The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method

Total Page:16

File Type:pdf, Size:1020Kb

The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by E-LIB Dokumentserver - Staats und Universitätsbibliothek Bremen e x3 a h x2 d x1 f b g c The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften - Dr.-Ing. - vorgelegt von Blagoy Genov Fachbereich 3: Mathematik und Informatik The Convex Hull Problem in Practice Improving the Running Time of the Double Description Method Dissertation zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften - Dr.-Ing. - vorgelegt von Blagoy Genov im Fachbereich 3 (Informatik/Mathematik) der Universit¨atBremen im Juli 2014 Tag der m¨undlichen Pr¨ufung:28. Januar 2015 Gutachter: Prof. Dr. Jan Peleska (Universit¨atBremen) Prof. Dr. Udo Frese (Universit¨atBremen) Erkl¨arung Ich versichere, dass ich die von mir vorgelegte Dissertation selbst¨andigund ohne uner- laubte fremde Hilfe angefertigt habe, dass ich alle benutzen Quellen und Hilfsmittel vollst¨andigangegeben habe und dass alle Stellen, die ich w¨ortlich oder dem Sinne nach aus anderen Arbeiten entnommen habe, kenntlich gemacht worden sind. Ort, Datum Unterschrift 3 Zusammenfassung Die Double-Description-Methode ist ein weit verbreiteter Algorithmus zur Berechnung von konvexen H¨ullenund anderen verwandten Problemen. Wegen seiner unkomplizierten Umsetzung wird er oft in der Praxis bevorzugt, obwohl seine Laufzeitkomplexit¨atnicht durch die Gr¨oßeder Ausgabe beeinflusst wird. Aufgrund seiner zunehmenden Bedeutung in der Programmverifikation und der Analyse von metabolischen Netzwerken ist der Bedarf nach schnellen und zuverl¨assigen Implementierungen in den letzten Jahren rasant gestiegen. Bei den aktuellen Anwendungen besteht erhebliches Potenzial zur Verk¨urzung der Rechenzeit. Die Aufz¨ahlungvon benachbarten extremalen Halbgeraden geh¨ortzu den rechenin- tensivsten Aktivit¨ateninnerhalb der Double-Description-Methode und ist damit ein po- tentieller Optimierungskandidat. Zudem ist die praktische Seite dieses kombinatorischen Problems nicht ausgiebig erforscht worden. In dieser Dissertation werden zwei bedeut- same Beitr¨agezur Beschleunigung des Aufz¨ahlungsprozessespr¨asentiert. Zum einen werden die g¨angigenDatenstrukturen evaluiert und daraufhin diverse Optimierungen vorgeschlagen. Ihre Wirksamkeit wird durch empirische Daten demonstriert. Zum an- deren wird ein neuer Nachbarschaftstest f¨urextremale Halbgeraden vorgestellt. Dieser ist eine Weiterentwicklung des bekannten algebraischen Tests mit dem Vorteil, dass re- dundante Rechenoperationen eliminiert werden. Die Korrektheit des neuen Ansatzes wird formal bewiesen. Seine Wirksamkeit bei ausgearteten Problemen wird ebenfalls durch empirische Daten belegt. Nebenl¨aufigkeit ist ein weiterer Aspekt der Double-Description-Methode, der zus¨atz- liche Untersuchung verlangt. Ein neulich vorgestellter Ansatz, aufgebaut nach dem teile- und-herrsche Prinzip, hat vielversprechende Ergebnisse in der Bioinformatik gezeigt. In dieser Dissertation werden allerdings massive praktische Einschr¨ankungen dargelegt. F¨ur eine Klasse von Schnitt-Polytopen hat die vorgestellte Technik betr¨achtliche Erh¨ohung der Rechenzeit verursacht. Dieses Problem wurde umgangen, indem die Methode weit- erentwickelt wurde, um partielle Nebenl¨aufigkeit zu erm¨oglichen. Diese hat sich in prak- tischen Bedingungen als stabil genug erwiesen, obwohl nur moderate Beschleunigung erzielt werden konnte. Im Laufe dieser Arbeit wurde eine neue Implementierung der Double-Description- Methode entwickelt. Diese enth¨altnicht nur die oben angesprochenen konzeptionellen sondern auch viele technische Verbesserungen. Sie ist besonders auf die neuen Gen- erationen von Prozessoren optimiert worden und ist in vielen Aspekten den g¨angigen frei verf¨ugbarenImplementierungen ¨uberlegen. Diese Schlussfolgerung wird durch em- pirische Daten unterst¨utzt. 5 Abstract The double description method is a widely spread algorithm for computation of convex hulls and other related problems. Even though not being output sensitive, it is often preferred in practical applications due