Convex Functions: Constructions, Characterizations and Counterexamples C 20081

Total Page:16

File Type:pdf, Size:1020Kb

Convex Functions: Constructions, Characterizations and Counterexamples C 20081 Convex Functions: Constructions, Characterizations and Counterexamples c 20081 Jonathan M. Borwein and Jon Vanderwerff August 26, 2008 1Do not circulate without permission 2 To our wives. Judith and Judith. ii Preface This book on convex functions emerges out of fifteen years of collaboration be- tween the authors. It is by far from the first on the subject nor will it be the last. It is neither a book on Convex analysis such as Rockafellar’s foundational 1970 book [342] nor a book on Convex programming such as Boyd and Vanden- berghe’s excellent recent text [121]. There are a number of fine books—both recent and less so—on both those subjects or on Convexity and relatedly on Variational analysis. Books such as [344, 236, 351, 237, 115, 90, 295, 304] com- plement or overlap in various ways with our own focus which is to explore the interplay between the structure of a normed space and the properties of convex functions which can exist thereon. In some ways, among the most similar books to ours are those of Phelps [320] and of Giles [214] in that both also straddle the fields of geometric functional analysis and convex analysis—but without the convex function itself being the central character. We have structured this book so as to accommodate a variety of readers. This leads to some intentional repetition. Chapter one makes the case for the ubiquity of convexity, largely by way of example; many but not all of which are followed up in later chapters. Chapter two then provides a foundation for the study of convex functions in Euclidean (finite-dimensional) space, and Chap- ter three reprises important special structures such as polyhedrality, eigenvalue optimization and semidefinite programming. Chapters four and five play the same role in (infinite-dimensional) Banach space. Chapter six comprises a number of other basic topics such as Banach space selection theorems, set convergence, integral functionals, trace-class spec- tral functions and functions on normed lattices lattices. The remaining three chapters can be read independently of each other. Chapter seven examines the structure of Legendre functions which comprises those barrier functions which are essentially smooth and essentially strictly con- vex and considers how the existence of such barrier functions is related to the geometry of the underlying Banach space; as always the nicer the space (e.g., is it reflexive, Hilbert or Euclidean?) the more that can be achieved. This cou- pling between the space and the convex functions which may survive on it is attacked more methodically in Chapter eight. Chapter nine investigates (maximal) monotone operators through the use of a specialized class of convex representative functions of which the Fitzpatrick function is the progenitor. We have written this chapter so as to make it better useable as a stand-alone source on convexity and its applications to monotone operators. In each chapter we have included a variety of concrete examples and exercises— often guided, some with further notes given in Chapter ten. We both believe strongly that general understanding and intuition rely on having fully digested a good cross-section of particular cases. We think this book can be used as a text, either primary or secondary, for a variety of introductory graduate courses. One possible half-course would com- prise Chapters one, two, three and the finite-dimensional parts of Chapters four iii through ten. These parts are listed at the end of Chapter three. Another course could encompass Chapters one through six along with Chapter eight, and so on. We hope also that this book will prove valuable to a larger group of practitioners in mathematical