Fomitopsis Betulina

Total Page:16

File Type:pdf, Size:1020Kb

Fomitopsis Betulina © Demetrio Merino Alcántara [email protected] Condiciones de uso Fomitopsis betulina (Bull.) B.K. Cui, M.L. Han & Y.C. Dai, in Han, Chen, Shen, Song, Vlasák, Dai & Cui, Fungal Diversity 80: 359 (2016) Fomitopsidaceae, Polyporales, Incertae sedis, Agaricomycetes, Agaricomycotina, Basidiomycota, Fungi ≡ Agarico-pulpa pseudoagaricon Paulet, Traité champ. (Paris) 2: 105 (1793) ≡ Boletus betulinus Bull., Herb. Fr. (Paris) 7: tab. 312 (1788) [1787-88] = Boletus suberosus Batsch, Elench. fung. (Halle): fig. 226 (1783) = Boletus suberosus Wulfen, in Jacquin, Collnea bot. 1(2): 344 (1787) [1786] ≡ Fomes betulinus (Bull.) Fr., Bull. soc. Hist. nat. Autun 3: 165 (1890) ≡ Piptoporus betulinus (Bull.) P. Karst., Revue mycol., Toulouse 3(no. 9): 17 (1881) ≡ Placodes betulinus (Bull.) Quél., Fl. mycol. France (Paris): 396 (1888) ≡ Polyporus betulinus (Bull.) Fr., Observ. mycol. (Havniae) 1: 127 (1815) ≡ Ungularia betulina (Bull.) Lázaro Ibiza, Revta R. Acad. Cienc. exact. fis. nat. Madr. 14: 668 (1916) ≡ Ungulina betulina (Bull.) Pat., Essai Tax. Hyménomyc. (Lons-le-Saunier): 103 (1900) Material estudiado: Noruega, Oppland, Ovre, Semeleng, 32VNN0067, 515 m, sobre tronco caído de Betula pubescens, 29-VII-2017, leg. Bente Brenna, María Cortijo, Dianora Estrada, Paco Sánchez y Demetrio Merino, JA-CUSSTA: 8901. Descripción macroscópica: Carpóforo anual, de 23-112 x 19-112 mm (ancho x alto), pileado. Píleo dimidiado, flabelado, adherido lateralmente al sustrato, superficie lisa, de color ocráceo blanquecino a marrón ocráceo con la edad, margen redondeado, subcrenulado con la edad. Hime- nóforo con poros circulares, blanquecino a crema al principio y marrón rojizo con la edad. Olor resinoso, afrutado. Descripción microscópica: Basidios no observados, citados como cilíndricos a subclaviformes, bi-tetraspóricos, con fíbula basal. Basidiosporas no observa- das, citadas como alantoides, lisas, hialinas, de 5,0-7,0 x 1,5-2,0 µm. Cistidios no observados. Sistema hifal dimítico, con hifas generativas fibuladas e hifas esqueléticas de paredes gruesas. Fomitopsis betulina 20170729/20170819 Página 1 de 3 A. Sistema Hifal. Fomitopsis betulina 20170729/20170819 Página 2 de 3 Observaciones Crecimiento exclusivo en Betula. Lenzites betulina (L.) Fr. y Fomes fomentarius (L.) Fr. son también asiduos de Betula, pero con diferencias notables, tanto micro como macroscópicas (BREITENBACH & KRÄNZLIN, 1986:318 como Piptoporus betulinus). Otras descripciones y fotografías BREITENBACH J. & F. KRÄNZLIN (1986). Fungi of Switzerland Vol. 2. Non gilled fungi. Mykologia Luczern. Pág. 318 como Piptoporus betulinus. Salvo indicación en contrario, las fotos están realizadas por Demetrio Merino. Fomitopsis betulina 20170729/20170819 Página 3 de 3 .
