Observations the Move-On Rule Conclusions

Total Page:16

File Type:pdf, Size:1020Kb

Observations the Move-On Rule Conclusions During the late 1980s to early 1990s, NOAA high abundance of organisms close to the edges deep-sea benthic ecosystems and where the allowable depth of bottom fishing to surveys found only sparse patches of octocorals, of the summit (Rogers, 1994). data on effort and catches for some fisheries 1,500m. presumably the remnants from overfishing are lacking. Even where there is evidence ● Coral fishing is reported as continuing on the (Humphreys, 2008). The Japanese and other impact assessments of the presence of species associated with Emperor Seamount Chain. by fishing nations in this region have proposed a VMEs, interpretation of data has not been ● Comparison of the Emperor Seamount benthic The Fisheries Agency of Japan (2008: Appendix zone protected from fishing on Koko Seamount precautionary nor is it in line with studies communities with those of the Antarctic M) has also reported recent sightings of to protect the single locality at which Corallium elsewhere on what constitutes a VME (see continental slope is misleading and does not Taiwanese vessels fishing for coral, indicating was observed (Station 11; Fig. 40). This has text and Section (iii) below). reflect the work done to quantify densities of that the precious coral fishery is still operating little conservation value for the identified ● The impact assessments conclude that in octocorals in RFMOs elsewhere (e.g. North and potentially damaging VMEs present on the octocorals garden VMEs on the seamount. general SAIs to VMEs do not exist. Atlantic, northeast Pacific; Stone, 2006; Emperor Seamounts. Data were also obtained from other seamounts WGDEC, 2007; Edinger et al., 2009; Rogers et in the Emporer Seamount Chain, including (ii) To implement measures in accordance with al., in press). Observations Yuryaku, Kammu, Colahan, Jimmu, Suiko, the precautionary approach, ecosystems ● The seamounts investigated are likely to Showa and Youmei Seamounts. Corals were approaches and international law and to have been heavily impacted by fishing. Where Information from the Japanese ROV and present on these but not as abundantly as on sustainably manage deep-sea fish stocks. remnant populations of corals and other camera surveys indicates the presence of Koko Seamount. However, sampling effort was ● The new RFMO is still under negotiation VME species exist, area closures should octocoral garden communities on the Koko extremely low for some sites, comprising just a although interim measures to manage high be established to allow for some degree of Seamount, which has historically been the few camera drops in some cases. The variability seas bottom fisheries in the northwest Pacific regeneration. focus of significant fisheries for precious in coral densities both within a single seamount have been adopted. ● Current impact assessments are not adequate corals. Octocoral gardens are classed as and on the different seamounts in this study ● The pelagic armourhead fishery has been to identify VMEs along the fished seamounts VMEs. The Japanese impact assessment for is striking. Studies so far are not sufficient severely depleted over the last 40 years yet of the Emperor Seamount Chain and there trawling states that despite aggregations of to support the conclusion that there were no there is no stock assessment for the species. have been no analyses of fisheries data to corals existing at Stations 12 and 15 on Koko VMEs on other seamounts of the Chain. Some ● Alfonsino is overexploited but current identify where fishing activities are taking Seamount (Fig. 40), it is “not possible to reach photographs indicate heavily trawl-impacted management plans (aimed at maintaining place on fished seamounts. Given the lack any conclusion they constitute VMEs”. The seabed on some of the seamounts investigated. current levels of fishing effort) do not reflect of data on fishing activities in general, such assessment notes that the FAO Guidelines on No other data are presented on the potential an accurate status of the stock. assessments are impossible. managing deep-sea fisheries on the high seas for deep-sea fishing activities to impact benthic ● For most other species, catch statistics are ● Interim measures consistent with UNGA provides no quantitative guidance as to what communities on the Emperor Seamounts. unavailable or unreliable and, therefore, Resolutions 61/105 and 64/72 are needed constitutes a VME and that the communities assessment of the effects of fishing mortality for the northeast Pacific. on Koko Seamount do not resemble extremely The move-on rule on stocks is not possible. There is no current high density stylasterid/sponge/bryozoans plan to change this situation or to plan for (iv) To establish and implement protocols to communities from the Antarctic. While this The fishing nations involved in the NPFC potential grenadier fisheries. cease fishing where an encounter with VMEs may be