science; and in that spirit have tried to keep notation so that the infinite-dimensional and finite-dimensional discussion are well comported and so that the book can be dipped into as well as read sequentially. This also requires occasional intentional redundancy. In addition, we finish with a ‘bonus chapter’ revisiting the boundary between Euclidean and Banach space and making comments on the earlier chapters. We should like to thank various of our colleagues and students who have provided valuable input and advice. We should also like to thank Cambridge University Press and especially David Tranah who has played an active and much appreciated role in helping shape this work. Finally, we have a com- panion web-site at http://projects.cs.dal.ca/ddrive/ConvexFunctions/ on which various related links and addenda (including any subsequent errata) may be found. Jon Borwein (Dalhousie and Newcastle) and Jon Vanderwerff (La Sierra) August 23rd, 2008 iv Contents 1 Why Convex? 1 1.1 Why‘Convex’?............................ 2 1.2 BasicPrinciples............................ 3 1.3 SomeMathematicalIllustrations . 9 1.4 SomeMoreAppliedExamples. 11 2 Convex Functions on Euclidean Spaces 19 2.1 Continuity and Subdifferentials . 20 2.2 Differentiability............................ 37 2.3 Conjugate Functions and Duality . 45 2.4 DifferentiabilityinMeasureandCategory . 77 2.5 Second-orderDifferentiability . 83 2.6 SupportandExtremalStructure . 92 3 Finer Structure of Euclidean Spaces 95 3.1 Polyhedral Convex Sets and Functions . 96 3.2 FunctionsofEigenvalues. 101 3.3 Linear and Semidefinite Programming Duality . 108 3.4 SelectionsandFixedPoints . 112 3.5 IntotheInfinite............................ 118 4 Convex Functions on Banach Spaces 127 4.1 Continuity and Subdifferentials . 128 4.2 Differentiability of Convex Functions . 150 4.3 VariationalPrinciples . 162 4.4 Conjugate Functions and Fenchel Duality . 173 4.5 ChebyshevSetsandProximality . 189 4.6 Small Sets and Differentiability . 197 5 Duality Between Smoothness and Strict Convexity 213 5.1 Renorming:anOverview . 214 5.2 ExposedPointsofConvexFunctions . 237 5.3 StrictlyConvexFunctions . 244 5.4 Moduli of Smoothness and Rotundity . 257 v vi CONTENTS 5.5 LipschitzSmoothness. 272 6 Further Analytic Topics 281 6.1 Multifunctions and Monotone Operators . 282 6.2 EpigraphicalConvergence: anIntroduction . 292 6.3 ConvexIntegralFunctionals . 310 6.4 StronglyRotundFunctions . 316 6.5 TraceClassConvexSpectralFunctions . 321 6.6 DeeperSupportStructure . 326 6.7 ConvexFunctionsonNormedLattices . 338 7 Barriers and Legendre Functions 347 7.1 Essential Smoothness and Essential Strict Convexity . 348 7.2 PreliminaryLocalBoundednessResults . 349 7.3 LegendreFunctions. 353 7.4 Constructions of Legendre Functions in Euclidean Space . 358 7.5 Further ExamplesofLegendreFunctions . 363 7.6 ZoneConsistencyofLegendreFunctions . 367 7.7 BanachSpaceConstructions. 379 8 Convex Functions and Classifications of Banach Spaces 389 8.1 CanonicalExamplesofConvexFunctions . 390 8.2 Characterizationsof Various Classes of Spaces. 396 8.3 ExtensionsofConvexFunctions. 406 8.4 Some Other Generalizations and Equivalences . 415 9 Monotone Operators and the Fitzpatrick Function 419 9.1 MonotoneOperatorsandConvexFunctions . 420 9.2 CyclicandAcyclicMonotoneOperators . 430 9.3 MaximalityinReflexiveBanachSpace . 448 9.4 FurtherApplications . 455 9.5 Limiting Examples and Constructions . 460 9.6 TheSumTheoreminGeneralBanachSpace. 465 9.7 MoreAboutOperatorsofType(NI) . 466 10 Further Remarks and Notes 477 10.1 BacktotheFinite .......................... 478 10.2 NotesonEarlierChapters . 488 10.3ListofSymbols ............................ 500 Bibliography 503 Index 524 Chapter 1 Why Convex? 