Metallographic Preparation of Nitrided and Nitrocarburised Components Application

Total Page:16

File Type:pdf, Size:1020Kb

Metallographic Preparation of Nitrided and Nitrocarburised Components Application Metallographic preparation of nitrided and nitrocarburised components Application Nitriding is a thermochemical process by Notes which the surface of a ferrous metal is en- riched with nitrogen to improve the wear re- sistance of components. In nitrocarburising not only nitrogen but also small amounts of carbon are involved in the process. The result is a nitrided layer consisting of the compound layer (“white layer”) and the diffusion zone immediately below the com- pound layer. The nitriding and nitrocarburising process using gas or salt bath was developed in the early 20th century in Germany and the United States. The development of ion or plasma nitriding started in the 1930s but Nitrided steel, colour etched with Beraha’s reagent was not commercially used until the 1970s. All three nitriding methods have advantages dimensions and do not need costly finish- and the selection of a particular method ing work such as grinding or straightening depends on the specific application of the after nitriding. nitrided component. Nitriding and nitrocarburising are mainly Nitriding produces a hard, wear resistant used for ferrous components such as layer on carbon and low alloy steels and valves, camshafts and piston rods in the cast iron. In addition, it considerably im- mechanical engineering and automotive proves fatigue strength and by oxidizing industries. Other applications are cutting the nitrided surface, it enhances corrosion tools or large forming dies. Cast iron parts, resistance. such as pump and gear houses, can also be nitrided. The main advantage of nitriding and nitro- Metallography of nitrided and nitrocar- carburising over other means of surface burised components is mainly used for hardening is the low process temperature controlling the nitriding process through (500-600°C), preferably 580°C. Compo- examination of the layer. The white layer, nents can often be nitrided in the fully hard- diffusion zone and porous zone are meas- ened and tempered condition without the ured and evaluated. In addition, failure core properties being adversely affected. An analyses of used parts are carried out to additional advantage of the low temperature see if faulty material, surface deterioration process is the low risk of distortion. Conse- or the nitriding process were contributing quently the parts can be machined to final factors. Difficulties in the preparation of nitrided parts: - Chipping and cracking in the layer - Edge-rounding Solution: - Proper mounting - Plane grinding with SiC paper - Fine grinding with diamond - Diamond polishing on hard cloths Fig.1: Shrinkage gap between specimen 500x Fig. 2: Without edge retention, the layer is not in focus and mounting resin can cause flaking at high magnification of the nitrided layer and trap abrasives Formation and Nitriding processes composition of the and application of nitrided layer nitrided parts At nitriding temperature the nitrogen dif- Fig. 4: Nitrocarburised carbon steel after heating for 45 Before nitriding, the components have min/300°C, etched with 1% Nital showing nitride need- fuses into the steel surface and reacts with les in the diffusion zone. to be thoroughly cleaned and degreased. iron, forming γ’ iron nitride (Fe4N), contain- Any surface contamination from grinding ing up to 6 wt % N. With increasing nitro- particles, oil or metal chips will result in gen the ε-phase (Fe3N) is formed, which an uneven formation of the nitrided layer. can absorb up to 11 wt % N. This can cause cracks in the coating which These two iron nitride phases, ε+γ’, form leads to flaking and corrosion (see Figs. 6 the compound layer, also called “white and 7) After cleaning, the parts are dried layer”, because it stays white when the steel and preheated and then transferred to the is etched with Nital. This compound layer actual nitriding environment. does not contain any metal but consists of The various nitriding processes can be dif- a non-metallic phase formed by iron and ferentiated mainly by their nitrogen source nitrogen that can be called a “nitride ce- and the energy supply. Salt bath-, gas- and ramic”. In the outer areas of the compound plasma nitriding have different advan- layer a porous zone can be found (see Fig. 5: Alloyed steel, nitrocarburised, etched with 1% tages regarding investment cost, process Nital, shows dark diffusion zone, and white compound Fig. 3). layer with dark oxide coat. time, environment, safety and quality. The properties of the resulting nitrided or The percentage of γ’ and ε-nitride depends the steel, such as aluminium, molybdenum, nitrocarburised surface are in many cases on the carbon content of the steel: higher chromium and tungsten. independent of the production process. carbon content promotes the formation of The required case depth is determined by ε, lower carbon content forms more γ’ iron Because of their sub-microscopically fine