Effect of Antibiotic Use for Acute Bronchiolitis on New-Onset Asthma in Children

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Antibiotic Use for Acute Bronchiolitis on New-Onset Asthma in Children www.nature.com/scientificreports OPEN Efect of antibiotic use for acute bronchiolitis on new-onset asthma in children Received: 4 October 2017 I.-Lun Chen1,2, Hsin-Chun Huang1, Yu-Han Chang3, Hsin-Yi Huang3, Wei-Ju Yeh3, Ting-Yi Wu3, Accepted: 26 March 2018 Jau-Ling Suen 2, San-Nan Yang4 & Chih-Hsing Hung2,5,6,7,8 Published: xx xx xxxx Early-life use of antibiotics is associated with asthma. We examined the efect of antibiotic use for early-life bronchiolitis on the development of new-onset asthma in children from Taiwan between 2005 and 2010. Data were from the National Health Insurance Research Database 2010, and diseases were coded using the International Classifcation of Disease (ICD). We classifed the patients, all of whom had bronchiolitis, as having asthma or not having asthma. Asthma was diagnosed using ICD criteria and by use of an inhaled bronchodilator and/or corticosteroid twice in one year. We identifed age at asthma onset, sex, residential area, history of atopy and NSAID use, age at frst use of antibiotics, and the specifc antibiotic, and adjusted for these factors using conditional logistic regression analysis. Among all individuals, there was a relationship between risk of new-onset asthma with use of a high dose of an antibiotic (adjusted odds ratio [aOR] = 3.33, 95% confdence interval [CI] = 2.67–4.15). Among the diferent antibiotics, macrolides (aOR = 2.87, 95% CI = 1.99–4.16), and azithromycin specifcally (aOR = 3.45, 95% CI = 1.62–7.36), had the greatest efect of development of asthma. Environmental and genetic factors play important roles in the development of asthma. In particular, the “hygiene hypothesis” proposes that growing up in a hygienic environment, with reduced exposure to microbes, promotes T-helper type 2 (T2) immunity1. Te association of early-life use of antibiotics with wheezing symptoms and allergic rhinoconjunctivitis in childhood, and the lack of adverse efects of antibiotics on atopic diseases in child- hood among infants who live in rural environments, are consistent with this hypothesis2,3. Among babies younger than 1 year-old, acute bronchiolitis (a lower respiratory tract infection) is the leading cause of hospitalization due to recurrent wheezing episodes, and a history of bronchiolitis during infancy is associated with an increased risk for development of asthma4. Infants hospitalized with bronchiolitis due to res- piratory syncytial virus (RSV) infection have a 2 to 3-fold increased risk of developing asthma later in childhood5. Another study also demonstrated that rhinovirus-induced wheezing within the frst 3 years of life was associated with a nearly 10-fold increased risk for development of asthma by age six6. Although most cases of acute bronchiolitis are due to viral infections, antimicrobial drugs may be used if there is suspected co-infection by bacteria or for their anti-infammatory efects. In fact, a high incidence of bacterial co-infection was reported in children with severe bronchiolitis who required mechanical ventilation7. Bacterial PCR of blood samples showed that 10% of patients with acute bronchiolitis may have bacteremia, and the major species are Haemophilus infuenza and Streptococcus pneumonia8. However, use of antibiotics early in life and a history of bronchiolitis increase the risk for asthma in young adolescents9. Other studies reported that polymor- phisms of Toll-like receptor 4 might modify the efect of environmental factors, such as use of antibiotics, on the 1Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung City, Taiwan. 2Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan. 3Teaching and Research Center of Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung City, Taiwan. 4Department of Pediatrics, E-DA Hospital and School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan. 5Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. 6Department of Pediatrics, Faculty of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan. 7Department of Pediatrics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung City, Taiwan. 8Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. Correspondence and requests for materials should be addressed to S.-N.Y. (email: [email protected]) or C.