to its general simplicity. In recent years, the demand for faster and more reliable implementations has rapidly increased in view of its growing application in program verification, analysis of metabolic networks, etc. Although several implementations are available, there is a considerable potential for further performance related improvements. The enumeration of adjacent extreme rays is arguably the most performance critical part of the double description method and hence a natural candidate for optimization. Moreover, the practical side of this combinatorial problem has not been extensively stud- ied yet. In this dissertation, two significant contributions related to adjacency testing are presented. First, the currently used data structures are revisited and various optimiza- tions are proposed. Empirical evidence is provided to demonstrate their competitiveness. Second, a new adjacency test is introduced. It is a refinement of the well known algebraic test featuring a technique for avoiding redundant computations. Its correctness is for- mally proven. Its superiority in multiple degenerate scenarios is demonstrated through experimental results. Parallel computation is one further aspect of the double description method which de- serves particular attention. A recently introduced divide-and-conquer technique showed promising results in bioinformatic applications. In this dissertation, however, some severe practical limitations are demonstrated. For a class of cut polytopes, the proposed tech- nique caused a serious computational explosion on at least one of the resulting threads. As an alternative, the technique was refined to perform a partial parallel computation which eliminated the described explosion and brought a moderate speed-up. In the course of this work, a new double description implementation was developed. It embodies not only the conceptional improvements presented in this work but also technical ones. It is particularly optimized for the latest generation of processors and is highly competitive with other freely available double description implementations. Empirical evidence is provided to back up that conclusion. 7 Acknowledgements Starting my dissertation four years ago in the working group for operating and dis- tributed systems, I knew very little about convex hulls and the problems related to them. To be honest, I had never planned to write a thesis on that subject. But as time went by, one open problem led to another, until I found myself working on that challenging but very interesting subject. I owe my deepest gratitude to my advisor Professor Jan Peleska for his patience and the freedom he gave me to put my ideas into realization. Without his support, this work would not have been possible. I wish to extend special thanks to Professor Wen-ling Huang for helping me polish the formal proofs. I am also very grateful to my colleges Florian Lapschies and Elena Gorbachuk for their readiness to proofread my work. Florian had to endure countless discussions on software efficacy, performance and optimization. I deeply appreciate that. Last but not least, I wish to thank my family for all their support and encouragement. I could hardly imagine finishing this work without having my wife Genka by myside. Hamburg, Juni 2014 9 Contents 1 Introduction 17 1.1 Objectives and Motivation . 17 1.2 Contributions . 18 1.3 Thesis Overview . 20 1.4 Notation and Conventions . 20 2 Preliminaries: Linear Inequalities and Polyhedra 21 2.1 Polyhedra, Polyhedral Cones and Polytopes . 21 2.2 Faces, Extreme Rays and Vertices . 24 2.3 Duality . 27 2.3.1 Properties of Duality . 27 2.3.2 Duality of Polytopes . 29 2.3.3 Duality of Cones . 33 2.4 Degeneracy . 36 3 The Convex Hull Problem: Theory and Practice 39 3.1 Definition and Related Problems . 39 3.2 Complexity . 41 3.3 Pivoting Algorithms . 42 3.3.1 The Linear Programming Problem . 43 3.3.2 The Simplex Method . 44 3.3.3 Reverse Search . 46 3.3.4 Dual Space Algorithms . 49 3.3.5 Primal Space Algorithms . 51 3.4 Incremental Algorithms . 53 3.4.1 Dual Space Algorithms . 53 3.4.2 Primal Space Algorithms . 