the application of the nitrided component nitride. distribution the nitrides in the diffusion and can be regulated through the nitriding zone of low carbon steels generally can not With an optical microscope the differen- temperature and time. be seen after etching of the metallographic tiation of ε and γ’ iron nitrides in the com- sample. However, after heating the sample pound layer is only possible by using very In the following paragraphs the different to tempering temperature (200-400° C for special and difficult etching methods. nitriding processes are briefly described 15-30 min), the nitrogen in solid solution A correct analysis of the composition can and the application of the nitrided parts precipitates in the form of γ’ nitride needles. only be made by quantitative structural mentioned. These nitride needles can be etched so that x-ray analysis using deeply penetrating the diffusion zone becomes visible and its radiation. thickness can be measured (Fig. 4). The compound layer is relatively hard and On alloy steels the diffusion zone will be the hardness increases with increasing con- etched dark with Nital, but the nitrides can tent of nitride forming alloying elements, not be resolved with an optical microscope at the same time the case depth decreases. (Fig. 5). Nitrided carbon steels have a surface hard- The thickness of the white layer and the dif- ness of 300-400 HV and alloyed steels from fusion zone depends on various parameters 700 HV to more than 1000 HV. of which the most important ones are time, Below the compound zone is the diffusion temperature and steel composition. The zone containing nitrogen in solid solution. white layer can be between 0-20 µm and In addition, it has stable metal nitrides the diffusion zone up to 0.8 mm, depending formed by the various alloying elements of on the requirements of the application. =18 µm { Porous zone Compound layer ε-Nitride { γ ‘-Nitride 1000:1 Fig. 3: Details of composition of Enlarged • = Fe nitrided layer ° = Possible N-Positions Fig. 6 and 7: Impurities in the steel and on the surface can lead to faulty areas in the nitride layer and cause cracking or corrosion. Nitrocarburised cases are particularly resistant against abrasive wear, scuffing, sliding friction and corrosion. The porous surface can retain lubricants which adds to the running properties of, for instance, camshafts. (Fig. 8) Salt bath nitrocarburising is a fast, flexible and economical process. Typical applica- tions are parts for the automotive industry such as piston rods, crank and camshafts, Fig. 8: Salt bath nitrocarburised alloyed steel (16MnCr5), valves and gears. In addition, nitrocarbu- Fig.10: Gas nitrocarburised carbon steel, 580°C/1.5 hr. etched with 1% Nital, diffusion zone is etched dark, rised components are used in the aircraft compound layer with porous zone shows white. and off-shore industry and in mechanical engineering. bration and torsion. Components with bore Salt bath nitrocarburising holes, undercuts and cavities, for instance Salt bath nitrocarburizing is carried out in Gas nitriding and nitrocarburising gener- sintered steels, are suited for gas nitriding gas or electrically heated crucible furnaces. ally takes place in a sealed, bell-type nitrid- because the gas can easily enter every- The preferred material for the crucible is ing furnace which provides good gas cir- where as it circulates in the retort. Copper titanium. After preheating to 350°C, the culation. The process is mainly controlled plating or special resistant materials can be components are submerged into the salt- by the degree of dissociation of ammonia. used for masking areas that should not be bath, either hanging or lying in charging The ammonia gas reacts at 500-520°C with nitrided. racks, or as bulk material in stainless steel the steel surface and decomposes, thereby Gas nitrided parts are typically machine or Inconel baskets. The salt bath consists releasing nascent nitrogen which diffuses spindles, ductile iron pump housings, door of alkaline cyanate and alkaline carbonate. into the steel surface. As gas nitriding uses lock mechanisms, water pump compo- Through oxidation and thermal reaction a lower temperature, process times are 40- nents and pistons for gas compressors. with the immersed component surface, at 80 hrs. By adding gases containing carbon, nitriding temperature the alkaline cyanate gas nitrocarburising is also possible (Figs. Plasma nitriding and nitrocarburising is releases nitrogen and carbon which diffuse 9 and 10). As a consequence process carried out in a nitrogen - hydrogen at- into the surface of the component. Pure times are reduced. mosphere at 400-600°C and a pressure of nitriding is not possible with the salt bath approx. 50-500 Pa. For nitrocarburising, as small amounts of carbon will always The formation and properties of the com- gases containing carbon, such as meth- diffuse into the surface. The usual process pound layer and diffusion zone are similar ane, are added. The plasma is produced parameters are 90 min at 580°C. to those produced by salt bath nitriding.