-H.H. (email: [email protected]) SCIENTIFIC REPORTS | (2018) 8:6090 | DOI:10.1038/s41598-018-24348-5 1 www.nature.com/scientificreports/ Non-asthma group Asthma group (n = 2082) (n = 2082) N (%) N (%) p value Age, mean ± SD 3.32 ± 1.25 3.34 ± 1.26 0.497 Gender Female 921 (44.2) 907 (43.6) 0.662 Male 1161 (55.8) 1175 (56.4) Resident urbanization Urban 463 (22.2) 451 (21.7) 0.807 Suburban 806 (38.7) 818 (39.3) Rural 813 (39.0) 813 (39.0) Comorbidities Allergic rhinitis 644 (30.9) 668 (32.1) 0.423 Atopic dermatitis 466 (22.4) 456 (21.9) 0.709 Chronic rhinitis 309 (14.8) 322 (15.5) 0.574 Acute sinusitis 1615 (77.6) 1628 (78.2) 0.627 GERD 31 (1.5) 23 (1.1) 0.273 Medication NSAIDs 482 (23.2) 471 (22.6) 0.685 Table 1. Te characteristics of non-asthma and asthma group (N = 4,164). development of asthma10,11. Tus, reducing the use of antibiotics and prevention of bronchiolitis during infancy may prevent the development of asthma, especially in genetically susceptible subjects. Tere is strong evidence of an association between acute bronchiolitis and asthma, but it is unclear whether this is a causal relationship. Although antibiotic use in early life increases the risk of asthma, the efect of antibiotic use by children for treatment of early-life bronchiolitis on the development of new-onset asthma is unknown. Te aim of this study, which used the Taiwan National Health Insurance Research Database (NHIRD) 2010 database, was to assess the relationship of early-life antibiotic use for bronchiolitis with new-onset asthma in children. Methods Data source. Tis study examined claims data from the NHIRD, which includes the medical records of 99% of the 23.74 million residents of Taiwan, and 97% of Taiwanese hospitals and clinics who have contracts with the National Health Research Institute in Taiwan. Te NHIRD contains comprehensive healthcare information, including demographic data of insured individuals, dates of clinical visits, diagnostic codes, and prescription details. All data in this study were from the NHIRD 2010, and all diseases were classifed using the International Classifcation of Disease, Ninth Revision, Clinical Modifcation (ICD-9-CM). Patients with records indicat- ing a diagnosis of bronchiolitis (ICD-9:466.19) during the frst 2 years of life from 2000 to 2010 were included. New-onset asthma was diagnosed using the criteria of ICD-9:493 and receipt of selective beta-2 agonists and/or inhaled corticosteroid treatments twice within one year from age 2 to 18 years-old. Tis study was approved by the Institutional Review Board of Kaohsiung Medical University (KMUHIRB-E (I)-20150168). All methods were performed in accordance with the relevant guidelines and regulations. Use of antibiotics. Te use of antibiotics was obtained from the outpatient prescription database, which listed the name of the drug and had data on dosage, date, and duration of prescription. To investigate the efect of antibiotic dosage, the cumulative defned daily dose (DDD) was calculated. Antibiotic use was defned as the prescription of at least one antibiotic (anatomical therapeutic chemical [ATC] code J01*) in the 5 years before onset of asthma. We analyzed data on 3 individual common classes of antibiotics—penicillins (ATC code J01C*), cephalosporins (ATC code J01D*), and macrolides (ATC code J01F*). Other types of antibiotics (quinolones, sulphonamides, glycopeptides, lincosamides) were analyzed separately. Potential confounders. Te potential confounders of asthma included urban residence, allergic rhinitis (ICD9-CM: 477.8, 477.9), atopic dermatitis (ICD9-CM: 691.8), chronic rhinitis (ICD9-CM:472.0), acute sinus- itis (ICD9-CM:461), gastroesophageal refux disease (GERD) (ICD9-CM:530.81), and use of a nonsteroidal anti-infammatory drug (NSAID) in the 120 days before the onset of asthma. Statistical analysis. Pearson’s chi-square test or Fisher’s exact test and the independent t test were used to evaluate the signifcance of diferences of categorical and continuous variables in patients with and without asthma. Conditional logistic regression analysis was used to calculate the association between asthma and anti- biotic use. As recommended by the World Health Organization (WHO), cumulative DDD was used to quantify the cumulative dose of antibiotics, and the categories were “low dose”, “moderate dose”, and “high dose”. Several co-variables, including age, sex, residential area, history of atopy, and use of NSAIDs, were included in the sta- tistical model. Te efect of antibiotic class was also analyzed by adjusting for co-variables and type of antibiotic, except for penicillins, cephalosporins, and macrolides. Odds ratios (ORs), adjusted ORs (aORs) and 95% conf- dence intervals (CIs) were calculated to show the risk for development of asthma. We further used false discovery SCIENTIFIC REPORTS | (2018) 8:6090 | DOI:10.1038/s41598-018-24348-5 2 www.nature.com/scientificreports/ Non-asthma group Asthma group (n = 2082) (n = 2082) Unadjusted Model Adjusted Model Antibiotic use N (%) N (%) OR (95% CI) p value OR (95% CI) p value J01 antibiotic* No 419 (20.1) 233 (11.2) 1.00 1.00 Yes