55 4 The Double Description Method: Definition and Implementation 59 4.1 Algorithm . 59 4.2 Adjacency Test . 61 4.3 Implementation Details . 63 4.3.1 Extreme Ray Representation . 63 4.3.2 Narrowing and Verification . 65 4.3.3 Bit Pattern Trees . 66 11 Contents 5 Combinatorial Test: Comparison of Data Structures 69 5.1 Generic Binary Tree Container . 69 5.1.1 Requirements and Complexity . 69 5.1.2 Implementation . 70 5.2 Bit Pattern Tree Container . 73 5.2.1 Implementation . 74 5.2.2 Efficacy and Limitations . 75 5.2.3 Query Bits Neutralization . 76 5.2.4 Cross-Narrowing . 79 5.2.5 Highly Degenerate First Verification . 80 5.2.6 The Adjacency Test Revisited . 82 5.3 Extended Bit Pattern Tree Container . 84 5.4 Population Tree Container . 86 5.5 Vantage Point Tree Container . 90 5.6 Experimental Results . 93 6 Algebraic Test: Redundancy Elimination 97 6.1 Active Set Partitioning . 97 6.1.1 Matrix Matroid . 98 6.1.2 Observations . 98 6.1.3 Partitioning Function . 101 6.1.4 Completeness . 102 6.2 Data Structures . 104 6.3 The Refined Algebraic Test . 107 6.3.1 Correctness and Formal Proof . 107 6.3.2 Adjacency Algorithm . 111 6.4 The Double Description Method Enhanced . 116 6.5 Experimental Results . 118 7 Divide and Conquer: Advantages
Recommended publications
  • Sharp Finiteness Principles for Lipschitz Selections: Long Version
    Sharp finiteness principles for Lipschitz selections: long version By Charles Fefferman Department of Mathematics, Princeton University, Fine Hall Washington Road, Princeton, NJ 08544, USA e-mail: [email protected] and Pavel Shvartsman Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel e-mail: [email protected] Abstract Let (M; ρ) be a metric space and let Y be a Banach space. Given a positive integer m, let F be a set-valued mapping from M into the family of all compact convex subsets of Y of dimension at most m. In this paper we prove a finiteness principle for the existence of a Lipschitz selection of F with the sharp value of the finiteness number. Contents 1. Introduction. 2 1.1. Main definitions and main results. 2 1.2. Main ideas of our approach. 3 2. Nagata condition and Whitney partitions on metric spaces. 6 arXiv:1708.00811v2 [math.FA] 21 Oct 2017 2.1. Metric trees and Nagata condition. 6 2.2. Whitney Partitions. 8 2.3. Patching Lemma. 12 3. Basic Convex Sets, Labels and Bases. 17 3.1. Main properties of Basic Convex Sets. 17 3.2. Statement of the Finiteness Theorem for bounded Nagata Dimension. 20 Math Subject Classification 46E35 Key Words and Phrases Set-valued mapping, Lipschitz selection, metric tree, Helly’s theorem, Nagata dimension, Whitney partition, Steiner-type point. This research was supported by Grant No 2014055 from the United States-Israel Binational Science Foundation (BSF). The first author was also supported in part by NSF grant DMS-1265524 and AFOSR grant FA9550-12-1-0425.
    [Show full text]
  • The Continuity of Additive and Convex Functions, Which Are Upper Bounded
    THE CONTINUITY OF ADDITIVE AND CONVEX FUNCTIONS, WHICH ARE UPPER BOUNDED ON NON-FLAT CONTINUA IN Rn TARAS BANAKH, ELIZA JABLO NSKA,´ WOJCIECH JABLO NSKI´ Abstract. We prove that for a continuum K ⊂ Rn the sum K+n of n copies of K has non-empty interior in Rn if and only if K is not flat in the sense that the affine hull of K coincides with Rn. Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset A ⊂ K the sum A+n of n copies of A is not meager in Rn (and then the sum A+2n of 2n copies of the analytic set A has non-empty interior in Rn and the set (A − A)+n is a neighborhood of zero in Rn). This implies that a mid-convex function f : D → R, defined on an open convex subset D ⊂ Rn is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D. Let X be a linear topological space over the field of real numbers. A function f : X → R is called additive if f(x + y)= f(x)+ f(y) for all x, y ∈ X. R x+y f(x)+f(y) A function f : D → defined on a convex subset D ⊂ X is called mid-convex if f 2 ≤ 2 for all x, y ∈ D. Many classical results concerning additive or mid-convex functions state that the boundedness of such functions on “sufficiently large” sets implies their continuity.