Recommended publications
  • Wear Behavior of Austempered and Quenched and Tempered Gray Cast Irons Under Similar Hardness
    metals Article Wear Behavior of Austempered and Quenched and Tempered Gray Cast Irons under Similar Hardness 1,2 2 2 2, , Bingxu Wang , Xue Han , Gary C. Barber and Yuming Pan * y 1 Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China; [email protected] 2 Automotive Tribology Center, Department of Mechanical Engineering, School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA; [email protected] (X.H.); [email protected] (G.C.B.) * Correspondence: [email protected] Current address: 201 N. Squirrel Rd Apt 1204, Auburn Hills, MI 48326, USA. y Received: 14 November 2019; Accepted: 4 December 2019; Published: 8 December 2019 Abstract: In this research, an austempering heat treatment was applied on gray cast iron using various austempering temperatures ranging from 232 ◦C to 371 ◦C and holding times ranging from 1 min to 120 min. The microstructure and hardness were examined using optical microscopy and a Rockwell hardness tester. Rotational ball-on-disk sliding wear tests were carried out to investigate the wear behavior of austempered gray cast iron samples and to compare with conventional quenched and tempered gray cast iron samples under equivalent hardness. For the austempered samples, it was found that acicular ferrite and carbon saturated austenite were formed in the matrix. The ferritic platelets became coarse when increasing the austempering temperature or extending the holding time. Hardness decreased due to a decreasing amount of martensite in the matrix. In wear tests, austempered gray cast iron samples showed slightly higher wear resistance than quenched and tempered samples under similar hardness while using the austempering temperatures of 232 ◦C, 260 ◦C, 288 ◦C, and 316 ◦C and distinctly better wear resistance while using the austempering temperatures of 343 ◦C and 371 ◦C.
    [Show full text]
  • Novel Triadius-Like N4 Specie of Iron Nitride Compounds Under High
    www.nature.com/scientificreports OPEN Novel triadius-like N4 specie of iron nitride compounds under high pressure Received: 11 May 2018 Yuanzheng Chen1, Xinyong Cai1, Hongyan Wang1, Hongbo Wang2 & Hui Wang2 Accepted: 2 July 2018 Various nitrogen species in nitrides are fascinating since they often appear with these nitride as Published: xx xx xxxx superconductors, hard materials, and high-energy density. As a typical complex, though iron nitride has been intensively studied, nitrogen species in the iron–nitrogen (Fe-N) compounds only have been confned to single atom (N) or molecule nitrogen (N2). Using a structure search method based on the CALYPSO methodology, unexpectedly, we here revealed two new stable high pressure (HP) states at 1:2 and 1:4 compositions with striking nitrogen species. The results show that the proposed FeN2 stabilizes by a break up of molecule N2 into a novel planar N4 unit (P63/mcm, >228 GPa) while FeN4 stabilizes by a infnite 1D linear nitrogen chains N∞ (P-1, >50 GPa; Cmmm, >250 GPa). In the intriguing N4 specie of P63/mcm-FeN2, we fnd that it possesses three equal N = N covalent bonds and forms a perfect triadius-like confguration being never reported before. This uniqueness gives rise to a set of remarkable properties for the crystal phase: it is identifed to have a good mechanical property and a potential for phonon-mediated superconductivity with a Tc of 4–8 K. This discovery puts the Fe-N system into a new class of desirable materials combining advanced mechanical properties and superconductivity. Nitrogen (N) is the most abundant element in the earth’s atmosphere and is one of the least studied elements regarding the composition of the Earth1.
