On Modified L 1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sharp Finiteness Principles for Lipschitz Selections: Long Version
Sharp finiteness principles for Lipschitz selections: long version By Charles Fefferman Department of Mathematics, Princeton University, Fine Hall Washington Road, Princeton, NJ 08544, USA e-mail: [email protected] and Pavel Shvartsman Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel e-mail: [email protected] Abstract Let (M; ρ) be a metric space and let Y be a Banach space. Given a positive integer m, let F be a set-valued mapping from M into the family of all compact convex subsets of Y of dimension at most m. In this paper we prove a finiteness principle for the existence of a Lipschitz selection of F with the sharp value of the finiteness number. Contents 1. Introduction. 2 1.1. Main definitions and main results. 2 1.2. Main ideas of our approach. 3 2. Nagata condition and Whitney partitions on metric spaces. 6 arXiv:1708.00811v2 [math.FA] 21 Oct 2017 2.1. Metric trees and Nagata condition. 6 2.2. Whitney Partitions. 8 2.3. Patching Lemma. 12 3. Basic Convex Sets, Labels and Bases. 17 3.1. Main properties of Basic Convex Sets. 17 3.2. Statement of the Finiteness Theorem for bounded Nagata Dimension. 20 Math Subject Classification 46E35 Key Words and Phrases Set-valued mapping, Lipschitz selection, metric tree, Helly’s theorem, Nagata dimension, Whitney partition, Steiner-type point. This research was supported by Grant No 2014055 from the United States-Israel Binational Science Foundation (BSF). The first author was also supported in part by NSF grant DMS-1265524 and AFOSR grant FA9550-12-1-0425. -
The Continuity of Additive and Convex Functions, Which Are Upper Bounded
THE CONTINUITY OF ADDITIVE AND CONVEX FUNCTIONS, WHICH ARE UPPER BOUNDED ON NON-FLAT CONTINUA IN Rn TARAS BANAKH, ELIZA JABLO NSKA,´ WOJCIECH JABLO NSKI´ Abstract. We prove that for a continuum K ⊂ Rn the sum K+n of n copies of K has non-empty interior in Rn if and only if K is not flat in the sense that the affine hull of K coincides with Rn. Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset A ⊂ K the sum A+n of n copies of A is not meager in Rn (and then the sum A+2n of 2n copies of the analytic set A has non-empty interior in Rn and the set (A − A)+n is a neighborhood of zero in Rn). This implies that a mid-convex function f : D → R, defined on an open convex subset D ⊂ Rn is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D. Let X be a linear topological space over the field of real numbers. A function f : X → R is called additive if f(x + y)= f(x)+ f(y) for all x, y ∈ X. R x+y f(x)+f(y) A function f : D → defined on a convex subset D ⊂ X is called mid-convex if f 2 ≤ 2 for all x, y ∈ D. Many classical results concerning additive or mid-convex functions state that the boundedness of such functions on “sufficiently large” sets implies their continuity. -
Intrinsic Volumes and Polar Sets in Spherical Space
1 INTRINSIC VOLUMES AND POLAR SETS IN SPHERICAL SPACE FUCHANG GAO, DANIEL HUG, ROLF SCHNEIDER Abstract. For a convex body of given volume in spherical space, the total invariant measure of hitting great subspheres becomes minimal, equivalently the volume of the polar body becomes maximal, if and only if the body is a spherical cap. This result can be considered as a spherical counterpart of two Euclidean inequalities, the Urysohn inequality connecting mean width and volume, and the Blaschke-Santal´oinequality for the volumes of polar convex bodies. Two proofs are given; the first one can be adapted to hyperbolic space. MSC 2000: 52A40 (primary); 52A55, 52A22 (secondary) Keywords: spherical convexity, Urysohn inequality, Blaschke- Santal´oinequality, intrinsic volume, quermassintegral, polar convex bodies, two-point symmetrization In the classical geometry of convex bodies in Euclidean space, the intrinsic volumes (or quermassintegrals) play a central role. These functionals have counterparts in spherical and hyperbolic geometry, and it is a challenge for a geometer to find analogues in these spaces for the known results about Euclidean intrinsic volumes. In the present paper, we prove one such result, an inequality of isoperimetric type in spherical (or hyperbolic) space, which can be considered as a counterpart to the Urysohn inequality and is, in the spherical case, also related to the Blaschke-Santal´oinequality. Before stating the result (at the beginning of Section 2), we want to recall and collect the basic facts about intrinsic volumes in Euclidean space, describe their noneuclidean counterparts, and state those open problems about the latter which we consider to be of particular interest. -
Discrete Analytic Convex Geometry Introduction