    [Show full text]
  • Discrete Analytic Convex Geometry Introduction
    Discrete Analytic Convex Geometry Introduction Martin Henk Otto-von-Guericke-Universit¨atMagdeburg Winter term 2012/13 webpage CONTENTS i Contents Preface ii 0 Some basic and convex facts1 1 Support and separate5 2 Radon, Helly, Caratheodory and (a few) relatives9 Index 11 ii CONTENTS Preface The material presented here is stolen from different excellent sources: • First of all: A manuscript of Ulrich Betke on convexity which is partially based on lecture notes given by Peter McMullen. • The inspiring books by { Alexander Barvinok, "A course in Convexity" { G¨unter Ewald, "Combinatorial Convexity and Algebraic Geometry" { Peter M. Gruber, "Convex and Discrete Geometry" { Peter M. Gruber and Cerrit G. Lekkerkerker, "Geometry of Num- bers" { Jiri Matousek, "Discrete Geometry" { Rolf Schneider, "Convex Geometry: The Brunn-Minkowski Theory" { G¨unter M. Ziegler, "Lectures on polytopes" • and some original papers !! and they are part of lecture notes on "Discrete and Convex Geometry" jointly written with Maria Hernandez Cifre but not finished yet. Some basic and convex facts 1 0 Some basic and convex facts n 0.1 Notation. R = x = (x1; : : : ; xn)| : xi 2 R denotes the n-dimensional Pn Euclidean space equipped with the Euclidean inner product hx; yi = i=1 xi yi, n p x; y 2 R , and the Euclidean norm jxj = hx; xi. 0.2 Definition [Linear, affine, positive and convex combination]. Let m 2 n N and let xi 2 R , λi 2 R, 1 ≤ i ≤ m. Pm i) i=1 λi xi is called a linear combination of x1;:::; xm. Pm Pm ii) If i=1 λi = 1 then i=1 λi xi is called an affine combination of x1; :::; xm.
    [Show full text]
  • On Modified L 1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 On Modified l_1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Applied Mathematics Commons, and the Mathematics Commons Recommended Citation Basnet, Man Bahadur, "On Modified l_1-Minimization Problems in Compressed Sensing" (2013). Graduate Theses and Dissertations. 13473. https://lib.dr.iastate.edu/etd/13473 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On modified `-one minimization problems in compressed sensing by Man Bahadur Basnet A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics (Applied Mathematics) Program of Study Committee: Fritz Keinert, Co-major Professor Namrata Vaswani, Co-major Professor Eric Weber Jennifer Davidson Alexander Roitershtein Iowa State University Ames, Iowa 2013 Copyright © Man Bahadur Basnet, 2013. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents Jaya and Chandra and to my family (wife Sita, son Manas and daughter Manasi) without whose support, encouragement and love, I would not have been able to complete this work. iii TABLE OF CONTENTS LIST OF TABLES . vi LIST OF FIGURES . vii ACKNOWLEDGEMENTS . viii ABSTRACT . x CHAPTER 1. INTRODUCTION .
    [Show full text]
  • Non-Linear Inner Structure of Topological Vector Spaces
    mathematics Article Non-Linear Inner Structure of Topological Vector Spaces Francisco Javier García-Pacheco 1,*,† , Soledad Moreno-Pulido 1,† , Enrique Naranjo-Guerra 1,† and Alberto Sánchez-Alzola 2,† 1 Department of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, CA, Spain; [email protected] (S.M.-P.); [email protected] (E.N.-G.) 2 Department of Statistics and Operation Research, College of Engineering, University of Cadiz, 11519 Puerto Real (CA), Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Inner structure appeared in the literature of topological vector spaces as a tool to charac- terize the extremal structure of convex sets. For instance, in recent years, inner structure has been used to provide a solution to The Faceless Problem and to characterize the finest locally convex vector topology on a real vector space. This manuscript goes one step further by settling the bases for studying the inner structure of non-convex sets. In first place, we observe that the well behaviour of the extremal structure of convex sets with respect to the inner structure does not transport to non-convex sets in the following sense: it has been already proved that if a face of a convex set intersects the inner points, then the face is the whole convex set; however, in the non-convex setting, we find an example of a non-convex set with a proper extremal subset that intersects the inner points. On the opposite, we prove that if a extremal subset of a non-necessarily convex set intersects the affine internal points, then the extremal subset coincides with the whole set.
