petrels also breed on other islands in the southern Indian and Atlantic Oceans and at the Antarctic Peninsula.
    [Show full text]