Recommended publications
  • Suppl Table I
    SUPPLEMENTARY TABLE I. Species and isolates included in the study, their vouchers, locality and GenBank accession Species Isolate number Locality ITS GenBank LSU GenBank accession no. accession no. Amylocystis lapponica (Romell) HHB-13400-Sp USA, Alaska KC585237 KC585059 Bondartsev & Singer ex Singer OKM-4418-Sp USA, Montana KC585238 KC585060 KHL-11755 − EU118603 Amyloporia carbonica (Overh.) DAOM-F-8281-T Canada, British KC585239 KC585061 Vampola & Pouzar Columbia FP-105585-Sp USA, Oregon KC585240 KC585062 RLG-12496-Sp USA, Nevada KC585241 KC585063 Wilcox-96 USA, California KC585242 KC585064 Zabel-40-GLN USA, New York KC585243 KC585065 Amyloporia nothofaginea Rajchenb. BAFC519794 Argentina JF713078 − & Gorjón (=MMBP-2011) BAFC519796 (=MBP- Argentina JF713079 − 2011a) Amyloporia sinuosa (Fr.) Rajchenb., FP-105386-Sp USA, New KC585244 KC585066 Gorjón & Pildain Hampshire FP-94464-Sp USA, Idaho KC585245 KC585067 HHB-12878-Sp USA, Alaska KC585246 KC585068 L-14130-Sp USA, New York KC585247 KC585069 L-6192-Sp USA, Colorado KC585248 KC585070 L-9792-Sp USA, Arizona KC585249 KC585071 Pa-3C JapanYamagata KC585250 KC585072 Prefecture Pa-3e JapanShizuoka KC585251 KC585073 Prefecture RLG-2538 USA, New York EU232196 EU232288 X725 (=Miettinen- Finland JQ700270 JQ700270 12407) P-115 (=RLG-2538) USA AJ416068 − P-211 (G-214) Germany, Karlsrube AJ345011 − RLG-1182R USA, Arizona AY966450 AY333831 Amyloporia sitchensis (D.V. Baxter) HHB-5320-Sp USA, Montana KC585252 KC585074 Vampola & Pouzar HHB-5298 USA, Montana − AY333829 HHB-12513 USA, Alaska AY966451 AY333830
    [Show full text]
  • Why Mushrooms Have Evolved to Be So Promiscuous: Insights from Evolutionary and Ecological Patterns
    fungal biology reviews 29 (2015) 167e178 journal homepage: www.elsevier.com/locate/fbr Review Why mushrooms have evolved to be so promiscuous: Insights from evolutionary and ecological patterns Timothy Y. JAMES* Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA article info abstract Article history: Agaricomycetes, the mushrooms, are considered to have a promiscuous mating system, Received 27 May 2015 because most populations have a large number of mating types. This diversity of mating Received in revised form types ensures a high outcrossing efficiency, the probability of encountering a compatible 17 October 2015 mate when mating at random, because nearly every homokaryotic genotype is compatible Accepted 23 October 2015 with every other. Here I summarize the data from mating type surveys and genetic analysis of mating type loci and ask what evolutionary and ecological factors have promoted pro- Keywords: miscuity. Outcrossing efficiency is equally high in both bipolar and tetrapolar species Genomic conflict with a median value of 0.967 in Agaricomycetes. The sessile nature of the homokaryotic Homeodomain mycelium coupled with frequent long distance dispersal could account for selection favor- Outbreeding potential ing a high outcrossing efficiency as opportunities for choosing mates may be minimal. Pheromone receptor Consistent with a role of mating type in mediating cytoplasmic-nuclear genomic conflict, Agaricomycetes have evolved away from a haploid yeast phase towards hyphal fusions that display reciprocal nuclear migration after mating rather than cytoplasmic fusion. Importantly, the evolution of this mating behavior is precisely timed with the onset of diversification of mating type alleles at the pheromone/receptor mating type loci that are known to control reciprocal nuclear migration during mating.