    [Show full text]
  • Subspace Concentration of Geometric Measures
    Subspace Concentration of Geometric Measures vorgelegt von M.Sc. Hannes Pollehn geboren in Salzwedel von der Fakultät II - Mathematik und Naturwissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Naturwissenschaften – Dr. rer. nat. – genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. John Sullivan Gutachter: Prof. Dr. Martin Henk Gutachterin: Prof. Dr. Monika Ludwig Gutachter: Prof. Dr. Deane Yang Tag der wissenschaftlichen Aussprache: 07.02.2019 Berlin 2019 iii Zusammenfassung In dieser Arbeit untersuchen wir geometrische Maße in zwei verschiedenen Erweiterungen der Brunn-Minkowski-Theorie. Der erste Teil dieser Arbeit befasst sich mit Problemen in der Lp-Brunn- Minkowski-Theorie, die auf dem Konzept der p-Addition konvexer Körper ba- siert, die zunächst von Firey für p ≥ 1 eingeführt und später von Lutwak et al. für alle reellen p betrachtet wurde. Von besonderem Interesse ist das Zusammen- spiel des Volumens und anderer Funktionale mit der p-Addition. Bedeutsame ofene Probleme in diesem Setting sind die Gültigkeit von Verallgemeinerungen der berühmten Brunn-Minkowski-Ungleichung und der Minkowski-Ungleichung, insbesondere für 0 ≤ p < 1, da die Ungleichungen für kleinere p stärker werden. Die Verallgemeinerung der Minkowski-Ungleichung auf p = 0 wird als loga- rithmische Minkowski-Ungleichung bezeichnet, die wir hier für vereinzelte poly- topale Fälle beweisen werden. Das Studium des Kegelvolumenmaßes konvexer Körper ist ein weiteres zentrales Thema in der Lp-Brunn-Minkowski-Theorie, das eine starke Verbindung zur logarithmischen Minkowski-Ungleichung auf- weist. In diesem Zusammenhang stellen sich die grundlegenden Fragen nach einer Charakterisierung dieser Maße und wann ein konvexer Körper durch sein Kegelvolumenmaß eindeutig bestimmt ist. Letzteres ist für symmetrische konve- xe Körper unbekannt, während das erstere Problem in diesem Fall gelöst wurde.
    [Show full text]
  • On Cutting Planes*
    Annals of Discrete Mathematics 9 (1980) 291-296 © North-Holland Publishing Company ON CUTTING PLANES* A. SCHRIJVER Department of Mathematics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, The Netherlands, and Mathematical Centre, Kruislaan 413, Amsterdam, The Netherlands We give a geometrical description of Chvatal's version of Gomory's cutting plane method. Restricting ourselves to rational spaces, we prove that the derived geometrical objects are polyhedra again, and that the method also works for unbounded polyhedra. 1. Introduction For any polyhedron P let P1 denote the convex hull of the lattice points contained in P. 1 If H is the half-space {x I wx,;;;; d}, where w is a vector whose components are relatively prime integers and d is a rational number, then one easily sees that H1 ={x I wx:;;;; LdJ}. Geometrically, H1 arises by shifting H until its bounding hyperplane contains lattice points. So for half-spaces H there is an easy way to determine H1. Since for each half-space H, the inclusion Pc H implies that Pr c Hr, we know that (1) where the intersection ranges over all half-spaces H with Pc H. We denote this intersection by P'. Below we show that P' is a polyhedron again, and that p<•> = P1 for some natural number t. (As usual, p<0> = P, and p(r+ll = p(•l'.) This is the essence of Chvatal's [1] formalization of Gomory's [4, 5, 6] cutting plane method for solving integer linear programming problems (cf. Rosenberg [11]). Chvatal's original method applies to bounded polyhedra in real space.
