Convex Functions: Constructions, Characterizations and Counterexamples C 20081
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applications of Variational Analysis to a Generalized Heron Problem Boris S
Wayne State University Mathematics Research Reports Mathematics 7-1-2011 Applications of Variational Analysis to a Generalized Heron Problem Boris S. Mordukhovich Wayne State University, [email protected] Nguyen Mau Nam The University of Texas-Pan American, Edinburg, TX, [email protected] Juan Salinas Jr The University of Texas-Pan American, Edinburg, TX, [email protected] Recommended Citation Mordukhovich, Boris S.; Nam, Nguyen Mau; and Salinas, Juan Jr, "Applications of Variational Analysis to a Generalized Heron Problem" (2011). Mathematics Research Reports. Paper 88. http://digitalcommons.wayne.edu/math_reports/88 This Technical Report is brought to you for free and open access by the Mathematics at DigitalCommons@WayneState. It has been accepted for inclusion in Mathematics Research Reports by an authorized administrator of DigitalCommons@WayneState. APPLICATIONS OF VARIATIONAL ANALYSIS TO A GENERALIZED HERON PROBLEM BORIS S. MORDUKHOVICH, NGUYEN MAU NAM and JUAN SALINAS JR. WAYNE STATE UNIVERSilY Detroit, Ml 48202 Department of Mathematics Research Report 2011 Series #7 . APPLICATIONS OF VARIATIONAL ANALYSIS TO A GENERALIZED HERON PROBLEM 2 3 BORIS S. MORDUKHOVICH1 , NGUYEN MAU NAM and JUAN SALINAS JR. Abstract. This paper is a continuation of our ongoing efforts to solve a number of geometric problems and their extensions by using advanced tools of variational analysis and generalized differentiation. Here we propose and study, from both qualitative and numerical viewpoints, the following optimal location problem as well as its further extensions: on a given nonempty subset of a Banach space, find a point such that the sum of the distances from it to n given nonempty subsets of this space is minimal. -
Variational Analysis in Normed Spaces with Applications to Constrained
Variational Analysis in Normed Spaces with Applications to Constrained Optimization∗ ASHKAN MOHAMMADI† and BORIS S. MORDUKHOVICH‡ Abstract. This paper is devoted to developing and applications of a generalized differential theory of varia- tional analysis that allows us to work in incomplete normed spaces, without employing conventional variational techniques based on completeness and limiting procedures. The main attention is paid to generalized derivatives and subdifferentials of the Dini-Hadamard type with the usage of mild qualification conditions revolved around metric subregularity. In this way we develop calculus rules of generalized differentiation in normed spaces without imposing restrictive normal compactness assumptions and the like and then apply them to general problems of constrained optimization. Most of the obtained results are new even in finite dimensions. Finally, we derive refined necessary optimality conditions for nonconvex problems of semi-infinite and semidefinite programming. Keywords. Variational analysis, constrained optimization, generalized differentiation, metric subregularity, semi- infinite programming, semidefinite programming. Mathematics Subject Classification (2000) 49J52, 49J53, 90C48, 90C34 1 Introduction A characteristic feature of modern variational analysis in both finite and infinite dimensions is a systematic usage of perturbation, approximation, and hence limiting procedures; see, e.g., the books [3,5,10,18,24,25, 27,30] and the references therein. In infinite dimensions these procedures require the completeness of the space in question that plays a crucial role in the development and applications of major variational and extremal principles of variational analysis. It has been well recognized that such principles (in particular, the most powerful Ekeland variational principle) are at the heart of variational techniques to derive calculus rules of generalized differentiation with their applications to optimization and control problems. -
Sharp Finiteness Principles for Lipschitz Selections: Long Version
Sharp finiteness principles for Lipschitz selections: long version By Charles Fefferman Department of Mathematics, Princeton University, Fine Hall Washington Road, Princeton, NJ 08544, USA e-mail: [email protected] and Pavel Shvartsman Department of Mathematics, Technion - Israel Institute of Technology, 32000 Haifa, Israel e-mail: [email protected] Abstract Let (M; ρ) be a metric space and let Y be a Banach space. Given a positive integer m, let F be a set-valued mapping from M into the family of all compact convex subsets of Y of dimension at most m. In this paper we prove a finiteness principle for the existence of a Lipschitz selection of F with the sharp value of the finiteness number. Contents 1. Introduction. 2 1.1. Main definitions and main results. 2 1.2. Main ideas of our approach. 3 2. Nagata condition and Whitney partitions on metric spaces. 6 arXiv:1708.00811v2 [math.FA] 21 Oct 2017 2.1. Metric trees and Nagata condition. 6 2.2. Whitney Partitions. 8 2.3. Patching Lemma. 12 3. Basic Convex Sets, Labels and Bases. 17 3.1. Main properties of Basic Convex Sets. 17 3.2. Statement of the Finiteness Theorem for bounded Nagata Dimension. 20 Math Subject Classification 46E35 Key Words and Phrases Set-valued mapping, Lipschitz selection, metric tree, Helly’s theorem, Nagata dimension, Whitney partition, Steiner-type point. This research was supported by Grant No 2014055 from the United States-Israel Binational Science Foundation (BSF). The first author was also supported in part by NSF grant DMS-1265524 and AFOSR grant FA9550-12-1-0425. -