Discrete Analytic Convex Geometry Introduction Martin Henk Otto-von-Guericke-Universit¨atMagdeburg Winter term 2012/13 webpage CONTENTS i Contents Preface ii 0 Some basic and convex facts1 1 Support and separate5 2 Radon, Helly, Caratheodory and (a few) relatives9 Index 11 ii CONTENTS Preface The material presented here is stolen from different excellent sources: • First of all: A manuscript of Ulrich Betke on convexity which is partially based on lecture notes given by Peter McMullen. • The inspiring books by { Alexander Barvinok, "A course in Convexity" { G¨unter Ewald, "Combinatorial Convexity and Algebraic Geometry" { Peter M. Gruber, "Convex and Discrete Geometry" { Peter M. Gruber and Cerrit G. Lekkerkerker, "Geometry of Num- bers" { Jiri Matousek, "Discrete Geometry" { Rolf Schneider, "Convex Geometry: The Brunn-Minkowski Theory" { G¨unter M. Ziegler, "Lectures on polytopes" • and some original papers !! and they are part of lecture notes on "Discrete and Convex Geometry" jointly written with Maria Hernandez Cifre but not finished yet. Some basic and convex facts 1 0 Some basic and convex facts n 0.1 Notation. R = x = (x1; : : : ; xn)| : xi 2 R denotes the n-dimensional Pn Euclidean space equipped with the Euclidean inner product hx; yi = i=1 xi yi, n p x; y 2 R , and the Euclidean norm jxj = hx; xi. 0.2 Definition [Linear, affine, positive and convex combination]. Let m 2 n N and let xi 2 R , λi 2 R, 1 ≤ i ≤ m. Pm i) i=1 λi xi is called a linear combination of x1;:::; xm. Pm Pm ii) If i=1 λi = 1 then i=1 λi xi is called an affine combination of x1; :::; xm. -
Extension of Compact Operators from DF-Spaces to C(K) Spaces
Applied General Topology c Universidad Polit´ecnica de Valencia @ Volume 7, No. 2, 2006 pp. 165-170 Extension of Compact Operators from DF-spaces to C(K) spaces Fernando Garibay Bonales and Rigoberto Vera Mendoza Abstract. It is proved that every compact operator from a DF- space, closed subspace of another DF-space, into the space C(K) of continuous functions on a compact Hausdorff space K can be extended to a compact operator of the total DF-space. 2000 AMS Classification: Primary 46A04, 46A20; Secondary 46B25. Keywords: Topological vector spaces, DF-spaces and C(K) the spaces. 1. Introduction Let E and X be topological vector spaces with E a closed subspace of X. We are interested in finding out when a continuous operator T : E → C(K) has an extension T˜ : X → C(K), where C(K) is the space of continuous real functions on a compact Hausdorff space K and C(K) has the norm of the supremum. When this is the case we will say that (E,X) has the extension property. Several advances have been made in this direction, a basic resume and bibliography for this problem can be found in [5]. In this work we will focus in the case when the operator T is a compact operator. In [4], p.23 , it is proved that (E,X) has the extension property when E and X are Banach spaces and T : E → C(K) is a compact operator. In this paper we extend this result to the case when E and X are DF-spaces (to be defined below), for this, we use basic tools from topological vector spaces. -
Non-Linear Inner Structure of Topological Vector Spaces
mathematics Article Non-Linear Inner Structure of Topological Vector Spaces Francisco Javier García-Pacheco 1,*,† , Soledad Moreno-Pulido 1,† , Enrique Naranjo-Guerra 1,† and Alberto Sánchez-Alzola 2,† 1 Department of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, CA, Spain; [email protected] (S.M.-P.); [email protected] (E.N.-G.) 2 Department of Statistics and Operation Research, College of Engineering, University of Cadiz, 11519 Puerto Real (CA), Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Inner structure appeared in the literature of topological vector spaces as a tool to charac- terize the extremal structure of convex sets. For instance, in recent years, inner structure has been used to provide a solution to The Faceless Problem and to characterize the finest locally convex vector topology on a real vector space. This manuscript goes one step further by settling the bases for studying the inner structure of non-convex sets. In first place, we observe that the well behaviour of the extremal structure of convex sets with respect to the inner structure does not transport to non-convex sets in the following sense: it has been already proved that if a face of a convex set intersects the inner points, then the face is the whole convex set; however, in the non-convex setting, we find an example of a non-convex set with a proper extremal subset that intersects the inner points. On the opposite, we prove that if a extremal subset of a non-necessarily convex set intersects the affine internal points, then the extremal subset coincides with the whole set. -
Appropriate Locally Convex Domains for Differential