true, the Antarctic VMEs comprised negotiations initially adopted the NEAFC move- ● Overall, impacts on many low-productivity occurs during fishing activities and to report of stylasterids are unusually dense, probably on rule with respect to coral but have lowered species, such as sharks, cannot be assessed such encounters so that appropriate measures because of their location on the continental the threshold by-catch limit to 50kg. Points on the Emperor Seamount Chain at this time. can be adopted with respect to that site. slope of the Antarctic and the extremely high raised previously in this report with respect to ● The threshold levels set by NPFC for VME seasonal productivity of surface waters there, the move-on rules for NEAFC apply in large part (iii) To ensure that if fishing activities have SAIs encounters apply to corals only. and do not constitute any ‘normal’ benchmark to the NPFC area. There has been no attempt they are managed to prevent such impacts, ● The threshold level for corals do not take situation. Additionally, the Antarctic areas in the to identify VME communities in the region other including through closing areas to bottom into account the small size and delicate photographs referred to (Australian Antarctic than coral communities, and South Korea does fishing where VMEs are known or likely to morphology of coral colonies observed on the Division, 2008) are unlikely to have been fished not require its vessels to report encounters with occur, or not authorised to proceed. seamounts. with bottom-contact gear. Comparison with coral VMEs. ● VMEs are present on the Emperor Seamount ● Using the same threshold levels for active and garden habitats elsewhere (see discussion Chain. However, intensive historical bottom passive fishing gears does not reflect large under northeast Atlantic region; Rogers et al., Conclusions fishing, some targeting precious corals, will differences in their impact. in press) suggests that observations on Koko have heavily impacted this and other local ● Differentiating the post-VME-encounter Seamount do represent VMEs. Data on trawl (i) Conduct assessments of whether bottom seamounts. protocol between areas with a fishing hang-ups were also plotted in the Japanese fishing activities have SAIs on VMEs. ● The fishing nations involved in the NPFC history and those without does not serve assessment (Fig. 41). Some of these are ● Impact assessments have been undertaken negotiations have proposed a single protected conservation objectives. congruent with the coral gardens observed by Japan, Republic of Korea and Russia for the area on the Koko Seamount because of the ● The 2nm move-on rule is an ineffective means in the ROV footage of Koko Seamount but Regulatory Area of the North Pacific Fisheries presence of Corallium at one station. This of conserving deep-sea species because it hang-ups can occur for other reasons such as Commission. protected area does not protect the coral is difficult to identify where a VME encounter lodging of the gear on rocks or under ledges or ● The impact assessments submitted by gardens known to be present elsewhere on occurs along a tow for commercial bottom entanglement with lost fishing gear. The location Republic of Korea and Russia appear to draw seamount summit edges. Japan and Republic trawling. of the high coral densities on Koko Seamount heavily on the impact assessment produced by of Korea have proposed to prohibit their ● Some states (e.g. South Korea) are not (see photographs in: Fisheries Agency of Japan, Japan. vessels from engaging in bottom fishing on the reporting VME encounters even when a VME- 2008: Appendix H; see Fig. 40) follow a pattern ● These assessments have been undertaken high seas north of 45°N and 40°N latitude, encounter protocol is in operation in the that has been seen on other seamounts: that of in a region for which there are few data on respectively. Japan further proposes to limit RFMO. 60 THE IMPLEMENTATION OF UN RESOLUTIONS 61/105 AND 64/72 IN THE MANAGEMENT OF DEEP-SEA FISHERIES ON THE HIGH SEAS THE IMPLEMENTATION OF UN RESOLUTIONS 61/105 AND 64/72 IN THE MANAGEMENT OF DEEP-SEA FISHERIES ON THE HIGH SEAS 61 SOUTH PACIFIC OCEAN taken place in the southwestern Pacific, mainly (Rogers, 1994; SPRFMO, 2007a). Orange roughy so it is unclear whether current levels of The southeast and west-central Pacific is one by Australian and New Zealand vessels, with breed in aggregations over seamounts but also exploitation are sustainable (SPRFMO, 2007a). of the most important areas of the world in the catch averaging several thousand tonnes demonstrate lengthy periods of low recruitment terms of
Recommended publications
  • 12 REVISED J Caveorum Profile