    [Show full text]
  • Notes, We Review Useful Concepts in Convexity and Normed Spaces
    Mastermath, Spring 2019 Lecturers: D. Dadush, J. Briet Geometric Functional Analysis Lecture 0 Scribe: D. Dadush Review of Convexity and Normed Spaces In these notes, we review useful concepts in convexity and normed spaces. As a warning, many of the statements made here will not be proved. For detailed proofs, one is recommended to look up reference books in functional and convex analysis. The intent here is for these notes to serve as a reference for the basic language for the course. The reader may thus skim the material upon first reading, and then reread more carefully later during the course if the relevant concepts remain unclear. 1 Basic Convexity In this section, we will focus on convexity theorems in a finite dimensional real vector space, which will identify with Rn or subspaces theoreof. For vectors x, y 2 Rn, we define the standard T n n inner product hx, yi := x y = ∑i=1 xiyi. For two sets A, B ⊆ R and scalars c, d 2 R, we define the Minkowski sum cA + dB = fca + db : a 2 A, b 2 Bg. A convex set K ⊆ Rn is a set for which the line segment between any two points is in the set, or formally for which 8x, y 2 K, l 2 [0, 1], lx + (1 − l)y 2 K. A useful equivalent definition is that a non-empty set K is convex if 8a, b ≥ 0, aK + bK = (a + b)K. If K = −K, K is said to be symmetric. If K is compact with non-empty interior, then K is a convex body.
    [Show full text]
  • Lecture Slides on Convex Analysis And
    LECTURE SLIDES ON CONVEX ANALYSIS AND OPTIMIZATION BASED ON 6.253 CLASS LECTURES AT THE MASS. INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASS SPRING 2014 BY DIMITRI P. BERTSEKAS http://web.mit.edu/dimitrib/www/home.html Based on the books 1) “Convex Optimization Theory,” Athena Scien- tific, 2009 2) “Convex Optimization Algorithms,” Athena Sci- entific, 2014 (in press) Supplementary material (solved exercises, etc) at http://www.athenasc.com/convexduality.html LECTURE 1 AN INTRODUCTION TO THE COURSE LECTURE OUTLINE The Role of Convexity in Optimization • Duality Theory • Algorithms and Duality • Course Organization • HISTORY AND PREHISTORY Prehistory: Early 1900s - 1949. • Caratheodory, Minkowski, Steinitz, Farkas. − Properties of convex sets and functions. − Fenchel - Rockafellar era: 1949 - mid 1980s. • Duality theory. − Minimax/game theory (von Neumann). − (Sub)differentiability, optimality conditions, − sensitivity. Modern era - Paradigm shift: Mid 1980s - present. • Nonsmooth analysis (a theoretical/esoteric − direction). Algorithms (a practical/high impact direc- − tion). A change in the assumptions underlying the − field. OPTIMIZATION PROBLEMS Generic form: • minimize f(x) subject to x C ∈ Cost function f : n , constraint set C, e.g., ℜ 7→ ℜ C = X x h1(x) = 0,...,hm(x) = 0 ∩ | x g1(x) 0,...,gr(x) 0 ∩ | ≤ ≤ Continuous vs discrete problem distinction • Convex programming problems are those for which• f and C are convex They are continuous problems − They are nice, and have beautiful and intu- − itive structure However, convexity permeates
    [Show full text]
  • Ee364a Review Session 1
    EE364a Review EE364a Review Session 1 administrative info: • office hours: tue 4-6pm, wed 4-8pm, packard 277 • review session: example problems and hw hints • homeworks due thursdays by 5pm • staff email: ee364a-win0708-staff@lists.stanford.edu 1 Combinations and hulls y = θ1x1 + ··· + θkxk is a • linear combination of x1,..., xk • affine combination if i θi =1 P • convex combination if i θi =1, θi ≥ 0 P • conic combination if θi ≥ 0 (linear, affine, . ) hull of S = {x1,...,xk} is a set of all (linear, affine, . ) combinations from S linear hull: span(S) affine hull: aff(S) convex hull: conv(S) conic hull: cone(S) EE364a Review Session 1 2 example: a few simple relations: conv(S) ⊆ aff(S) ⊆ span(S), conv(S) ⊆ cone(S) ⊆ span(S). example: S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}⊆ R3 what is the linear hull? affine hull? convex hull? conic hull? • linear hull: R3. • affine hull: hyperplane passing through (1, 0, 0), (0, 1, 0), (0, 0, 1). • convex hull: triangle with vertices at (1, 0, 0), (0, 1, 0), (0, 0, 1). 3 • conic hull: R+ EE364a Review Session 1 3 Important rules • intersection subspace subspace affine affine Sα is for α ∈ A =⇒ Sα is convex \ convex α∈A convex cone convex cone example: a polyhedron is intersection of a finite number of halfspaces and hyperplanes. • functions that preserve convexity examples: affine, perspective, and linear fractional functions. if C is convex, and f is an affine/perspective/linear fractional function, then f(C) is convex and f −1(C) is convex.