Recommended publications
  • National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): a Cross-Sectional Study
    Tropical Medicine and Infectious Disease Article National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): A Cross-Sectional Study Joseph Sam Kanu 1,2,* , Mohammed Khogali 3, Katrina Hann 4 , Wenjing Tao 5, Shuwary Barlatt 6,7, James Komeh 6, Joy Johnson 6, Mohamed Sesay 6, Mohamed Alex Vandi 8, Hannock Tweya 9, Collins Timire 10, Onome Thomas Abiri 6,11 , Fawzi Thomas 6, Ahmed Sankoh-Hughes 12, Bailah Molleh 4, Anna Maruta 13 and Anthony D. Harries 10,14 1 National Disease Surveillance Programme, Sierra Leone National Public Health Emergency Operations Centre, Ministry of Health and Sanitation, Cockerill, Wilkinson Road, Freetown, Sierra Leone 2 Department of Community Health, Faculty of Clinical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone 3 Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1211 Geneva, Switzerland; [email protected] 4 Sustainable Health Systems, Freetown, Sierra Leone; [email protected] (K.H.); [email protected] (B.M.) 5 Unit for Antibiotics and Infection Control, Public Health Agency of Sweden, Folkhalsomyndigheten, SE-171 82 Stockholm, Sweden; [email protected] 6 Pharmacy Board of Sierra Leone, Central Medical Stores, New England Ville, Freetown, Sierra Leone; [email protected] (S.B.); [email protected] (J.K.); [email protected] (J.J.); [email protected] (M.S.); [email protected] (O.T.A.); [email protected] (F.T.) Citation: Kanu, J.S.; Khogali, M.; 7 Department of Pharmaceutics and Clinical Pharmacy & Therapeutics, Faculty of Pharmaceutical Sciences, Hann, K.; Tao, W.; Barlatt, S.; Komeh, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 0000, Sierra Leone 8 J.; Johnson, J.; Sesay, M.; Vandi, M.A.; Directorate of Health Security & Emergencies, Ministry of Health and Sanitation, Sierra Leone National Tweya, H.; et al.
    [Show full text]
  • Erythromycin* Class
    Erythromycin* Class: Macrolide Overview Erythromycin, a naturally occurring macrolide, is derived from Streptomyces erythrus. This macrolide is a member of the 14-membered lactone ring group. Erythromycin is predominantly erythromycin A, but B, C, D and E forms may be included in preparations. These forms are differentiated by characteristic chemical substitutions on structural carbon atoms and on sugars. Although macrolides are generally bacteriostatic, erythromycin can be bactericidal at high concentrations. Eighty percent of erythromycin is metabolically inactivated, therefore very little is excreted in active form. Erythromycin can be administered orally and intravenously. Intravenous use is associated with phlebitis. Toxicities are rare for most macrolides and hypersensitivity with rash, fever and eosinophilia is rarely observed, except with the estolate salt. Erythromycin is well absorbed when given orally. Erythromycin, however, exhibits poor bioavailability, due to its basic nature and destruction by gastric acids. Oral formulations are provided with acid-resistant coatings to facilitate bioavailability; however these coatings can delay therapeutic blood levels. Additional modifications produced better tolerated and more conveniently dosed newer macrolides, such as azithromycin and clarithromycin. Erythromycin can induce transient hearing loss and, most commonly, gastrointestinal effects evidenced by cramps, nausea, vomiting and diarrhea. The gastrointestinal effects are caused by stimulation of the gastric hormone, motilin, which
    [Show full text]
  • Swedres-Svarm 2010
    SVARM|2010 Swedish Veterinary Antimicrobial Resistance Monitoring Content Swedish Veterinary Antimicrobial Resistance Monitoring 2010 Preface .............................................................................................3 Guidance for readers ........................................................................4 Editors Summary ..........................................................................................5 Björn Bengtsson, Helle Ericsson Unnerstad, Sammanfattning...............................................................................7 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Use of antimicrobials .......................................................................9 Department of Animal Health and Zoonotic bacteria ...........................................................................14 Antimicrobial Strategies, National Veterinary Salmonella ...................................................................................14 Institute (SVA) SE-751 89 Uppsala, Sweden Campylobacter .............................................................................18 Methicillin resistant Staphylococcus aureus (MRSA) ....................19 Authors Highlight: Escherichia coli with ESBL - or transferrable Björn Bengtsson, Helle Ericsson Unnerstad, AmpC-type resistance in broilers .............................................22 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Indicator bacteria ...........................................................................24