    [Show full text]
  • ITP Metal Casting: Advanced Melting Technologies
    Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry November 2005 BCS, Incorporated 5550 Sterrett Place, Suite 306 Columbia, MD 21044 www.bcs-hq.com Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry Prepared for ITP Metal Casting by BCS, Incorporated November 2005 Acknowledgments This study was a collaborative effort by a team of researchers from University of Missouri–Rolla, Case Western Reserve University, and Carnegie Mellon University with BCS, Incorporated as the project coordinator and lead. The research findings for the nonferrous casting industry were contributed by Dr. Jack Wallace and Dr. David Schwam, while the ferrous melting technologies were addressed by Dr. Kent Peaslee and Dr. Richard Fruehan. BCS, Incorporated researched independently to provide an overview of the melting process and the U.S. metal casting industry. The final report was prepared by Robert D. Naranjo, Ji-Yea Kwon, Rajita Majumdar, and William T. Choate of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy and Cast Metal Coalition (CMC) in conducting this study. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof.
    [Show full text]
  • Comparing and Contrasting Carbonitriding and Nitrocarburizing
    This article was originally published in the July 2016 issue of Industrial Heating magazine and is republished here with permission The Heat Treat Doctor® COMPARING AND CONTRASTING CARBONITRIDING AND NITROCARBURIZING Daniel H. Herring THE HERRING GROUP Inc. 630-834-3017 [email protected] The terminology of heat treating is sometimes challenging. Heat treaters can be inconsistent at times, using one word when they really mean another. You have heard the terms carbonitriding and nitrocarburizing and know they are two different case-hardening processes, but what are the real differences between them? Let’s learn more. Part of our confusion stems from the fact that years ago carbonitriding was known by other names – “dry cyaniding,” “gas cyaniding,” “nicarbing” and (yes) “nitrocarburizing.” The Carbonitriding Process Carbonitriding is a modified carburizing process, not a form of nitriding. This modification consists of introducing ammonia into the carburizing atmosphere in order to add nitrogen into the carburized case as it is being produced (Fig. 1). Carbonitriding is typically done at a lower temperature than carburizing, from as low as 700-900°C (1300-1650°F), and for a shorter time than carburizing. Since nitrogen inhibits the diffusion of carbon, a combination of factors result in shallower case depths than is typical for carburized parts, typically between 0.075 mm (0.003 inch) and 0.75 mm (0.030 inch). It is important to note that a common contributor to non-uniform case depth during carbonitriding is to introduce ammo- nia additions before the load is stabilized at temperature (this is a common mistake in furnaces that begin gas additions upon setpoint recovery rather than introducing a time delay for the load to reach tempera- ture).
    [Show full text]
  • Nanoscale Iron Nitride, Ε-Fe3n: Preparation from Liquid Ammonia
    Nanoscale Iron Nitride, e-Fe3N: Preparation from Liquid Ammonia and Magnetic Properties Anne-Marie Zieschang,1 Joshua D. Bocarsly,2 Michael Dürrschnabel,3 Leopoldo Molina-Luna,3 Hans-Joachim Kleebe,3 Ram Seshadri,*2 Barbara Albert*1 1Technische Universität Darmstadt, Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany 2 University of California, Santa Barbara, Department of Chemistry & Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara CA 93106, U.S.A. 3Technische Universität Darmstadt, Department of Materials and Geosciences, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany ABSTRACT: e-Fe3N shows interesting magnetism but is difficult to obtain as a pure and single-phase sample. We report a new preparation method using the reduction of iron(II) bromide with elemental sodium in liquid ammonia at –78 °C, followed by annealing at 573 K. Nanostructured and monophasic oxygen-free iron nitride, e-Fe3N, is produced according to X-ray diffraction and transmission electron microscopy