    [Show full text]
  • Shropshire Fungus Group Newsletter 2017
    Shropshire Fungus Group Newsletter 2017 Grifola frondosa – photo by Philip Leather Contents 1. A question for you – Jo Weightman 2. The Old Man of the Woods – Ted Blackwell 3. A new member writes... – Martin Scott 4. Foray at home! – Les Hughes 5. Bury Ditches foray – Jo Weightman 6. Pre-historic tinder fungi – Ted Blackwell 7. Foray at the Hurst – Rob Rowe 8. Another new member writes – Concepta Cassar 9. BMS Study week 2016 – Ray James 10. Foray at the Bog – Jo Weightman 11. Earthstars at Lydbury North – Rob Rowe 12. Foray at Oswestry Racecourse – Susan Leather 13. Some pictures from 2016 14. A foreign fungus – Les Hughes 15. The answer to the question A question for you from Jo Weightman What do these four have in common? Buglossoporus quercinus Laetiporus sulphureus Polyporus squamosus Polyporus umbellatus All photos copyright Jo Weightman Answer at the end! Who first called it “Old Man of the Woods”? The toadstool Strobilomyces strobilaceus is obviously one of the Boletus Tribe but differs in several ways. Apart from its striking appearance, the spore print is violaceus-to-black, and although not poisonous it is not considered worth eating. It doesn’t usually decay readily and mummified specimens can sometimes be found still standing in the woods tinged with green algae and encroaching mosses long after the fruiting season. The late Dr Derek Reid of Kew Mycology considered the Severn Valley to be its UK headquarters and although there are approaching 50 Shropshire records on the national database (FRDBI), however it was not recorded in the county between 2008 and 2016.
    [Show full text]
  • Tree of Life Marula Oil in Africa
    HerbalGram 79 • August – October 2008 HerbalGram 79 • August Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert The Journal of the American Botanical Council Number 79 | August – October 2008 Herbs and Thyroid Disease • Rosehips for Osteoarthritis • Pelargonium for Bronchitis • Herbs of the Painted Desert • Herbs of the Painted Bronchitis for Osteoarthritis Disease • Rosehips for • Pelargonium Thyroid Herbs and www.herbalgram.org www.herbalgram.org US/CAN $6.95 Tree of Life Marula Oil in Africa www.herbalgram.org Herb Pharm’s Botanical Education Garden PRESERVING THE FULL-SPECTRUM OF NATURE'S CHEMISTRY The Art & Science of Herbal Extraction At Herb Pharm we continue to revere and follow the centuries-old, time- proven wisdom of traditional herbal medicine, but we integrate that wisdom with the herbal sciences and technology of the 21st Century. We produce our herbal extracts in our new, FDA-audited, GMP- compliant herb processing facility which is located just two miles from our certified-organic herb farm. This assures prompt delivery of freshly-harvested herbs directly from the fields, or recently HPLC chromatograph showing dried herbs directly from the farm’s drying loft. Here we also biochemical consistency of 6 receive other organic and wildcrafted herbs from various parts of batches of St. John’s Wort extracts the USA and world. In producing our herbal extracts we use precision scientific instru- ments to analyze each herb’s many chemical compounds. However, You’ll find Herb Pharm we do not focus entirely on the herb’s so-called “active compound(s)” at fine natural products and, instead, treat each herb and its chemical compounds as an integrated whole.
    [Show full text]
  • A New Species of Antrodia (Basidiomycota, Polypores) from China
    Mycosphere 8(7): 878–885 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/7/4 Copyright © Guizhou Academy of Agricultural Sciences A new species of Antrodia (Basidiomycota, Polypores) from China Chen YY, Wu F* Institute of Microbiology, Beijing Forestry University, Beijing 100083, China Chen YY, Wu F 2017 –A new species of Antrodia (Basidiomycota, Polypores) from China. Mycosphere 8(7), 878–885, Doi 10.5943/mycosphere/8/7/4 Abstract A new species, Antrodia monomitica sp. nov., is described and illustrated from China based on morphological characters and molecular evidence. It is characterized by producing annual, fragile and nodulose basidiomata, a monomitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled and fusiform to mango-shaped basidiospores (6–7.5 × 2.3– 3 µm), and causing a typical brown rot. In phylogenetic analysis inferred from ITS and nLSU rDNA sequences, the new species forms a distinct lineage in the Antrodia s. l., and has a close relationship with A. oleracea. Key words – Fomitopsidaceae – phylogenetic analysis – taxonomy – wood-decaying fungi Introduction Antrodia P. Karst., typified with Polyporus serpens Fr. (=Antrodia albida (Fr.) Donk (Donk 1960, Ryvarden 1991), is characterized by a resupinate to effused-reflexed growth habit, white or pale colour of the context, a dimitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled, cylindrical to very narrow ellipsoid basidiospores which are negative in Melzer’s reagent and Cotton Blue, and causing a brown rot (Ryvarden & Melo 2014). Antrodia is a highly heterogeneous genus which is closely related to Fomitopsis P.