    [Show full text]
  • Identification of Macrolide Antibiotic-Binding Human P8 Protein
    J. Antibiot. 61(5): 291–296, 2008 THE JOURNAL OF ORIGINAL ARTICLE ANTIBIOTICS Identification of Macrolide Antibiotic-binding Human_p8 Protein Tetsuro Morimura, Mio Hashiba, Hiroshi Kameda, Mihoko Takami, Hirokazu Takahama, Masahiko Ohshige, Fumio Sugawara Received: December 10, 2007 / Accepted: May 1, 2008 © Japan Antibiotics Research Association Abstract Clarithromycin is a macrolide antibiotic that is widely used in clinical medicine. Macrolide antibiotics Introduction such as clarithromycin specifically bind to the 50S subunit of the bacterial ribosome thereby interfering with protein Launched in 1990 by Abbott Laboratories, clarithromycin biosynthesis. A selected peptide sequence from our former A (CLA: synonym of 6-O-methylerythromycin, 1) [1] is a study, composed of 19 amino acids, which was isolated macrolide antibiotic that is commonly used to treat a from a phage display library because of its ability to bind variety of human bacterial infections. Macrolide clarithromycin, displayed significant similarity to a portion antibiotics, represented by erythromycin A (ERY, 2) and its of the human_p8 protein. The recombinant p8 protein structural homologues, specifically bind to the bacterial binds to biotinylated-clarithromycin immobilized on a 50S ribosomal subunit resulting in the inhibition of streptavidin-coated sensor chip and the dissociation bacterial protein biosynthesis [2]. CLA (1) is also constant was determined. The binding of recombinant p8 commonly used to target gastric Helicobacter pylori, which protein to double-stranded DNA was inhibited by is implicated in both gastric ulcers and cancer [3]. biotinylated-clarithromycin, clarithromycin, erythromycin Numerous studies to develop novel pharmaceutical and azithromycin in gel mobility shift assay. applications for macrolide antibiotics, including CLA (1), Dechlorogriseofulvin, obtained from a natural product ERY (2) and azithromycin (AZM, 3), have been published screening, also inhibited human p8 protein binding to [4].
    [Show full text]
  • Farrukh Javaid Malik
    I Farrukh Javaid Malik THESIS PRESENTED TO OBTAIN THE GRADE OF DOCTOR OF THE UNIVERSITY OF BORDEAUX Doctoral School, SP2: Society, Politic, Public Health Specialization Pharmacoepidemiology and Pharmacovigilance By Farrukh Javaid Malik “Analysis of the medicines panorama in Pakistan – The case of antimicrobials: market offer width and consumption.” Under the direction of Prof. Dr. Albert FIGUERAS Defense Date: 28th November 2019 Members of Jury M. Francesco SALVO, Maître de conférences des universités – praticien hospitalier, President Université de Bordeaux M. Albert FIGUERAS, Professeur des universités – praticien hospitalier, Director Université Autonome de Barcelone Mme Antonia AGUSTI, Professeure, Vall dʹHebron University Hospital Referee Mme Montserrat BOSCH, Praticienne hospitalière, Vall dʹHebron University Hospital Referee II Abstract A country’s medicines market is an indicator of its healthcare system, the epidemiological profile, and the prevalent practices therein. It is not only the first logical step to study the characteristics of medicines authorized for marketing, but also a requisite to set up a pharmacovigilance system, thus promoting rational drug utilization. The three medicines market studies presented in the present document were conducted in Pakistan with the aim of describing the characteristics of the pharmaceutical products available in the country as well as their consumption at a national level, with a special focus on antimicrobials. The most important cause of antimicrobial resistance is the inappropriate consumption of antimicrobials. The results of the researches conducted in Pakistan showed some market deficiencies which could be addressed as part of the national antimicrobial stewardship programmes. III Résumé Le marché du médicament d’un pays est un indicateur de son système de santé, de son profil épidémiologique et des pratiques [de prescription] qui y règnent.