1 2 CHAPTER 1. WHY CONVEX? The first modern formalization of the concept of convex function appears in J. L. W. V. Jensen “Om konvexe funktioner og unlighted Mellin misdeliveries,” NT Tidier. Math. B 16 (1905), pp. 49-69. Since then, at first referring to “Jensen’s convex functions,” then more openly, without needing any explicit reference, the definition of convex function becomes a standard element in calculus handbooks.” (A. Guerraggio and E. Molho)1 Convexity theory ... reaches out in all directions with useful vigor. Why is this so? Surely any answer must take account of the tremen- dous impetus the subject has received from outside of mathematics, from such diverse fields as economics, agriculture, military planning, and flows in networks. With the invention of high-speed computers, large-scale problems from these fields became at least potentially solv- able. Whole new areas of mathematics (game theory, linear and non- linear programming, control theory) aimed at solving these problems appeared almost overnight. And in each of them, convexity theory turned out to be at the core. The result has been a tremendous spurt in interest in convexity theory and a host of new results. (A. Wayne Roberts and Dale E. Varberg)2 1.1 Why ‘Convex’? This introductory polemic makes the case for a study focussing on convex func- tions and their structural properties. We highlight the centrality of convexity and give a selection of salient examples and applications; many will be revis- ited in more detail later in the text—and many other examples are salted among later chapters. Two excellent companion pieces are respectively by Asplund [13] and by Fenchel [198]. A more recent survey article by Berger has considerable discussion of convex geometry [50]. It has been said that most of number theory devolves to the Cauchy-Schwarz inequality and the only problem is deciding ‘what to Cauchy with’. In like fash- ion, much mathematics is tamed once one has found the right convex ‘Green’s function’. Why convex? Well, because .... For convex sets topological, algebraic, and geometric notions often coin- • cide; one sees this in the study of the simplex-method and of continuity
Recommended publications
  • Applications of Variational Analysis to a Generalized Heron Problem Boris S
    Wayne State University Mathematics Research Reports Mathematics 7-1-2011 Applications of Variational Analysis to a Generalized Heron Problem Boris S. Mordukhovich Wayne State University, [email protected] Nguyen Mau Nam The University of Texas-Pan American, Edinburg, TX, [email protected] Juan Salinas Jr The University of Texas-Pan American, Edinburg, TX, [email protected] Recommended Citation Mordukhovich, Boris S.; Nam, Nguyen Mau; and Salinas, Juan Jr, "Applications of Variational Analysis to a Generalized Heron Problem" (2011). Mathematics Research Reports. Paper 88. http://digitalcommons.wayne.edu/math_reports/88 This Technical Report is brought to you for free and open access by the Mathematics at DigitalCommons@WayneState. It has been accepted for inclusion in Mathematics Research Reports by an authorized administrator of DigitalCommons@WayneState. APPLICATIONS OF VARIATIONAL ANALYSIS TO A GENERALIZED HERON PROBLEM BORIS S. MORDUKHOVICH, NGUYEN MAU NAM and JUAN SALINAS JR. WAYNE STATE UNIVERSilY Detroit, Ml 48202 Department of Mathematics Research Report 2011 Series #7 . APPLICATIONS OF VARIATIONAL ANALYSIS TO A GENERALIZED HERON PROBLEM 2 3 BORIS S. MORDUKHOVICH1 , NGUYEN MAU NAM and JUAN SALINAS JR. Abstract. This paper is a continuation of our ongoing efforts to solve a number of geometric problems and their extensions by using advanced tools of variational analysis and generalized differentiation. Here we propose and study, from both qualitative and numerical viewpoints, the following optimal location problem as well as its further extensions: on a given nonempty subset of a Banach space, find a point such that the sum of the distances from it to n given nonempty subsets of this space is minimal.