    [Show full text]
  • Convex Sets, Convex Functions, & Some of Their Properties. (Part I)
    Convex sets, convex functions, & some of their properties. (Part I) John MacLaren Walsh, Ph.D. April 16, 2014 1 References • S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2004. • R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1970. The material in this lecture follows the first three chapters of these two books closely, as well as several other chapters from Rockafellar. 2 Affine Sets, Affine Hulls, & Dimension N Consider two points x1; x2 2 R ; x1 6= x2. The line through these two points may be represented as fθx1 +(1−θ)x2jθ 2 Rg. A set A ⊂ RN is affine if the line through any two points in A is itself in A. In other words, A is affine if whenever x1; x2 2 A, θx1 + (1 − θ)x2 2 A for all θ 2 R. More generally, an affine set contains all affine combinations of its points, in that if x1;:::; xn 2 A for an affine set A, then n n X X θixi 2 A 8(θ1; : : : ; θn) such that θi = 1 (1) i=1 i=1 Affine sets containing the origin 0 are vector subspaces (observe that they contain all linear combinations of points within them by including 0 in an associated affine combination). Two affine sets A1 and A2 are said to be parallel if there exists a vector x such that A2 = A1 − x. Every affine set A is parallel to a unique vector subspace, which may be found as A − x0, for any x0 2 A. To see this, observe that the new set will again be affine and will now contain 0.
    [Show full text]
  • The Intrinsic Core and Minimal Faces of Convex Sets in General Vector Spaces
    The intrinsic core and minimal faces of convex sets in general vector spaces R. D´ıazMill´an∗ and Vera Roshchina† July 19, 2021 Abstract Intrinsic core generalises the finite-dimensional notion of the relative interior to arbitrary (real) vector spaces. Our main goal is to provide a self-contained overview of the key results pertaining to the intrinsic core and to elucidate the relations between intrinsic core and facial structure of convex sets in this general context. We gather several equivalent definitions of the intrinsic core, cover much of the folklore, review relevant recent results and present examples illustrating some of the phenomena specific to the facial structure of infinite-dimensional sets. Keywords: intrinsic core, pseudo-relative interior, inner points, convex sets, general vector spaces, minimal faces MSC2020 Classification: 46N10, 52-02, 52A05. 1 Introduction The relative interior of a convex set in a finite-dimensional real vector space is the interior of this convex set relative to its affine hull; a direct generalisation of this notion to real vector spaces is the intrinsic core [15] (also called pseudo-relative interior [4] and the set of inner points [10]). In contrast to the relative interior in finite dimensions, intrinsic core may be empty for fairly regular sets, which was a key motivation for introducing the notion of quasi-relative interior [5] in the context of topological vector spaces. Even though the quasi-relative interior is a very interesting mathematical object (for instance, [23,24] study duality and separation in the context of quasi-relative interior and resolve a number of open questions), and has much practical importance (e.g.
    [Show full text]