    [Show full text]
  • DANMAP 2016 - Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 DANMAP 2016 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark Borck Høg, Birgitte; Korsgaard, Helle Bisgaard; Wolff Sönksen, Ute; Bager, Flemming; Bortolaia, Valeria; Ellis-Iversen, Johanne; Hendriksen, Rene S.; Borck Høg, Birgitte; Jensen, Lars Bogø; Korsgaard, Helle Bisgaard Total number of authors: 27 Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Borck Høg, B. (Ed.), Korsgaard, H. B. (Ed.), Wolff Sönksen, U. (Ed.), Bager, F., Bortolaia, V., Ellis-Iversen, J., Hendriksen, R. S., Borck Høg, B., Jensen, L. B., Korsgaard, H. B., Pedersen, K., Dalby, T., Træholt Franck, K., Hammerum, A. M., Hasman, H., Hoffmann, S., Gaardbo Kuhn, K., Rhod Larsen, A., Larsen, J., ... Vorobieva, V. (2017). DANMAP 2016 - Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Statens Serum Institut, National Veterinary Institute, Technical University of Denmark National Food Institute, Technical University of Denmark. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • MACROLIDES (Veterinary—Systemic)
    MACROLIDES (Veterinary—Systemic) This monograph includes information on the following: Category: Antibacterial (systemic). Azithromycin; Clarithromycin; Erythromycin; Tilmicosin; Tulathromycin; Tylosin. Indications ELUS EL Some commonly used brand names are: For veterinary-labeled Note: The text between and describes uses that are not included ELCAN EL products— in U.S. product labeling. Text between and describes uses Draxxin [Tulathromycin] Pulmotil Premix that are not included in Canadian product labeling. [Tilmicosin Phosphate] The ELUS or ELCAN designation can signify a lack of product Erythro-200 [Erythromycin Tylan 10 [Tylosin availability in the country indicated. See the Dosage Forms Base] Phosphate] section of this monograph to confirm availability. Erythro-Med Tylan 40 [Tylosin [Erythromycin Phosphate] General considerations Phosphate] Macrolides are considered bacteriostatic at therapeutic concentrations Gallimycin [Erythromycin Tylan 50 [Tylosin Base] but they can be slowly bactericidal, especially against Phosphate] streptococcal bacteria; their bactericidal action is described as Gallimycin-50 Tylan 100 [Tylosin time-dependent. The antimicrobial action of some macrolides is [Erythromycin Phosphate] enhanced by a high pH and suppressed by low pH, making them Thiocyanate] less effective in abscesses, necrotic tissue, or acidic urine.{R-119} Gallimycin-100 Tylan 200 [Tylosin Base] Erythromycin is an antibiotic with activity primarily against gram- [Erythromycin Base] positive bacteria, such as Staphylococcus and Streptococcus Gallimycin-100P Tylan Soluble [Tylosin species, including many that are resistant to penicillins by means [Erythromycin Tartrate] of beta-lactamase production. Erythromycin is also active against Thiocyanate] mycoplasma and some gram-negative bacteria, including Gallimycin-200 Tylosin 10 Premix [Tylosin Campylobacter and Pasteurella species.{R-1; 10-12} It has activity [Erythromycin Base] Phosphate] against some anaerobes, but Bacteroides fragilis is usually Gallimycin PFC Tylosin 40 Premix [Tylosin resistant.