    [Show full text]
  • A Phylogenetic Overview of the Antrodia Clade (Basidiomycota, Polyporales)
    Mycologia, 105(6), 2013, pp. 1391–1411. DOI: 10.3852/13-051 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales) Beatriz Ortiz-Santana1 phylogenetic studies also have recognized the genera Daniel L. Lindner Amylocystis, Dacryobolus, Melanoporia, Pycnoporellus, US Forest Service, Northern Research Station, Center for Sarcoporia and Wolfiporia as part of the antrodia clade Forest Mycology Research, One Gifford Pinchot Drive, (SY Kim and Jung 2000, 2001; Binder and Hibbett Madison, Wisconsin 53726 2002; Hibbett and Binder 2002; SY Kim et al. 2003; Otto Miettinen Binder et al. 2005), while the genera Antrodia, Botanical Museum, University of Helsinki, PO Box 7, Daedalea, Fomitopsis, Laetiporus and Sparassis have 00014, Helsinki, Finland received attention in regard to species delimitation (SY Kim et al. 2001, 2003; KM Kim et al. 2005, 2007; Alfredo Justo Desjardin et al. 2004; Wang et al. 2004; Wu et al. 2004; David S. Hibbett Dai et al. 2006; Blanco-Dios et al. 2006; Chiu 2007; Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610 Lindner and Banik 2008; Yu et al. 2010; Banik et al. 2010, 2012; Garcia-Sandoval et al. 2011; Lindner et al. 2011; Rajchenberg et al. 2011; Zhou and Wei 2012; Abstract: Phylogenetic relationships among mem- Bernicchia et al. 2012; Spirin et al. 2012, 2013). These bers of the antrodia clade were investigated with studies also established that some of the genera are molecular data from two nuclear ribosomal DNA not monophyletic and several modifications have regions, LSU and ITS. A total of 123 species been proposed: the segregation of Antrodia s.l.
    [Show full text]
  • The Tinder Fungus, the Ice Man, and Amadou by Matt Bowser
    Refuge Notebook • Vol. 18, No. 9 • February 26, 2016 The tinder fungus, the Ice Man, and amadou by Matt Bowser Amadou cap given to me by Dominique Collet. Conchs of tinder fungus (Fomes fomentarius) on a birch log near Nordic Lake, Kenai National Wildlife Refuge, A couple of years ago I was given a remarkable, 17.Feb.2016 (http://bit.ly/1OsJXAa). beautiful hat by my friend Dominique Collet. This cap is made of a soft, brown material with decora- tive, stamped trim of the same. Light and velvety, it is reminiscent of wool felt but finer and smoother. Do- minique had traveled through Eastern Europe specifi- cally to learn how these amadou caps were made from a kind of tree-killing fungus. Known by several names including hoof fungus, tinder fungus, and the “true” tinder fungus, Fomes fomentarius grows on hardwoods, especially birch, around the world in northern latitudes. It is quite com- mon here on the Kenai and anywhere else in Alaska where birch trees grow. Ecologically, tinder fungus acts both as a pathogen, causing wood rot and contributing to the demise of living trees, and as a decomposer, continuing to break down dead wood in snags and logs. The fungus enters the tree through damaged bark or broken branches, then ramifies through wood and bark. Woody, durable conchs of the tinder fungus appear on the outside of the tree or log and grow larger each year as new layers An amadou patch for drying flies (image from http: are added to the underside of the conchs. //www.orvis.com/).