    Document SPRFMO-III-SWG-12 Information describing Jasus caveorum fisheries relating to the South Pacific Regional Fisheries Management Organisation REVISED 20 February 2007 DRAFT 1. Overview.......................................................................................................................2 2. Taxonomy.....................................................................................................................3 2.1 Phylum..................................................................................................................3 2.2 Class.....................................................................................................................3 2.3 Order.....................................................................................................................3 2.4 Family...................................................................................................................3 2.5 Genus and species.................................................................................................3 2.6 Scientific synonyms...............................................................................................3 2.7 Common names.....................................................................................................3 2.8 Molecular (DNA or biochemical) bar coding.........................................................3 3. Species characteristics....................................................................................................3 3.1 Global distribution
    [Show full text]
  • Vulnerable Marine Ecosystems – Processes and Practices in the High Seas Vulnerable Marine Ecosystems Processes and Practices in the High Seas
    ISSN 2070-7010 FAO 595 FISHERIES AND AQUACULTURE TECHNICAL PAPER 595 Vulnerable marine ecosystems – Processes and practices in the high seas Vulnerable marine ecosystems Processes and practices in the high seas This publication, Vulnerable Marine Ecosystems: processes and practices in the high seas, provides regional fisheries management bodies, States, and other interested parties with a summary of existing regional measures to protect vulnerable marine ecosystems from significant adverse impacts caused by deep-sea fisheries using bottom contact gears in the high seas. This publication compiles and summarizes information on the processes and practices of the regional fishery management bodies, with mandates to manage deep-sea fisheries in the high seas, to protect vulnerable marine ecosystems. ISBN 978-92-5-109340-5 ISSN 2070-7010 FAO 9 789251 093405 I5952E/2/03.17 Cover photo credits: Photo descriptions clockwise from top-left: Acanthagorgia spp., Paragorgia arborea, Vase sponges (images courtesy of Fisheries and Oceans, Canada); and Callogorgia spp. (image courtesy of Kirsty Kemp, the Zoological Society of London). FAO FISHERIES AND Vulnerable marine ecosystems AQUACULTURE TECHNICAL Processes and practices in the high seas PAPER 595 Edited by Anthony Thompson FAO Consultant Rome, Italy Jessica Sanders Fisheries Officer FAO Fisheries and Aquaculture Department Rome, Italy Merete Tandstad Fisheries Resources Officer FAO Fisheries and Aquaculture Department Rome, Italy Fabio Carocci Fishery Information Assistant FAO Fisheries and Aquaculture Department Rome, Italy and Jessica Fuller FAO Consultant Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Delving Deeper Critical Challenges for 21St Century Deep-Sea Research
    EUROPEAN MARINE BOARD Delving Deeper Critical challenges for 21st century deep-sea research Position Paper 22 Wandelaarkaai 7 I 8400 Ostend I Belgium Tel.: +32(0)59 34 01 63 I Fax: +32(0)59 34 01 65 E-mail: [email protected] www.marineboard.eu www.marineboard.eu European Marine Board The Marine Board provides a pan-European platform for its member organizations to develop common priorities, to advance marine research, and to bridge the gap between science and policy in order to meet future marine science challenges and opportunities. The Marine Board was established in 1995 to facilitate enhanced cooperation between European marine science organizations towards the development of a common vision on the research priorities and strategies for marine science in Europe. Members are either major national marine or oceanographic institutes, research funding agencies, or national consortia of universities with a strong marine research focus. In 2015, the Marine Board represents 36 Member Organizations from 19 countries. The Board provides the essential components for transferring knowledge for leadership in marine research in Europe. Adopting a strategic role, the Marine Board serves its member organizations by providing a forum within which marine research policy advice to national agencies and to the European Commission is developed, with the objective of promoting the establishment of the European marine Research Area. www.marineboard.eu European Marine Board Member Organizations UNIVERSITÉS MARINES Irish Marine Universities National Research Council of Italy Consortium MASTS Delving Deeper: Critical challenges for 21st century deep-sea research European Marine Board Position Paper 22 This position paper is based on the activities of the European Marine Board Working Group Deep-Sea Research (WG Deep Sea) Coordinating author and WG Chair Alex D.