    [Show full text]
  • Binding Site of Macrolide Antibiotics on the Ribosome: New Resistance Mutation Identifies a Specific Interaction of Ketolides with Rrna
    JOURNAL OF BACTERIOLOGY, Dec. 2001, p. 6898–6907 Vol. 183, No. 23 0021-9193/01/$04.00ϩ0 DOI: 10.1128/JB.183.23.6898–6907.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Binding Site of Macrolide Antibiotics on the Ribosome: New Resistance Mutation Identifies a Specific Interaction of Ketolides with rRNA 1 1 2 1 GEORGINA GARZA-RAMOS, † LIQUN XIONG, PING ZHONG, ‡ AND ALEXANDER MANKIN * Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607,1 and Infectious Disease Research, Abbott Laboratories, Abbott Park, Illinois 600642 Received 31 July 2001/Accepted 19 September 2001 Macrolides represent a clinically important class of antibiotics that block protein synthesis by interacting with the large ribosomal subunit. The macrolide binding site is composed primarily of rRNA. However, the mode of interaction of macrolides with rRNA and the exact location of the drug binding site have yet to be described. A new class of macrolide antibiotics, known as ketolides, show improved activity against organisms that have developed resistance to previously used macrolides. The biochemical reasons for increased potency of ketolides remain unknown. Here we describe the first mutation that confers resistance to ketolide antibiotics while leaving cells sensitive to other types of macrolides. A transition of U to C at position 2609 of 23S rRNA rendered E. coli cells resistant to two different types of ketolides, telithromycin and ABT-773, but increased slightly the sensitivity to erythromycin, azithromycin, and a cladinose-containing derivative of telithromycin. Ribosomes isolated from the mutant cells had reduced affinity for ketolides, while their affinity for erythro- mycin was not diminished.
    [Show full text]
  • Clinical Efficacy of Doxycycline for Treatment of Macrolide-Resistant
    antibiotics Article Clinical Efficacy of Doxycycline for Treatment of Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Children Hyunju Lee 1,2, Youn Young Choi 3, Young Joo Sohn 3 , Ye Kyung Kim 3, Mi Seon Han 4 , Ki Wook Yun 1,3 , Kyungmin Kim 2 , Ji Young Park 5 , Jae Hong Choi 6, Eun Young Cho 7 and Eun Hwa Choi 1,3,* 1 Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Korea; [email protected] (H.L.); [email protected] (K.W.Y.) 2 Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam 13620, Korea; [email protected] 3 Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea; [email protected] (Y.Y.C.); [email protected] (Y.J.S.); [email protected] (Y.K.K.) 4 Department of Pediatrics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul 07061, Korea; [email protected] 5 Department of Pediatrics, Chung-Ang University Hospital, Seoul 06973, Korea; [email protected] 6 Department of Pediatrics, Jeju National University School of Medicine, Jeju 63241, Korea; [email protected] 7 Department of Pediatrics, Chungnam National University Hospital, Daejeon 35015, Korea; [email protected] * Correspondence: [email protected] Abstract: In areas with high prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) pneumonia, treatment in children has become challenging. This study aimed to analyze the efficacy Citation: Lee, H.; Choi, Y.Y.; Sohn, of macrolides and doxycycline with regard to the presence of macrolide resistance. We analyzed Y.J.; Kim, Y.K.; Han, M.S.; Yun, K.W.; children with MP pneumonia during the two recent epidemics of 2014–2015 and 2019–2020 from Kim, K.; Park, J.Y.; Choi, J.H.; Cho, four hospitals in Korea.
    [Show full text]
  • Macrolide Esterase-Producing Escherichia Coli Clinically Isolated in Japan
    VOL. 53 NO. 5, MAY2000 THE JOURNAL OF ANTIBIOTICS pp.516 - 524 Macrolide Esterase-producing Escherichia coli Clinically Isolated in Japan Akio Nakamura, Kyoko Nakazawa, Izumi Miyakozawa, Satoko Mizukoshi, Kazue Tsurubuchi, Miyuki Nakagawa, Koji O'hara* and Tetsuo Sawai Department of Microbial Chemistry, Faculty of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan (Received for publication January 25, 2000) Current Japanese clinical practice involves the usage of large amounts of newmacrolides such as clarithromycin and roxithromycin for the treatment of diffuse panbronchiolitis, Helicobacter pylori and Mycobacterium avium complex infections. In this study, the phenotypes, genotypes, and macrolide resistance mechanisms of macrolide-inactivating Escherichia coll recovered in Japan from 1996 to 1997, were investigated. The isolation rate of erythromycin A highly-resistant E. coli (MIC > 1600 /xg/ml) in Japan slightly increased from 0.5% in 1986 to 1.2% in 1997. In six macrolide-resistant strains, recovered from the strains collected for this study during 1996 to 1997, the inactivation of macrolide could be detected with or without added ATPin the assay system. The appearance of erythromycin A-inactivating enzyme independent of ATPwas novel from Japanese isolates, and the ]H NMRspectra of oleandomycin hydrolyzed by the three ATP-independent isolates were examined. It was clearly shown that the lactone ring at the position of C-13 was cleaved as 13-H signal in aglycon of oleandomycin upper shifted. These results suggested the first detection of macrolide-lactone ring-hydrolase from clinical isolates in Japan. These results suggested the first detection of an ATP-independent macrolide-hydrolyzing enzyme from Japanese clinical isolates.