    [Show full text]
  • A Translation of the Linnaean Dissertation the Invisible World
    BJHS 49(3): 353–382, September 2016. © British Society for the History of Science 2016 doi:10.1017/S0007087416000637 A translation of the Linnaean dissertation The Invisible World JANIS ANTONOVICS* AND JACOBUS KRITZINGER** Abstract. This study presents the first translation from Latin to English of the Linnaean disser- tation Mundus invisibilis or The Invisible World, submitted by Johannes Roos in 1769. The dissertation highlights Linnaeus’s conviction that infectious diseases could be transmitted by living organisms, too small to be seen. Biographies of Linnaeus often fail to mention that Linnaeus was correct in ascribing the cause of diseases such as measles, smallpox and syphilis to living organisms. The dissertation itself reviews the work of many microscopists, especially on zoophytes and insects, marvelling at the many unexpected discoveries. It then discusses and quotes at length the observations of Münchhausen suggesting that spores from fungi causing plant diseases germinate to produce animalcules, an observation that Linnaeus claimed to have confirmed. The dissertation then draws parallels between these findings and the conta- giousness of many human diseases, and urges further studies of this ‘invisible world’ since, as Roos avers, microscopic organisms may cause more destruction than occurs in all wars. Introduction Here we present the first translation from Latin to English of the Linnaean dissertation published in 1767 by Johannes Roos (1745–1828) entitled Dissertatio academica mundum invisibilem, breviter delineatura and republished by Carl Linnaeus (1707– 1778) several years later in the Amoenitates academicae under the title Mundus invisibi- lis or The Invisible World.1 Roos was a student of Linnaeus, and the dissertation is important in highlighting Linnaeus’s conviction that infectious diseases could be trans- mitted by living organisms.
    [Show full text]
  • Figure 84.-A Target-Shaped Nectria Canker on a Sugar Maple Stem
    Figure 84.-A target-shaped Nectria canker on a sugar Figure 85.-Numerous pink-orange young fruNng bodies of maple stem. the coral spot fungus developing on dead bark of Norway maple. Coral spot canker. Coral spot canker (Nectria cinnabarina) is common on sugar maple and other hardwood trees. It usu- fruiting bodies also appear among the black forms produced ally attacks only dead Wigs and branches but also can kill earlier. The red structures are the sexual stage of the branches and stems of young trees weakened by freezing. fungus. Both Sages often are found on the same twig. drought, or mechanical injury. It is common and highly Spores of both can infect fresh wounds. visible. Coral spot canker is considered an "annual" dii.The The fungus infects dead buds and small branch wounds host tree usually regains enough vigor during the growing caused by hail, frost, or insect feeding. It is especially impor- season to block the later invasion of new tissue. Maintaining tant on trees stressed by drought or other environmental fac- gwd stand vigor should suffice as an effective control in tors. The degree of stress to the host determines how rapidly forest stands. the fungus develops. It kills the young bark, which soon darkens and produces a flattened or depressed canker on Steganosponurn ovafum is another common fungus of dying the branch around the infection. The fungus develops mostly and dead maple branches (Fig. 86). It produces black hriing when the tree is dormant and produces its distinctive fruiting structures on branches of trees stressed previously, bodies in late spring or early summer.
    [Show full text]
  • Medicinal Potential of Mycelium and Fruiting Bodies of an Arboreal
    www.nature.com/scientificreports OPEN Medicinal potential of mycelium and fruiting bodies of an arboreal mushroom Fomitopsis ofcinalis in therapy of lifestyle diseases Agata Fijałkowska1, Bożena Muszyńska1*, Katarzyna Sułkowska‑Ziaja1, Katarzyna Kała1, Anna Pawlik2, Dawid Stefaniuk2, Anna Matuszewska2, Kamil Piska3, Elżbieta Pękala3, Piotr Kaczmarczyk4, Jacek Piętka5 & Magdalena Jaszek2 Fomitopsis ofcinalis is a medicinal mushroom used in traditional European eighteenth and nineteenth century folk medicine. Fruiting bodies of F. ofcinalis were collected from the natural environment of Świętokrzyskie Province with the consent of the General Director for Environmental Protection in Warsaw. Mycelial cultures were obtained from fragments of F. ofcinalis fruiting bodies. The taxonomic position of the mushroom mycelium was confrmed using the PCR method. The presence of organic compounds was determined by HPLC–DAD analysis. Bioelements were determined by AF‑AAS. The biochemical composition of the tested mushroom material was confrmed with the FTIR method. Antioxidant properties were determined using the DPPH method, and the antiproliferative activity was assessed with the use of the MTT test. The presence of indole compounds (l‑tryptophan, 6‑methyl‑d,l‑tryptophan, melatonin, 5‑hydroxy‑l‑tryptophan), phenolic compounds (p‑hydroxybenzoic acid, gallic acid, catechin, phenylalanine), and sterols (ergosterol, ergosterol peroxide) as well as trace elements was confrmed in the mycelium and fruiting bodies of F. ofcinalis. Importantly, a high level of 5‑hydroxy‑l‑tryptophan in in vitro mycelium cultures (517.99 mg/100 g d.w) was recorded for the frst time. The tested mushroom extracts also showed antioxidant and antiproliferative efects on the A549 lung cancer cell line, the DU145 prostate cancer cell line, and the A375 melanoma cell line.