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 86, Number 2, October 1982 APPROPRIATE LOCALLYCONVEX DOMAINS FOR DIFFERENTIALCALCULUS RICHARD A. GRAFF AND WOLFGANG M. RUESS Abstract. We make use of Grothendieck's notion of quasinormability to produce a comprehensive class of locally convex spaces within which differential calculus may be developed along the same lines as those employed within the class of Banach spaces and which include the previously known examples of such classes. In addition, we show that there exist Fréchet spaces which do not belong to any possible such class. 0. Introduction. In [2], the first named author introduced a theory of differential calculus in locally convex spaces. This theory differs from previous approaches to the subject in that the theory was an attempt to isolate a class of locally convex spaces to which the usual techniques of Banach space differential calculus could be extended, rather than an attempt to develop a theory of differential calculus for all locally convex spaces. Indeed, the original purpose of the theory was to study the maps which smooth nonlinear partial differential operators induce between Sobolev spaces by investigating the differentiability of these mappings with respect to a weaker (nonnormable) topology on the Sobolev spaces. The class of locally convex spaces thus isolated (the class of Z)-spaces, see Definition 1 below) was shown to include Banach spaces and several types of Schwartz spaces. A natural question to ask is whether there exists an easily-char- acterized class of D-spaces to which both of these classes belong. We answer this question in the affirmative in Theorem 1 below, the proof of which presents a much clearer picture of the nature of the key property of Z)-spaces than the corresponding result [2, Theorem 3.46]. -
Subspace Concentration of Geometric Measures
Subspace Concentration of Geometric Measures vorgelegt von M.Sc. Hannes Pollehn geboren in Salzwedel von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. John Sullivan Gutachter: Prof. Dr. Martin Henk Gutachterin: Prof. Dr. Monika Ludwig Gutachter: Prof. Dr. Deane Yang Tag der wissenschaftlichen Aussprache: 07.02.2019 Berlin 2019 iii Zusammenfassung In dieser Arbeit untersuchen wir geometrische Maße in zwei verschiedenen Erweiterungen der Brunn-Minkowski-Theorie. Der erste Teil dieser Arbeit befasst sich mit Problemen in der Lp-Brunn- Minkowski-Theorie, die auf dem Konzept der p-Addition konvexer Körper ba- siert, die zunächst von Firey für p ≥ 1 eingeführt und später von Lutwak et al. für alle reellen p betrachtet wurde. Von besonderem Interesse ist das Zusammen- spiel des Volumens und anderer Funktionale mit der p-Addition. Bedeutsame ofene Probleme in diesem Setting sind die Gültigkeit von Verallgemeinerungen der berühmten Brunn-Minkowski-Ungleichung und der Minkowski-Ungleichung, insbesondere für 0 ≤ p < 1, da die Ungleichungen für kleinere p stärker werden. Die Verallgemeinerung der Minkowski-Ungleichung auf p = 0 wird als loga- rithmische Minkowski-Ungleichung bezeichnet, die wir hier für vereinzelte poly- topale Fälle beweisen werden. Das Studium des Kegelvolumenmaßes konvexer Körper ist ein weiteres zentrales Thema in der Lp-Brunn-Minkowski-Theorie, das eine starke Verbindung zur logarithmischen Minkowski-Ungleichung auf- weist. In diesem Zusammenhang stellen sich die grundlegenden Fragen nach einer Charakterisierung dieser Maße und wann ein konvexer Körper durch sein Kegelvolumenmaß eindeutig bestimmt ist. Letzteres ist für symmetrische konve- xe Körper unbekannt, während das erstere Problem in diesem Fall gelöst wurde. -
Barrelled Locally Convex Spaces, North-Holland, Amsterdam, 1987
PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/60086 Please be advised that this information was generated on 2021-10-02 and may be subject to change. DEPARTMENT OF MATHEMATICS UNIVERSITY OF NIJMEGEN The Netherlands BARRELLED-LIKE SPACES IN p-ADIC ANALYSIS C. Perez-Garcia and W.H. Schikhof Report No. 9702 (January 1997) DEPARTMENT OF MATHEMATICS UNIVERSITY OF NIJMEGEN Toernooiveld 6525 ED Nijmegen The Netherlands BARRELLED-LIKE SPACES IN p-ADIC ANALYISIS C. Perez-Garcia*and W.H. Schikhof Abstract Several notions of barrelledness for locally convex spaces over non-archimedean valued fields are discussed in this paper and the relation between them is stud ied, We give examples showing that they are different notions in general. In particular, we solve (Theorem 2.6) the question raised by the second author in [13]: Do there exist polar spaces that are polarly barrelled but not barrelled?. On the other hand, the concepts of orthogonality as well as elementary and edged set are used to prove that for a wide class of spaces of countable type the different versions of barrelled spaces considered in the paper coincide. We obtain in this way (and with different proofs) the non-archimedean counterparts of well-known results in the theory of barrelled spaces over the real or complex field. 1991 Mathematics Subject:46SlO. INTRODUCTION Like in the classical case (i.e., locally convex spaces over the real or complex field see e.g. -