    [Show full text]
  • Order ZEIFORMES PARAZENIDAE Parazens P.C
    click for previous page Zeiformes: Parazenidae 1203 Order ZEIFORMES PARAZENIDAE Parazens P.C. Heemstra, South African Institute for Aquatic Biodiversity, South Africa iagnostic characters: Small to moderate-sized (to 30 cm) oblong fishes, the head and body com- Dpressed; body depth slightly less than head length, contained 2.6 to 2.9 times in standard length; head naked, the bones thin and soft; opercular bones weakly serrate; mouth large, terminal, the upper jaw extremely protrusile; maxilla widely expanded posteriorly, and mostly exposed when mouth is closed; no supramaxilla; jaws with 1 or 2 rows of small, slender, conical teeth; vomer with a few short stout teeth;gill rakers (including rudiments) 2 on upper limb, 8 on lower limb.Eye diameter about 1/3 head length and slightly less than snout length.Branchiostegal rays 7.Dorsal fin divided, with 8 slender spines and 26 to 30 soft rays; anal fin with 1 minute spine and 30 to 32 soft rays; dorsal-, anal-, and pectoral-fin rays un- branched; caudal fin forked, with 11 principal rays and 9 branched rays; pectoral fin with 15 or 16 rays, shorter than eye diameter; pelvic fins with 1 unbranched and 5 or 6 branched soft rays, but no spine, fin origin posterior to a vertical at pectoral-fin base. Scales moderate in size, weakly ctenoid, and deciduous; 2 lateral lines originating on body at upper end of operculum and running posteriorly about 4 scale rows apart, gradually converging to form a single line on caudal peduncle. Caudal peduncle stout, the least depth about equal to its length and slightly less than eye diameter.Vertebrae 34.Colour: body reddish or silvery; large black blotch on anterior margin of dorsal fin.
    [Show full text]
  • Climate Change Impacts on the Distribution of Coastal Lobsters
    Marine Biology (2018) 165:186 https://doi.org/10.1007/s00227-018-3441-9 SHORT NOTE Climate change impacts on the distribution of coastal lobsters Joana Boavida‑Portugal1,2 · Rui Rosa2 · Ricardo Calado3 · Maria Pinto4 · Inês Boavida‑Portugal5 · Miguel B. Araújo1,6,7 · François Guilhaumon8,9 Received: 17 January 2018 / Accepted: 26 October 2018 / Published online: 16 November 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Coastal lobsters support important fsheries all over the world, but there is evidence that climate-induced changes may jeopardize some stocks. Here we present the frst global forecasts of changes in coastal lobster species distribution under climate change, using an ensemble of ecological niche models (ENMs). Global changes in richness were projected for 125 coastal lobster species for the end of the century, using a stabilization scenario (4.5 RCP). We compared projected changes in diversity with lobster fsheries data and found that losses in suitable habitat for coastal lobster species were mainly projected in areas with high commercial fshing interest, with species projected to contract their climatic envelope between 40 and 100%. Higher losses of spiny lobsters are projected in the coasts of wider Caribbean/Brazil, eastern Africa and Indo-Pacifc region, areas with several directed fsheries and aquacultures, while clawed lobsters are projected to shifts their envelope to northern latitudes likely afecting the North European, North American and Canadian fsheries. Fisheries represent an important resource for local and global economies and understanding how they might be afected by climate change scenarios is paramount when developing specifc or regional management strategies.