experiments. The magnetic properties between 2 K and 625 K were characterized using a vibrating sample magnetometer, revealing soft ferromagnetic behavior with a low-temperature average 1 moment of 1.5 µB/Fe and a Curie temperature of 500 K. TC is lower than that of bulk e-Fe3N (575 K), which corresponds well with the small particle size within the agglomerates (15.4 (± 4.1) nm according to TEM, 15.8(1) according to XRD). Samples were analyzed before and after partial oxidation (Fe3N-FexOy core-shell nanoparticles with a 2–3 nm thick shell) by X-ray diffraction, transmission electron microscopy, electron energy-loss spectroscopy and magnetic measurements.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0037529 A1 D'evelyn Et Al
    US 20060037529A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0037529 A1 D'Evelyn et al. (43) Pub. Date: Feb. 23, 2006 (54) SINGLE CRYSTAL AND QUASI-SINGLE Publication Classification CRYSTAL COMPOSITION, APPARATUS, AND ASSOCATED METHOD (51) Int. Cl. (75) Inventors: Mark Philip D’Evelyn, Niskayuna, NY C30B I5/00 (2006.01) (US); Dong-Sil Park, Niskayuna, NY C30B 30/04 (2006.01) (US); Victor Lienkong Lou, C30B 28/10 (2006.01) Niskayuna, NY (US); Thomas Francis C30B 27/02 (2006.01) McNulty, Ballston Lake, NY (US) C30B 21/06 (2006.01) (52) U.S. Cl. .................................. 117/36; 117/13; 117/19 Correspondence Address: Shawn A. McClintic General Electric Global Research One Research Circle (57) ABSTRACT Docket Room K1-4A59 Niskayuna, NY 12309 (US) A Single crystal or quasi-single crystal including one or more (73) Assignee: General Electric Company, Group III material and an impurity. The impurity includes Schenectady, NY (US) one or more elements from Group IA, Group IIA, Groups IIIB to VIIB, Group VIII, Group IB, Group IIB, or Group (21) Appl. No.: 11/249,872 VIIA elements of the periodic table of elements. A compo (22) Filed: Oct. 13, 2005 Sition for forming a crystal is also provided. The composi tion includes a Source material comprising a Group III Related U.S. Application Data element, and a flux comprising one or more of P, Rb, Cs, Mg, Ca, Sr., Ba, Sc., Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, (63) Continuation-in-part of application No. 10/063,164, Mo, Pd, Ag, Hf, Ta, W, Pt, Au, Hg, Ge, or Sb, or the flux may filed on Mar.
    [Show full text]
  • An Iron Nitride Complex** Carola Vogel, Frank W
    Angewandte Chemie DOI: 10.1002/anie.200800600 Coordination Chemistry An Iron Nitride Complex** Carola Vogel, Frank W. Heinemann, Jörg Sutter, Christian Anthon, and Karsten Meyer* Coordination compounds of iron in high oxidation states have nitride complex stabilized by the sterically encumbering N- been invoked as reactive intermediates in biocatalyses. anchored tris(carbene) ligand, tris[2-(3-aryl-imidazol-2-ylide- Iron(IV) ferryl species are examples of such highly reactive ne)ethyl]amine (TIMENR,R= xylyl (xyl), mesityl (mes)).[11] species that have long been known to be at the catalytic Structurally and electronically related to the tetrahedral centers of oxygenases.[1] Supported by X-ray diffraction phosphinoborate ligand system by Peters and Betley,[7] this studies on nitrogenase, the iron nitride moiety has recently tripodal N-heterocyclic carbene (NHC) system coordinates a been suggested to be present at the site of biological nitrogen high-spin FeII center in a trigonal-planar fashion, thus forming reduction.[2] As a result, well-characterized high-valent iron four-coordinate complexes with the metal ion in trigonal- complexes have been sought as biomimetic models for pyramidal environments. transformations mediated by iron-containing enzymes. Under inert atmosphere, treatment of TIMENR with To gain understanding of iron nitride reactivity and the one equivalent of anhydrous ferrous chloride in pyridine at possible role of such species in biocatalysis, insight into the room temperature yields the four-coordinate FeII complexes molecular structure of complexes stabilizing the [FeN] [(TIMENR)Fe(Cl)]Cl (1mes, 1xyl) as analytically pure, white synthon is highly desirable. Whereas significant progress has powders in 80% yield (Scheme 1).