    [Show full text]
  • Trend Analysis of Antibiotics Consumption Using WHO Aware Classification in Tertiary Care Hospital
    International Journal of Basic & Clinical Pharmacology Bhardwaj A et al. Int J Basic Clin Pharmacol. 2020 Nov;9(11):1675-1680 http:// www.ijbcp.com pISSN 2319-2003 | eISSN 2279-0780 DOI: https://dx.doi.org/10.18203/2319-2003.ijbcp20204493 Original Research Article Trend analysis of antibiotics consumption using WHO AWaRe classification in tertiary care hospital Ankit Bhardwaj*, Kaveri Kapoor, Vivek Singh Saraswathi institute of Medical Sciences, Pilakhuwa, Hapur, Uttar Pradesh, India Received: 21 August 2020 Accepted: 21 September 2020 *Correspondence: Dr. Ankit Bhardwaj, Email: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Aim of the study was to assess trend in antibiotics consumption pattern from 2016 to 2019 using AWaRe classification, ATC and Defined daily dose methodology (DDD) in a tertiary care hospital. Antibiotics are crucial for treating infectious diseases and have significantly improved the prognosis of patients with infectious diseases, reducing morbidity and mortality. The aim of the study is to classify the antibiotic based on WHO AWaRe classification and compare their four-year consumption trends. The study was conducted at a tertiary care center, Pilakhuwa, Hapur. Antibiotic procurement data for a period of 4 years (2016-2019) was collected from the Central medical store. Methods: This is a retrospective time series analysis of systemic antibiotics with no intervention at patient level. Antibiotic procurement was taken as proxy for consumption assuming that same has been used.
    [Show full text]
  • ARCH-Vet Anresis.Ch
    Usage of Antibiotics and Occurrence of Antibiotic Resistance in Bacteria from Humans and Animals in Switzerland Joint report 2013 ARCH-Vet anresis.ch Publishing details © Federal Office of Public Health FOPH Published by: Federal Office of Public Health FOPH Publication date: November 2015 Editors: Federal Office of Public Health FOPH, Division Communicable Diseases. Elisabetta Peduzzi, Judith Klomp, Virginie Masserey Design and layout: diff. Marke & Kommunikation GmbH, Bern FOPH publication number: 2015-OEG-17 Source: SFBL, Distribution of Publications, CH-3003 Bern www.bundespublikationen.admin.ch Order number: 316.402.eng Internet: www.bag.admin.ch/star www.blv.admin.ch/gesundheit_tiere/04661/04666 Table of contents 1 Foreword 4 Vorwort 5 Avant-propos 6 Prefazione 7 2 Summary 10 Zusammenfassung 12 Synthèse 14 Sintesi 17 3 Introduction 20 3.1 Antibiotic resistance 20 3.2 About anresis.ch 20 3.3 About ARCH-Vet 21 3.4 Guidance for readers 21 4 Abbreviations 24 5 Antibacterial consumption in human medicine 26 5.1 Hospital care 26 5.2 Outpatient care 31 5.3 Discussion 32 6 Antibacterial sales in veterinary medicines 36 6.1 Total antibacterial sales for use in animals 36 6.2 Antibacterial sales – pets 37 6.3 Antibacterial sales – food producing animals 38 6.4 Discussion 40 7 Resistance in bacteria from human clinical isolates 42 7.1 Escherichia coli 42 7.2 Klebsiella pneumoniae 44 7.3 Pseudomonas aeruginosa 48 7.4 Acinetobacter spp. 49 7.5 Streptococcus pneumoniae 52 7.6 Enterococci 54 7.7 Staphylococcus aureus 55 Table of contents 1 8 Resistance in zoonotic bacteria 58 8.1 Salmonella spp.
    [Show full text]