    [Show full text]
  • Piptoporus Betulinus, Fomitopsis Betulina)
    Birch Fungi – Razor Strop, Birch Bracket (Piptoporus betulinus, Fomitopsis betulina) Features - This distinctive fungus only grows on birches, looks like nothing else that grows on birches, and is very common. It is not an aggressive tree killer, but is instead primarily in the business of decomposing dead trees. Birch polypore is present throughout the range of the birches, which grow around the globe in the northern hemisphere. The white-to-brownish fruiting bodies are annual, emerging from the bark of birches in spring and summer, but they deteriorate slowly and are still visible through the winter, though by then they have blackened and are not so attractive. Global Uses – Otzi the Iceman, who lived 5300 years ago, carried two fragments of a fruiting body of Fomitopsis betulina (formerly Piptoporus betulinus). Some scientists believe that Ӧtzi might have used the fungus for medical purposes and, although the idea arouses some controversy, the long tradition of the use of F. betulina in folk medicine is a fact. Infusion from F. betulina fruiting bodies was popular, especially in Russia, Baltic countries, Hungary, Romania for its nutritional and calming properties. Fungal tea was used against various cancer types, as an immunoenhancing, anti-parasitic agent, and a remedy for gastrointestinal disorders. Antiseptic and anti-bleeding dressings made from fresh F. betulina fruiting body were applied to wounds and the powder obtained from dried ones was used as a painkiller. Was used as a razor strop to sharpen fine edged blades. Medicinal Potential – Chemical Constituents: A and C, 1,3-beta-D-glucopyranan, B ergosta-7,22-dien-3- ol, fungisterol, ergosterol, agaric acid, dehydrotumulosic acid, ungalinic acid, betulinic acid, and tumulosic acid.
    [Show full text]
  • Polypore Diversity in North America with an Annotated Checklist
    Mycol Progress (2016) 15:771–790 DOI 10.1007/s11557-016-1207-7 ORIGINAL ARTICLE Polypore diversity in North America with an annotated checklist Li-Wei Zhou1 & Karen K. Nakasone2 & Harold H. Burdsall Jr.2 & James Ginns3 & Josef Vlasák4 & Otto Miettinen5 & Viacheslav Spirin5 & Tuomo Niemelä 5 & Hai-Sheng Yuan1 & Shuang-Hui He6 & Bao-Kai Cui6 & Jia-Hui Xing6 & Yu-Cheng Dai6 Received: 20 May 2016 /Accepted: 9 June 2016 /Published online: 30 June 2016 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2016 Abstract Profound changes to the taxonomy and classifica- 11 orders, while six other species from three genera have tion of polypores have occurred since the advent of molecular uncertain taxonomic position at the order level. Three orders, phylogenetics in the 1990s. The last major monograph of viz. Polyporales, Hymenochaetales and Russulales, accom- North American polypores was published by Gilbertson and modate most of polypore species (93.7 %) and genera Ryvarden in 1986–1987. In the intervening 30 years, new (88.8 %). We hope that this updated checklist will inspire species, new combinations, and new records of polypores future studies in the polypore mycota of North America and were reported from North America. As a result, an updated contribute to the diversity and systematics of polypores checklist of North American polypores is needed to reflect the worldwide. polypore diversity in there. We recognize 492 species of polypores from 146 genera in North America. Of these, 232 Keywords Basidiomycota . Phylogeny . Taxonomy . species are unchanged from Gilbertson and Ryvarden’smono- Wood-decaying fungus graph, and 175 species required name or authority changes.
    [Show full text]