    [Show full text]
  • An Introduction to Nitriding
    01_Nitriding.qxd 9/30/03 9:58 AM Page 1 © 2003 ASM International. All Rights Reserved. www.asminternational.org Practical Nitriding and Ferritic Nitrocarburizing (#06950G) CHAPTER 1 An Introduction to Nitriding THE NITRIDING PROCESS, first developed in the early 1900s, con- tinues to play an important role in many industrial applications. Along with the derivative nitrocarburizing process, nitriding often is used in the manufacture of aircraft, bearings, automotive components, textile machin- ery, and turbine generation systems. Though wrapped in a bit of “alchemi- cal mystery,” it remains the simplest of the case hardening techniques. The secret of the nitriding process is that it does not require a phase change from ferrite to austenite, nor does it require a further change from austenite to martensite. In other words, the steel remains in the ferrite phase (or cementite, depending on alloy composition) during the complete proce- dure. This means that the molecular structure of the ferrite (body-centered cubic, or bcc, lattice) does not change its configuration or grow into the face-centered cubic (fcc) lattice characteristic of austenite, as occurs in more conventional methods such as carburizing. Furthermore, because only free cooling takes place, rather than rapid cooling or quenching, no subsequent transformation from austenite to martensite occurs. Again, there is no molecular size change and, more importantly, no dimensional change, only slight growth due to the volumetric change of the steel sur- face caused by the nitrogen diffusion. What can (and does) produce distor- tion are the induced surface stresses being released by the heat of the process, causing movement in the form of twisting and bending.
    [Show full text]
  • Case Depth Prediction of Nitrided Samples with Barkhausen Noise Measurement
    metals Article Case Depth Prediction of Nitrided Samples with Barkhausen Noise Measurement Aki Sorsa 1,* , Suvi Santa-aho 2 , Christopher Aylott 3, Brian A. Shaw 3, Minnamari Vippola 2 and Kauko Leiviskä 1 1 Control Engineering, Environmental and Chemical Engineering research unit, University of Oulu, 90014 Oulu, Finland; kauko.leiviska@oulu.fi 2 Materials Science and Environmental Engineering research unit, Tampere University, 33014 Tampere, Finland; suvi.santa-aho@tuni.fi (S.S.-a.); minnamari.vippola@tuni.fi (M.V.) 3 Design Unit, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; [email protected] (C.A.); [email protected] (B.A.S.) * Correspondence: aki.sorsa@oulu.fi; Tel.: +358-294-482468 Received: 13 February 2019; Accepted: 10 March 2019; Published: 14 March 2019 Abstract: Nitriding is a heat treatment process that is commonly used to enhance the surface properties of ferrous components. Traditional quality control uses sacrificial pieces that are destructively evaluated. However, efficient production requires quality control where the case depths produced are non-destructively evaluated. In this study, four different low alloy steel materials were studied. Nitriding times for the samples were varied to produce varying case depths. Traditional Barkhausen noise and Barkhausen noise sweep measurements were carried out for non-destructive case depth evaluation. A prediction model between traditional Barkhausen noise measurements and diffusion layer hardness was identified. The diffusion layer hardness was predicted and sweep measurement data was used to predict case depths. Modelling was carried out for non-ground and ground samples with good results. Keywords: Barkhausen noise; magnetic methods; material characterization; nitriding; mathematical modelling; signal processing 1.
    [Show full text]
  • Effect of Melting Process and Aluminium Content on the Microstructure and Mechanical Properties of Fe–Al Alloys
    ISIJ International, Vol. 50 (2010), No. 10, pp. 1483–1487 Effect of Melting Process and Aluminium Content on the Microstructure and Mechanical Properties of Fe–Al Alloys Shivkumar KHAPLE, R. G. BALIGIDAD, M. SANKAR and V. V. Satya PRASAD Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, 500058 India. E-mail: [email protected] (Received on January 4, 2010; accepted on July 1, 2010) This paper presents the effect of air induction melting with flux cover (AIMFC) versus vacuum induction melting (VIM) on the recovery of alloying element, reduction of impurities, workability and mechanical prop- erties of Fe–(7–16mass%)Al alloys. Three Fe–Al alloy ingots containing 7, 9 and 16 mass% Al were prepared by both AIMFC and VIM. All these ingots were hot-forged and hot-rolled at 1 373 K and were further charac- terized with respect to chemical composition, microstructure and mechanical properties. The recovery of aluminium as well as reduction of oxygen during both AIMFC and VIM is excellent. AIMFC ingots exhibit low level of sulphur and high concentration of hydrogen as compared to VIM ingots. VIM ingots of all the three alloys were successfully hot worked. However, AIMFC ingots of only those Fe–Al alloys containing lower concentration of aluminium could be hot worked. The tensile properties of hot-rolled Fe–7mass%Al alloy produced by AIMFC and VIM are comparable. The present study clearly demonstrates that it is feasible to produce sound ingots of low carbon Fe–7mass%Al alloy by AIMFC process with properties comparable to the alloy produced by VIM. KEY WORDS: air inducting melting with flux cover; vacuum induction melting; Fe–Al alloy; microstructure; mechanical properties.