The Continuity of Additive and Convex Functions, Which Are Upper Bounded
THE CONTINUITY OF ADDITIVE AND CONVEX FUNCTIONS, WHICH ARE UPPER BOUNDED ON NON-FLAT CONTINUA IN Rn TARAS BANAKH, ELIZA JABLO NSKA,´ WOJCIECH JABLO NSKI´ Abstract. We prove that for a continuum K ⊂ Rn the sum K+n of n copies of K has non-empty interior in Rn if and only if K is not flat in the sense that the affine hull of K coincides with Rn. Moreover, if K is locally connected and each non-empty open subset of K is not flat, then for any (analytic) non-meager subset A ⊂ K the sum A+n of n copies of A is not meager in Rn (and then the sum A+2n of 2n copies of the analytic set A has non-empty interior in Rn and the set (A − A)+n is a neighborhood of zero in Rn). This implies that a mid-convex function f : D → R, defined on an open convex subset D ⊂ Rn is continuous if it is upper bounded on some non-flat continuum in D or on a non-meager analytic subset of a locally connected nowhere flat subset of D. Let X be a linear topological space over the field of real numbers. A function f : X → R is called additive if f(x + y)= f(x)+ f(y) for all x, y ∈ X. R x+y f(x)+f(y) A function f : D → defined on a convex subset D ⊂ X is called mid-convex if f 2 ≤ 2 for all x, y ∈ D. Many classical results concerning additive or mid-convex functions state that the boundedness of such functions on “sufficiently large” sets implies their continuity. -
Ekeland Variational Principles with Set-Valued Objective Functions And
Ekeland variational principles with set-valued objective functions and set-valued perturbations1 QIU JingHui School of Mathematical Sciences, Soochow University, Suzhou 215006, China Email: [email protected] Abstract In the setting of real vector spaces, we establish a general set-valued Ekeland variational principle (briefly, denoted by EVP), where the objective func- tion is a set-valued map taking values in a real vector space quasi-ordered by a convex cone K and the perturbation consists of a K-convex subset H of the or- dering cone K multiplied by the distance function. Here, the assumption on lower boundedness of the objective function is taken to be the weakest kind. From the general set-valued EVP, we deduce a number of particular versions of set-valued EVP, which extend and improve the related results in the literature. In particu- lar, we give several EVPs for approximately efficient solutions in set-valued opti- mization, where a usual assumption for K-boundedness (by scalarization) of the objective function’s range is removed. Moreover, still under the weakest lower boundedness condition, we present a set-valued EVP, where the objective function is a set-valued map taking values in a quasi-ordered topological vector space and the perturbation consists of a σ-convex subset of the ordering cone multiplied by the distance function. arXiv:1708.05126v1 [math.FA] 17 Aug 2017 Keywords nonconvex separation functional, vector closure, Ekeland variational principle, coradiant set, (C, ǫ)-efficient solution, σ-convex set MSC(2010) 46A03, 49J53, 58E30, 65K10, 90C48 1 Introduction Since the variational principle of Ekeland [12, 13] for approximate solutions of nonconvex minimization problems appeared in 1972, there have been various 1This work was supported by the National Natural Science Foundation of China (Grant Nos. -
Discrete Analytic Convex Geometry Introduction
Discrete Analytic Convex Geometry Introduction Martin Henk Otto-von-Guericke-Universit¨atMagdeburg Winter term 2012/13 webpage CONTENTS i Contents Preface ii 0 Some basic and convex facts1 1 Support and separate5 2 Radon, Helly, Caratheodory and (a few) relatives9 Index 11 ii CONTENTS Preface The material presented here is stolen from different excellent sources: • First of all: A manuscript of Ulrich Betke on convexity which is partially based on lecture notes given by Peter McMullen. • The inspiring books by { Alexander Barvinok, "A course in Convexity" { G¨unter Ewald, "Combinatorial Convexity and Algebraic Geometry" { Peter M. Gruber, "Convex and Discrete Geometry" { Peter M. Gruber and Cerrit G. Lekkerkerker, "Geometry of Num- bers" { Jiri Matousek, "Discrete Geometry" { Rolf Schneider, "Convex Geometry: The Brunn-Minkowski Theory" { G¨unter M. Ziegler, "Lectures on polytopes" • and some original papers !! and they are part of lecture notes on "Discrete and Convex Geometry" jointly written with Maria Hernandez Cifre but not finished yet. Some basic and convex facts 1 0 Some basic and convex facts n 0.1 Notation. R = x = (x1; : : : ; xn)| : xi 2 R denotes the n-dimensional Pn Euclidean space equipped with the Euclidean inner product hx; yi = i=1 xi yi, n p x; y 2 R , and the Euclidean norm jxj = hx; xi. 0.2 Definition [Linear, affine, positive and convex combination]. Let m 2 n N and let xi 2 R , λi 2 R, 1 ≤ i ≤ m. Pm i) i=1 λi xi is called a linear combination of x1;:::; xm. Pm Pm ii) If i=1 λi = 1 then i=1 λi xi is called an affine combination of x1; :::; xm. -