    [Show full text]
  • Variational Analysis in Normed Spaces with Applications to Constrained
    Variational Analysis in Normed Spaces with Applications to Constrained Optimization∗ ASHKAN MOHAMMADI† and BORIS S. MORDUKHOVICH‡ Abstract. This paper is devoted to developing and applications of a generalized differential theory of varia- tional analysis that allows us to work in incomplete normed spaces, without employing conventional variational techniques based on completeness and limiting procedures. The main attention is paid to generalized derivatives and subdifferentials of the Dini-Hadamard type with the usage of mild qualification conditions revolved around metric subregularity. In this way we develop calculus rules of generalized differentiation in normed spaces without imposing restrictive normal compactness assumptions and the like and then apply them to general problems of constrained optimization. Most of the obtained results are new even in finite dimensions. Finally, we derive refined necessary optimality conditions for nonconvex problems of semi-infinite and semidefinite programming. Keywords. Variational analysis, constrained optimization, generalized differentiation, metric subregularity, semi- infinite programming, semidefinite programming. Mathematics Subject Classification (2000) 49J52, 49J53, 90C48, 90C34 1 Introduction A characteristic feature of modern variational analysis in both finite and infinite dimensions is a systematic usage of perturbation, approximation, and hence limiting procedures; see, e.g., the books [3,5,10,18,24,25, 27,30] and the references therein. In infinite dimensions these procedures require the completeness of the space in question that plays a crucial role in the development and applications of major variational and extremal principles of variational analysis. It has been well recognized that such principles (in particular, the most powerful Ekeland variational principle) are at the heart of variational techniques to derive calculus rules of generalized differentiation with their applications to optimization and control problems.
    [Show full text]
  • Sharp Finiteness Principles for Lipschitz Selections: Long Version
    Sharp finiteness principles for Lipschitz selections: long version By Charles Fefferman Department of Mathematics, Princeton University, Fine Hall Washington Road, Princeton, NJ 08544, USA e-mail: [email protected] and Pavel Shvartsman Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel e-mail: [email protected] Abstract Let (M; ρ) be a metric space and let Y be a Banach space. Given a positive integer m, let F be a set-valued mapping from M into the family of all compact convex subsets of Y of dimension at most m. In this paper we prove a finiteness principle for the existence of a Lipschitz selection of F with the sharp value of the finiteness number. Contents 1. Introduction. 2 1.1. Main definitions and main results. 2 1.2. Main ideas of our approach. 3 2. Nagata condition and Whitney partitions on metric spaces. 6 arXiv:1708.00811v2 [math.FA] 21 Oct 2017 2.1. Metric trees and Nagata condition. 6 2.2. Whitney Partitions. 8 2.3. Patching Lemma. 12 3. Basic Convex Sets, Labels and Bases. 17 3.1. Main properties of Basic Convex Sets. 17 3.2. Statement of the Finiteness Theorem for bounded Nagata Dimension. 20 Math Subject Classification 46E35 Key Words and Phrases Set-valued mapping, Lipschitz selection, metric tree, Helly’s theorem, Nagata dimension, Whitney partition, Steiner-type point. This research was supported by Grant No 2014055 from the United States-Israel Binational Science Foundation (BSF). The first author was also supported in part by NSF grant DMS-1265524 and AFOSR grant FA9550-12-1-0425.
    [Show full text]
  • The Continuity of Additive and Convex Functions, Which Are Upper Bounded
    THE CONTINUITY OF ADDITIVE AND CONVEX FUNCTIONS, WHICH ARE UPPER BOUNDED ON NON-FLAT CONTINUA IN Rn TARAS BANAKH, ELIZA JABLO NSKA,´ WOJCIECH JABLO NSKI´ Abstract. We prove that for a continuum K ⊂ Rn the sum K+n of n copies of K has non-empty interior in Rn if and only if K is not flat in the sense that the affine hull of K coincides with Rn. Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset A ⊂ K the sum A+n of n copies of A is not meager in Rn (and then the sum A+2n of 2n copies of the analytic set A has non-empty interior in Rn and the set (A − A)+n is a neighborhood of zero in Rn). This implies that a mid-convex function f : D → R, defined on an open convex subset D ⊂ Rn is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D. Let X be a linear topological space over the field of real numbers. A function f : X → R is called additive if f(x + y)= f(x)+ f(y) for all x, y ∈ X. R x+y f(x)+f(y) A function f : D → defined on a convex subset D ⊂ X is called mid-convex if f 2 ≤ 2 for all x, y ∈ D. Many classical results concerning additive or mid-convex functions state that the boundedness of such functions on “sufficiently large” sets implies their continuity.