Completeness and the Open Mapping Theorem Bulletin De La S
BULLETIN DE LA S. M. F. VLASTIMIL PTÁK Completeness and the open mapping theorem Bulletin de la S. M. F., tome 86 (1958), p. 41-74 <http://www.numdam.org/item?id=BSMF_1958__86__41_0> © Bulletin de la S. M. F., 1958, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France^ 86, IQ58, p. 4i a 74. COMPLETENESS AND THE OPEN MAPPING THEOREM; BY VLASTIMIL PTAR, (Praha). 1. Introduction. — In the present paper we intend to give an account of some investigations concerned with the open mapping theorem. The starting point of these investigations was the natural desire to understand what is at the back of this theorem which, undoubtedly, is one of the deepest in functional analysis. Their final aim is to clear this result of unnecessary assumptions — especially that of the metrizability of the spaces in question — and to extend it to as wide a class of topological linear spaces as possible. These investigations have led quite naturally to the introduction of what we believe to be an interesting notion — namely the notion of ^-complete- ness, which coincides with ordinary completeness in metrizable spaces and which is strong enough to ensure the validity of the open mapping theorem in the general case. -
Arxiv:2107.04662V1 [Math.GN]
ON LINEAR CONTINUOUS OPERATORS BETWEEN DISTINGUISHED SPACES Cp(X) JERZY KA¸KOL AND ARKADY LEIDERMAN Abstract. As proved in [16], for a Tychonoff space X, a locally convex space Cp(X) is distinguished if and only if X is a ∆-space. If there exists a linear con- tinuous surjective mapping T : Cp(X) → Cp(Y ) and Cp(X) is distinguished, then Cp(Y ) also is distinguished [17]. Firstly, in this paper we explore the following question: Under which con- ditions the operator T : Cp(X) → Cp(Y ) above is open? Secondly, we devote a special attention to concrete distinguished spaces Cp([1, α]), where α is a countable ordinal number. A complete characterization of all Y which admit a linear continuous surjective mapping T : Cp([1, α]) → Cp(Y ) is given. We also observe that for every countable ordinal α all closed linear subspaces of Cp([1, α]) are distinguished, thereby answering an open question posed in [17]. Using some properties of ∆-spaces we prove that a linear continuous sur- jection T : Cp(X) → Ck(X)w, where Ck(X)w denotes the Banach space C(X) endowed with its weak topology, does not exist for every infinite metrizable compact C-space X (in particular, for every infinite compact X ⊂ Rn). 1. Introduction ′ A locally convex space (lcs) E is called distinguished if its strong dual Eβ = (E′, β(E′, E)) is a barrelled space. A. Grothendieck [11] proved that a metrizable ′ lcs is distinguished if and only if Eβ is bornological. Also, if all bounded subsets of ′ the strong dual Eβ of a metrizable lcs are metrizable, then E is distinguished [11]. -
The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by E-LIB Dokumentserver - Staats und Universitätsbibliothek Bremen e x3 a h x2 d x1 f b g c The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften - Dr.-Ing. - vorgelegt von Blagoy Genov Fachbereich 3: Mathematik und Informatik The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften - Dr.-Ing. - vorgelegt von Blagoy Genov im Fachbereich 3 (Informatik/Mathematik) der Universit¨atBremen im Juli 2014 Tag der m¨undlichen Pr¨ufung:28. Januar 2015 Gutachter: Prof. Dr. Jan Peleska (Universit¨atBremen) Prof. Dr. Udo Frese (Universit¨atBremen) Erkl¨arung Ich versichere, dass ich die von mir vorgelegte Dissertation selbst¨andigund ohne uner- laubte fremde Hilfe angefertigt habe, dass ich alle benutzen Quellen und Hilfsmittel vollst¨andigangegeben habe und dass alle Stellen, die ich w¨ortlich oder dem Sinne nach aus anderen Arbeiten entnommen habe, kenntlich gemacht worden sind. Ort, Datum Unterschrift 3 Zusammenfassung Die Double-Description-Methode ist ein weit verbreiteter Algorithmus zur Berechnung von konvexen H¨ullenund anderen verwandten Problemen. Wegen seiner unkomplizierten Umsetzung wird er oft in der Praxis bevorzugt, obwohl seine Laufzeitkomplexit¨atnicht durch die Gr¨oßeder Ausgabe beeinflusst wird. Aufgrund seiner zunehmenden Bedeutung in der Programmverifikation und der Analyse von metabolischen Netzwerken ist der Bedarf nach schnellen und zuverl¨assigen Implementierungen in den letzten Jahren rasant gestiegen. Bei den aktuellen Anwendungen besteht erhebliches Potenzial zur Verk¨urzung der Rechenzeit.