On Modified L 1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 On Modified l_1-Minimization Problems in Compressed Sensing Man Bahadur Basnet Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Applied Mathematics Commons, and the Mathematics Commons Recommended Citation Basnet, Man Bahadur, "On Modified l_1-Minimization Problems in Compressed Sensing" (2013). Graduate Theses and Dissertations. 13473. https://lib.dr.iastate.edu/etd/13473 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On modified `-one minimization problems in compressed sensing by Man Bahadur Basnet A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics (Applied Mathematics) Program of Study Committee: Fritz Keinert, Co-major Professor Namrata Vaswani, Co-major Professor Eric Weber Jennifer Davidson Alexander Roitershtein Iowa State University Ames, Iowa 2013 Copyright © Man Bahadur Basnet, 2013. All rights reserved. ii DEDICATION I would like to dedicate this thesis to my parents Jaya and Chandra and to my family (wife Sita, son Manas and daughter Manasi) without whose support, encouragement and love, I would not have been able to complete this work. iii TABLE OF CONTENTS LIST OF TABLES . vi LIST OF FIGURES . vii ACKNOWLEDGEMENTS . viii ABSTRACT . x CHAPTER 1. INTRODUCTION . -
Techniques of Variational Analysis
J. M. Borwein and Q. J. Zhu Techniques of Variational Analysis An Introduction October 8, 2004 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo To Tova, Naomi, Rachel and Judith. To Charles and Lilly. And in fond and respectful memory of Simon Fitzpatrick (1953-2004). Preface Variational arguments are classical techniques whose use can be traced back to the early development of the calculus of variations and further. Rooted in the physical principle of least action they have wide applications in diverse ¯elds. The discovery of modern variational principles and nonsmooth analysis further expand the range of applications of these techniques. The motivation to write this book came from a desire to share our pleasure in applying such variational techniques and promoting these powerful tools. Potential readers of this book will be researchers and graduate students who might bene¯t from using variational methods. The only broad prerequisite we anticipate is a working knowledge of un- dergraduate analysis and of the basic principles of functional analysis (e.g., those encountered in a typical introductory functional analysis course). We hope to attract researchers from diverse areas { who may fruitfully use varia- tional techniques { by providing them with a relatively systematical account of the principles of variational analysis. We also hope to give further insight to graduate students whose research already concentrates on variational analysis. Keeping these two di®erent reader groups in mind we arrange the material into relatively independent blocks. We discuss various forms of variational princi- ples early in Chapter 2. We then discuss applications of variational techniques in di®erent areas in Chapters 3{7. -
Chapter 1 COMPACTNESS,OPTIMALITY and RISK
Chapter 1 COMPACTNESS,OPTIMALITY AND RISK B. Cascales, J. Orihuela and M. Ruiz Galan´ Summary: This is a survey about one of the most important achievements in op- timization in Banach space theory, namely, James’ weak compactness theorem, its relatives and its applications. We present here a good number of topics related to James’ weak compactness theorem and try to keep the technicalities needed as sim- ple as possible: Simons’ inequality is our preferred tool. Besides the expected ap- plications to measures of weak noncompactess, compactness with respect to bound- aries, size of sets of norm-attaining functionals, etc., we also exhibit other very recent developments in the area. In particular we deal with functions and their level sets to study a new Simons’ inequality on unbounded sets that appear as the epi- graph of some fixed function f . Applications to variational problems for f and to risk measures associated with its Fenchel conjugate f ∗ are studied. Key words: compactness, optimization, risk measures, measure of non weak- compactness, Simons’ inequality, nonattaining functionals, I-generation, variational problems, reflexivity. AMS 2010 Subject Classification: 46B10, 46B26, 46B50, 46E30, 46N10, 47J20, 49J52, 91B30, 91G10, 91G80. Dedicated to Jonathan Borwein on the occasion of his 60th Birthday B. Cascales, Department of Mathematics, University of Murcia, Campus Espinardo 15, 30100, Murcia, Spain. e-mail: [email protected] J. Orihuela, Department of Mathematics, University of Murcia, Campus Espinardo 15, 30100,· Murcia , Spain. e-mail: [email protected] M. Ruiz Galan,´ Department of Applied Math. , E. T. S. Ingenier´ıa. Edificacion.,´ c/ Severo Ochoa· s/n, 1871, Granada, Spain. -
Non-Linear Inner Structure of Topological Vector Spaces