    [Show full text]
  • Ekeland Variational Principles with Set-Valued Objective Functions And
    Ekeland variational principles with set-valued objective functions and set-valued perturbations1 QIU JingHui School of Mathematical Sciences, Soochow University, Suzhou 215006, China Email: [email protected] Abstract In the setting of real vector spaces, we establish a general set-valued Ekeland variational principle (briefly, denoted by EVP), where the objective func- tion is a set-valued map taking values in a real vector space quasi-ordered by a convex cone K and the perturbation consists of a K-convex subset H of the or- dering cone K multiplied by the distance function. Here, the assumption on lower boundedness of the objective function is taken to be the weakest kind. From the general set-valued EVP, we deduce a number of particular versions of set-valued EVP, which extend and improve the related results in the literature. In particu- lar, we give several EVPs for approximately efficient solutions in set-valued opti- mization, where a usual assumption for K-boundedness (by scalarization) of the objective function’s range is removed. Moreover, still under the weakest lower boundedness condition, we present a set-valued EVP, where the objective function is a set-valued map taking values in a quasi-ordered topological vector space and the perturbation consists of a σ-convex subset of the ordering cone multiplied by the distance function. arXiv:1708.05126v1 [math.FA] 17 Aug 2017 Keywords nonconvex separation functional, vector closure, Ekeland variational principle, coradiant set, (C, ǫ)-efficient solution, σ-convex set MSC(2010) 46A03, 49J53, 58E30, 65K10, 90C48 1 Introduction Since the variational principle of Ekeland [12, 13] for approximate solutions of nonconvex minimization problems appeared in 1972, there have been various 1This work was supported by the National Natural Science Foundation of China (Grant Nos.
    [Show full text]
  • Discrete Analytic Convex Geometry Introduction
    Discrete Analytic Convex Geometry Introduction Martin Henk Otto-von-Guericke-Universit¨atMagdeburg Winter term 2012/13 webpage CONTENTS i Contents Preface ii 0 Some basic and convex facts1 1 Support and separate5 2 Radon, Helly, Caratheodory and (a few) relatives9 Index 11 ii CONTENTS Preface The material presented here is stolen from different excellent sources: • First of all: A manuscript of Ulrich Betke on convexity which is partially based on lecture notes given by Peter McMullen. • The inspiring books by { Alexander Barvinok, "A course in Convexity" { G¨unter Ewald, "Combinatorial Convexity and Algebraic Geometry" { Peter M. Gruber, "Convex and Discrete Geometry" { Peter M. Gruber and Cerrit G. Lekkerkerker, "Geometry of Num- bers" { Jiri Matousek, "Discrete Geometry" { Rolf Schneider, "Convex Geometry: The Brunn-Minkowski Theory" { G¨unter M. Ziegler, "Lectures on polytopes" • and some original papers !! and they are part of lecture notes on "Discrete and Convex Geometry" jointly written with Maria Hernandez Cifre but not finished yet. Some basic and convex facts 1 0 Some basic and convex facts n 0.1 Notation. R = x = (x1; : : : ; xn)| : xi 2 R denotes the n-dimensional Pn Euclidean space equipped with the Euclidean inner product hx; yi = i=1 xi yi, n p x; y 2 R , and the Euclidean norm jxj = hx; xi. 0.2 Definition [Linear, affine, positive and convex combination]. Let m 2 n N and let xi 2 R , λi 2 R, 1 ≤ i ≤ m. Pm i) i=1 λi xi is called a linear combination of x1;:::; xm. Pm Pm ii) If i=1 λi = 1 then i=1 λi xi is called an affine combination of x1; :::; xm.