    [Show full text]
  • Global Drivers of Diversification in a Marine Species Complex 2 3 Catarina N.S
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.874883; this version posted December 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Global drivers of diversification in a marine species complex 2 3 Catarina N.S. Silva1, Nicholas P. Murphy2, James J. Bell3, Bridget S. Green4, Guy Duhamel5, Andrew C. 4 Cockcroft6, Cristián E. Hernández7, Jan M. Strugnell1, 2 5 6 7 1 Centre of Sustainable Tropical Fisheries and AQuaculture, James Cook University, Townsville, Qld 4810, 8 Australia 9 2 Department of Ecology, Environment & Evolution, La Trobe University, Melbourne, Vic 3086, Australia 10 3 School of Biological Sciences, Victoria University of Wellington, Wellington, 6140, New Zealand 11 4 Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia 12 5 Département Adaptations du Vivant, BOREA, MNHN, Paris, 75005, France 13 6 Department of Agriculture, Forestry and Fisheries, Cape Town, 8012, South Africa 14 7 Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 15 Casilla 160C, Concepción, Chile 16 17 18 Abstract 19 Investigating historical gene flow in species complexes can indicate how environmental and reproductive 20 barriers shape genome divergence before speciation. The processes influencing species diversification under 21 environmental change remain one of the central focal points of evolutionary biology, particularly for marine 22 organisms with high dispersal potential. We investigated genome-wide divergence, introgression patterns and 23 inferred demographic history between species pairs of all extant rock lobster species (Jasus spp.), a complex 24 with long larval duration, that has populated continental shelf and seamount habitats around the globe at 25 approximately 40oS.
    [Show full text]
  • Crustacea, Malacostraca, Bathynellacea, 16S Rdna
    Contributions to Zoology, 71 (4) 123-129 (2002) SPB AcademicPublishing bv. The Hague A note on the systematic position of the Bathynellacea (Crustacea, Malacostraca) using molecular evidence Ana+Isabel Camacho Isabel Rey²,Beatriz+A. Dorda Annie ³ ², Machordom Antonio+G. Valdecasas ¹ ³, 'Museo Naturales Nacional de Ciencias (CSIC). Dpto. Biodiversidady Biologia Evolutiva. C/ Jose Gutierrez Ahascal 28006- 2 2, Madrid. Spain, [email protected]; Museo Nacional de Ciencias Naturales (CSIC), de Colecciones. Jose Gutierrez 3 Dpto. C/ Ahascal 2, 28006- Madrid; Museo Nacional de Ciencias Naturales (CSIC), Dpto. Biodiversidady Biologia Evolutiva. C/ Jose Gutierrez Ahascal 2, 28006- Madrid. Keywords: Systematics, Crustacea, Malacostraca, Bathynellacea, 16S rDNA. lar, is the Abstract usually homogeneous amongst special- ists. The traditional of way working is to use the latest information or the latest Molecular data for the 16S of ba- hypothesis mt rDNA gene fragment a published in order to thynellacean is here presented for the first time and used to select those views that are going to be the of within the analyze relationship the group crustacean class compared. However, it must be universal that where Malacostraca Two (Arthropoda, Bathynellacea). contrasting there is more than one taxonomist working on a views have classified the bathynelids as being cither within the there will be group not a single hypothesis or in- order Syncarida or in a separate super-order Podophallocarida of the How terpretation descent. or small based group’s big belonging to the infra-class Eonomostraca, a disagreement are these irrelevant on debates internal The discrepancies and does it not mainly over external and morphology.
    [Show full text]
  • Provisional Agenda*
    CBD Distr. GENERAL UNEP/CBD/SBSTTA/16/INF/6 11 April 2012 ORIGINAL: ENGLISH SUBSIDIARY BODY ON SCIENTIFIC, TECHNICAL AND TECHNOLOGICAL ADVICE Sixteenth meeting Montreal, 30 April-5 May 2012 Item 6.1 of the provisional agenda* REPORT OF THE WESTERN SOUTH PACIFIC REGIONAL WORKSHOP TO FACILITATE THE DESCRIPTION OF ECOLOGICALLY OR BIOLOGICALLY SIGNIFICANT MARINE AREAS INTRODUCTION 1. At its tenth meeting, the Conference of the Parties to the Convention on Biological Diversity (COP 10) requested the Executive Secretary to work with Parties and other Governments as well as competent organizations and regional initiatives, such as the Food and Agriculture Organization of the United Nations (FAO), regional seas conventions and action plans, and, where appropriate, regional fisheries management organizations (RFMOs), with regard to fisheries management, to organize, including the setting of terms of reference, a series of regional workshops, with a primary objective to facilitate the description of ecologically or biologically significant marine areas through the application of scientific criteria in annex I to decision IX/20 as well as other relevant compatible and complementary nationally and intergovernmentally agreed scientific criteria, as well as the scientific guidance on the identification of marine areas beyond national jurisdiction, which meet the scientific criteria in annex I to decision IX/20 (paragraph 36, decision X/29). 2. In the same decision (paragraph 41), the Conference of the Parties requested that the Executive Secretary make available the scientific and technical data and information and results collated through the workshops referred to above to participating Parties, other Governments, intergovernmental agencies and the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) for their use according to their competencies.