mathematics Article Non-Linear Inner Structure of Topological Vector Spaces Francisco Javier García-Pacheco 1,*,† , Soledad Moreno-Pulido 1,† , Enrique Naranjo-Guerra 1,† and Alberto Sánchez-Alzola 2,† 1 Department of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, CA, Spain; [email protected] (S.M.-P.); [email protected] (E.N.-G.) 2 Department of Statistics and Operation Research, College of Engineering, University of Cadiz, 11519 Puerto Real (CA), Spain; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Inner structure appeared in the literature of topological vector spaces as a tool to charac- terize the extremal structure of convex sets. For instance, in recent years, inner structure has been used to provide a solution to The Faceless Problem and to characterize the finest locally convex vector topology on a real vector space. This manuscript goes one step further by settling the bases for studying the inner structure of non-convex sets. In first place, we observe that the well behaviour of the extremal structure of convex sets with respect to the inner structure does not transport to non-convex sets in the following sense: it has been already proved that if a face of a convex set intersects the inner points, then the face is the whole convex set; however, in the non-convex setting, we find an example of a non-convex set with a proper extremal subset that intersects the inner points. On the opposite, we prove that if a extremal subset of a non-necessarily convex set intersects the affine internal points, then the extremal subset coincides with the whole set. -
Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations
Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier and Jocelyn Quaintance Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 19104, USA e-mail: [email protected] April 20, 2017 2 3 Notes on Convex Sets, Polytopes, Polyhedra, Combinatorial Topology, Voronoi Diagrams and Delaunay Triangulations Jean Gallier Abstract: Some basic mathematical tools such as convex sets, polytopes and combinatorial topology, are used quite heavily in applied fields such as geometric modeling, meshing, com- puter vision, medical imaging and robotics. This report may be viewed as a tutorial and a set of notes on convex sets, polytopes, polyhedra, combinatorial topology, Voronoi Diagrams and Delaunay Triangulations. It is intended for a broad audience of mathematically inclined readers. One of my (selfish!) motivations in writing these notes was to understand the concept of shelling and how it is used to prove the famous Euler-Poincar´eformula (Poincar´e,1899) and the more recent Upper Bound Theorem (McMullen, 1970) for polytopes. Another of my motivations was to give a \correct" account of Delaunay triangulations and Voronoi diagrams in terms of (direct and inverse) stereographic projections onto a sphere and prove rigorously that the projective map that sends the (projective) sphere to the (projective) paraboloid works correctly, that is, maps the Delaunay triangulation and Voronoi diagram w.r.t. the lifting onto the sphere to the Delaunay diagram and Voronoi diagrams w.r.t. the traditional lifting onto the paraboloid. Here, the problem is that this map is only well defined (total) in projective space and we are forced to define the notion of convex polyhedron in projective space. -
Variational Analysis Perspective on Linear Convergence of Some First
Noname manuscript No. (will be inserted by the editor) Variational analysis perspective on linear convergence of some first order methods for nonsmooth convex optimization problems Jane J. Ye · Xiaoming Yuan · Shangzhi Zeng · Jin Zhang the date of receipt and acceptance should be inserted later Abstract We understand linear convergence of some first-order methods such as the proximal gradient method (PGM), the proximal alternating linearized minimization (PALM) algorithm and the randomized block coordinate proxi- mal gradient method (R-BCPGM) for minimizing the sum of a smooth con- vex function and a nonsmooth convex function from a variational analysis perspective. We introduce a new analytic framework based on some theories on variational analysis such as the error bound/calmness/metric subregular- ity/bounded metric subregularity. This variational analysis perspective enables us to provide some concrete sufficient conditions for checking linear conver- gence and applicable approaches for calculating linear convergence rates of these first-order methods for a class of structured convex problems where the smooth part of the objective function is a composite of a smooth strongly convex function and a linear function. In particular, we show that these con- ditions are satisfied automatically, and the modulus for the calmness/metric subregularity is practically computable in some important applications such as in the LASSO, the fused LASSO and the group LASSO. Consequently, The research was partially supported by NSERC, a general research fund from the Research Grants Council of Hong Kong, NSFC (No. 11601458) Jane J. Ye Department of Mathematics and Statistics, University of Victoria, Canada. E-mail: [email protected] Xiaoming Yuan Department of Mathematics, The University of Hong Kong, Hong Kong, China.