    [Show full text]
  • BAT Guide for Electric Arc Furnace Iron & Steel Installations
    Eşleştirme Projesi TR 08 IB EN 03 IPPC – Entegre Kirlilik Önleme ve Kontrol T.C. Çevre ve Şehircilik Bakanlığı BAT Guide for electric arc furnace iron & steel installations Project TR-2008-IB-EN-03 Mission no: 2.1.4.c.3 Prepared by: Jesús Ángel Ocio Hipólito Bilbao José Luis Gayo Nikolás García Cesar Seoánez Iron & Steel Producers Association Serhat Karadayı (Asil Çelik Sanayi ve Ticaret A.Ş.) Muzaffer Demir Mehmet Yayla Yavuz Yücekutlu Dinçer Karadavut Betül Keskin Çatal Zerrin Leblebici Ece Tok Şaziye Savaş Özlem Gülay Önder Gürpınar October 2012 1 Eşleştirme Projesi TR 08 IB EN 03 IPPC – Entegre Kirlilik Önleme ve Kontrol T.C. Çevre ve Şehircilik Bakanlığı Contents 0 FOREWORD ............................................................................................................................ 12 1 INTRODUCTION. ..................................................................................................................... 14 1.1 IMPLEMENTATION OF THE DIRECTIVE ON INDUSTRIAL EMISSIONS IN THE SECTOR OF STEEL PRODUCTION IN ELECTRIC ARC FURNACE ................................................................................. 14 1.2 OVERVIEW OF THE SITUATION OF THE SECTOR IN TURKEY ...................................................... 14 1.2.1 Current Situation ............................................................................................................ 14 1.2.2 Iron and Steel Production Processes............................................................................... 17 1.2.3 The Role Of Steel Sector in
    [Show full text]
  • Gas Nitriding
    GAS NITRIDING Technical Data Introduction of the nitriding factor, KN as the driving force for gas nitriding, provides for precise, continuous control. The traditional measurement of % dissociation provides an alternative parameter for checking the accuracy of the calculated KN and in many cases, as the primary control parameter. INTRODUCTION The metallurgical processes of carburizing and nitriding have followed similar paths as the technology has advanced, and in a process of continuous evolution both procedures have progressed through similar developmental stages. Carburizing, early on, was conducted by packing the work pieces in a thick layer of carbon powder and raising them to temperatures conducive to diffusion of carbon into the work. While the process was effective, it was excessively slow, and difficult to control, so it progressed into a process utilizing a carbonaceous gas atmosphere. The only effective way of controlling this process was to establish a relationship between the enriching gas flow, and measurement of the carbon potential, using either periodic shim stock or dew point measurements. This technique persisted until the early seventies when the zirconia carbon sensor was first introduced. This device provided continuous measurement of the carbon potential, rather than the discontinuous measurements from shim stock or dew point. The measurement has been subsequently refined, by adjusting the sensor calibration using 3-gas (CO, CO2 and CH4) IR analyzers to calculate a more accurate carbon potential. The technique is currently applied to carbon control using continuous non-dispersive infrared analyzers, which measure continuously rather than periodically. Nitriding has followed a similar path. The process provides several advantages for the alloys treated, such as high surface hardness, wear resistance, anti-galling, good fatigue life, corrosion resistance and improved sag resistance at temperatures up to the nitriding temperatures.
    [Show full text]