    [Show full text]
  • On Modified L 1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 On Modified l_1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Applied Mathematics Commons, and the Mathematics Commons Recommended Citation Basnet, Man Bahadur, "On Modified l_1-Minimization Problems in Compressed Sensing" (2013). Graduate Theses and Dissertations. 13473. https://lib.dr.iastate.edu/etd/13473 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On modified `-one minimization problems in compressed sensing by Man Bahadur Basnet A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics (Applied Mathematics) Program of Study Committee: Fritz Keinert, Co-major Professor Namrata Vaswani, Co-major Professor Eric Weber Jennifer Davidson Alexander Roitershtein Iowa State University Ames, Iowa 2013 Copyright © Man Bahadur Basnet, 2013. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents Jaya and Chandra and to my family (wife Sita, son Manas and daughter Manasi) without whose support, encouragement and love, I would not have been able to complete this work. iii TABLE OF CONTENTS LIST OF TABLES . vi LIST OF FIGURES . vii ACKNOWLEDGEMENTS . viii ABSTRACT . x CHAPTER 1. INTRODUCTION .
    [Show full text]
  • Techniques of Variational Analysis
    J. M. Borwein and Q. J. Zhu Techniques of Variational Analysis An Introduction October 8, 2004 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo To Tova, Naomi, Rachel and Judith. To Charles and Lilly. And in fond and respectful memory of Simon Fitzpatrick (1953-2004). Preface Variational arguments are classical techniques whose use can be traced back to the early development of the calculus of variations and further. Rooted in the physical principle of least action they have wide applications in diverse ¯elds. The discovery of modern variational principles and nonsmooth analysis further expand the range of applications of these techniques. The motivation to write this book came from a desire to share our pleasure in applying such variational techniques and promoting these powerful tools. Potential readers of this book will be researchers and graduate students who might bene¯t from using variational methods. The only broad prerequisite we anticipate is a working knowledge of un- dergraduate analysis and of the basic principles of functional analysis (e.g., those encountered in a typical introductory functional analysis course). We hope to attract researchers from diverse areas { who may fruitfully use varia- tional techniques { by providing them with a relatively systematical account of the principles of variational analysis. We also hope to give further insight to graduate students whose research already concentrates on variational analysis. Keeping these two di®erent reader groups in mind we arrange the material into relatively independent blocks. We discuss various forms of variational princi- ples early in Chapter 2. We then discuss applications of variational techniques in di®erent areas in Chapters 3{7.
    [Show full text]
  • Chapter 1 COMPACTNESS,OPTIMALITY and RISK
    Chapter 1 COMPACTNESS,OPTIMALITY AND RISK B. Cascales, J. Orihuela and M. Ruiz Galan´ Summary: This is a survey about one of the most important achievements in op- timization in Banach space theory, namely, James’ weak compactness theorem, its relatives and its applications. We present here a good number of topics related to James’ weak compactness theorem and try to keep the technicalities needed as sim- ple as possible: Simons’ inequality is our preferred tool. Besides the expected ap- plications to measures of weak noncompactess, compactness with respect to bound- aries, size of sets of norm-attaining functionals, etc., we also exhibit other very recent developments in the area. In particular we deal with functions and their level sets to study a new Simons’ inequality on unbounded sets that appear as the epi- graph of some fixed function f . Applications to variational problems for f and to risk measures associated with its Fenchel conjugate f ∗ are studied. Key words: compactness, optimization, risk measures, measure of non weak- compactness, Simons’ inequality, nonattaining functionals, I-generation, variational problems, reflexivity. AMS 2010 Subject Classification: 46B10, 46B26, 46B50, 46E30, 46N10, 47J20, 49J52, 91B30, 91G10, 91G80. Dedicated to Jonathan Borwein on the occasion of his 60th Birthday B. Cascales, Department of Mathematics, University of Murcia, Campus Espinardo 15, 30100, Murcia, Spain. e-mail: [email protected] J. Orihuela, Department of Mathematics, University of Murcia, Campus Espinardo 15, 30100,· Murcia , Spain. e-mail: [email protected] M. Ruiz Galan,´ Department of Applied Math. , E. T. S. Ingenier´ıa. Edificacion.,´ c/ Severo Ochoa· s/n, 1871, Granada, Spain.