    [Show full text]
  • A Preliminary Assessment of the Deepwater Benthic Communities of the Great Australian Bight Marine Park
    MMaarriinnee EEnnvviirroonnmmeenntt && EEccoollooggyy A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park David R. Currie and Shirley J. Sorokin SARDI Publication No. F2011/000526-1 SARDI Research Report Series No. 592 SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 December 2011 Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities David R. Currie and Shirley J. Sorokin SARDI Publication No. F2011/000526-1 SARDI Research Report Series No. 592 December 2011 Currie, D.R. and Sorokin, S.J. (2011) Deepwater benthos of the GABMP This Publication may be cited as: Currie, D.R. and Sorokin, S.J (2011). A preliminary assessment of the deepwater benthic communities of the Great Australian Bight Marine Park. Report to the South Australian Department of Environment and Natural Resources and the Commonwealth Department of Sustainability, Environment, Water, Population and Communities. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2011/000526- 1. SARDI Research Report Series No. 592. 61pp. South Australian Research and Development Institute SARDI Aquatic Sciences 2 Hamra Avenue West Beach SA 5024 Telephone: (08) 8207 5400 Facsimile: (08) 8207 5406 http://www.sardi.sa.gov.au DISCLAIMER The authors warrant that they have taken all reasonable care in producing this report.
    [Show full text]
  • Dunn (2013) Ecosystem Impacts of Orange Roughy Fisheries
    Please do not cite without prior reference to the author ECOSYSTEM IMPACTS OF ORANGE ROUGHY FISHERIES Dr Matthew Dunn School of Biological Sciences Victoria University of Wellington [email protected] July 2013 Summary This document provides background information and a perspective on the ecosystem impact of orange roughy fishing. It is not comprehensive, but intended to be indicative of current knowledge and understanding. My objective was to consider how we might best monitor the orange roughy ecosystem for signs of significant or informative change in function, and in its ability to maintain ecosystem services. I have structured the text into sections; (1) the orange roughy ecosystem, (2) ecosystem outcome, (3) ecosystem management, and (4) ecosystem monitoring. My focus is on (1) and (2). Within these first two sections, I have kept a summary of key existing knowledge separate from a discussion of theory and research. The latter may include further detail on existing research and data sets, other pertinent findings, and ideas for research which may improve our understanding. Orange roughy fishing has two main impacts. The first is capture of target species and by‐catch, and the second is damage to the seabed by bottom trawls (including incidental mortality). I have tended to focus on the ecosystem impacts of the former. This is because of my expertise, and because bottom trawl impacts may be reduced, minimised or mitigated through reduction in the trawl footprint, whereas a Bmsy objective does, by definition, require a persistent and substantial reduction in the biomass of the target species (and potentially the closely associated by‐catch).
    [Show full text]
  • SPRFMO4 SWG 11 Species Profile
    SPRFMO-IV-SWG-11 Information describing Oreosomatidae (Allocyttus niger, Neocyttus rhomboidalis and Pseudocyttus maculates) fisheries relating to the South Pacific Regional Fisheries Management Organisation Black oreo Spiky oreo Smooth oreo WORKING DRAFT 02 September 2007 1 Overview...........................................................................................................................2 2 Taxonomy.........................................................................................................................3 2.1 Phylum......................................................................................................................3 2.2 Class..........................................................................................................................3 2.3 Order.........................................................................................................................3 2.4 Family.......................................................................................................................3 2.5 Genus and species......................................................................................................3 2.6 Scientific synonyms...................................................................................................3 2.7 Common names.........................................................................................................3 2.8 Molecular (DNA or biochemical) bar coding..............................................................3 3 Species Characteristics.....................................................................................................4
    [Show full text]