    [Show full text]
  • Non-Linear Inner Structure of Topological Vector Spaces
    mathematics Article Non-Linear Inner Structure of Topological Vector Spaces Francisco Javier García-Pacheco 1,*,† , Soledad Moreno-Pulido 1,† , Enrique Naranjo-Guerra 1,† and Alberto Sánchez-Alzola 2,† 1 Department of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, CA, Spain; [email protected] (S.M.-P.); [email protected] (E.N.-G.) 2 Department of Statistics and Operation Research, College of Engineering, University of Cadiz, 11519 Puerto Real (CA), Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Inner structure appeared in the literature of topological vector spaces as a tool to charac- terize the extremal structure of convex sets. For instance, in recent years, inner structure has been used to provide a solution to The Faceless Problem and to characterize the finest locally convex vector topology on a real vector space. This manuscript goes one step further by settling the bases for studying the inner structure of non-convex sets. In first place, we observe that the well behaviour of the extremal structure of convex sets with respect to the inner structure does not transport to non-convex sets in the following sense: it has been already proved that if a face of a convex set intersects the inner points, then the face is the whole convex set; however, in the non-convex setting, we find an example of a non-convex set with a proper extremal subset that intersects the inner points. On the opposite, we prove that if a extremal subset of a non-necessarily convex set intersects the affine internal points, then the extremal subset coincides with the whole set.
    [Show full text]
  • Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations
    Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] April 20, 2017 2 3 Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier Abstract: Some basic mathematical tools such as convex sets, polytopes and combinatorial topology, are used quite heavily in applied fields such as geometric modeling, meshing, com- puter vision, medical imaging and robotics. This report may be viewed as a tutorial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. One of my (selfish!) motivations in writing these notes was to understand the concept of shelling and how it is used to prove the famous Euler-Poincar´eformula (Poincar´e,1899) and the more recent Upper Bound Theorem (McMullen, 1970) for polytopes. Another of my motivations was to give a \correct" account of Delaunay triangulations and Voronoi diagrams in terms of (direct and inverse) stereographic projections onto a sphere and prove rigorously that the projective map that sends the (projective) sphere to the (projective) paraboloid works correctly, that is, maps the Delaunay triangulation and Voronoi diagram w.r.t. the lifting onto the sphere to the Delaunay diagram and Voronoi diagrams w.r.t. the traditional lifting onto the paraboloid. Here, the problem is that this map is only well defined (total) in projective space and we are forced to define the notion of convex polyhedron in projective space.
    [Show full text]
  • Variational Analysis Perspective on Linear Convergence of Some First
    Noname manuscript No. (will be inserted by the editor) Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems Jane J. Ye · Xiaoming Yuan · Shangzhi Zeng · Jin Zhang the date of receipt and acceptance should be inserted later Abstract We understand linear convergence of some first-order methods such as the proximal gradient method (PGM), the proximal alternating linearized minimization (PALM) algorithm and the randomized block coordinate proxi- mal gradient method (R-BCPGM) for minimizing the sum of a smooth con- vex function and a nonsmooth convex function from a variational analysis perspective. We introduce a new analytic framework based on some theories on variational analysis such as the error bound/calmness/metric subregular- ity/bounded metric subregularity. This variational analysis perspective enables us to provide some concrete sufficient conditions for checking linear conver- gence and applicable approaches for calculating linear convergence rates of these first-order methods for a class of structured convex problems where the smooth part of the objective function is a composite of a smooth strongly convex function and a linear function. In particular, we show that these con- ditions are satisfied automatically, and the modulus for the calmness/metric subregularity is practically computable in some important applications such as in the LASSO, the fused LASSO and the group LASSO. Consequently, The research was partially supported by NSERC, a general research fund from the Research Grants Council of Hong Kong, NSFC (No. 11601458) Jane J. Ye Department of Mathematics and Statistics, University of Victoria, Canada. E-mail: [email protected] Xiaoming Yuan Department of Mathematics, The University of Hong Kong, Hong Kong, China.
    [Show full text]