Trends in Antibiotic Utilization in Eight Latin American Countries, 1997–2007

Total Page:16

File Type:pdf, Size:1020Kb

Trends in Antibiotic Utilization in Eight Latin American Countries, 1997–2007 Investigación original / Original research Trends in antibiotic utilization in eight Latin American countries, 1997–2007 Veronika J. Wirtz,1 Anahí Dreser,1 and Ralph Gonzales 2 Suggested citation Wirtz VJ, Dreser A, Gonzales R. Trends in antibiotic utilization in eight Latin American Countries, 1997–2007. Rev Panam Salud Publica. 2010;27(3):219–25. ABSTRACT Objective. To describe the trends in antibiotic utilization in eight Latin American countries between 1997–2007. Methods. We analyzed retail sales data of oral and injectable antibiotics (World Health Or- ganization (WHO) Anatomic Therapeutic Chemical (ATC) code J01) between 1997 and 2007 for Argentina, Brazil, Chile, Colombia, Mexico, Peru, Uruguay, and Venezuela. Antibiotics were aggregated and utilization was calculated for all antibiotics (J01); for macrolides, lin- cosamindes, and streptogramins (J01 F); and for quinolones (J01 M). The kilogram sales of each antibiotic were converted into defined daily dose per 1 000 inhabitants per day (DID) ac- cording to the WHO ATC classification system. We calculated the absolute change in DID and relative change expressed in percent of DID variation, using 1997 as a reference. Results. Total antibiotic utilization has increased in Peru, Venezuela, Uruguay, and Brazil, with the largest relative increases observed in Peru (5.58 DID, +70.6%) and Venezuela (4.81 DID, +43.0%). For Mexico (–2.43 DID; –15.5%) and Colombia (–4.10; –33.7%), utilization decreased. Argentina and Chile showed major reductions in antibiotic utilization during the middle of this period. In all countries, quinolone use increased, particularly sharply in Venezuela (1.86 DID, +282%). The increase in macrolide, lincosaminde, and streptogramin use was greatest in Peru (0.76 DID, +82.1%), followed by Brazil, Argentina, and Chile. Conclusions. Analyzing antibiotic utilization in Latin America presents a series of chal- lenges. Creating policy-relevant evidence based on antimicrobial consumption patterns is needed in order to foster policies aimed at improving appropriate use of antibiotics in the region. Key words Pharmacoepidemiology; anti-bacterial agents; drug resistance, microbial; national drug policy; Latin America. Resistance to antibiotics is an impor- broad-spectrum antibiotics. Over the last among other initiatives funded by the tant public health problem as it leads two decades, it has been clearly estab- European Union, is creating evidence to to treatment failures (with incumbent lished that high levels of community an- inform public health policies on use and morbidity and mortality) and the in- tibiotic consumption correlate with high surveillance of consumption (3). It has creased empirical use of more costly levels of community resistance to antibi- triggered an unprecedented wave of an- otics (1–3). Consequently, learning about tibiotic consumption data all over Eu- 1 Health Systems Research Centre, National Insti- the patterns of community antibiotic rope (4–6), national campaigns to im- tute of Public Health, Cuernavaca, Mexico. Send consumption is fundamental in order to prove antibiotic use (7), and many correspondence to: Veronika J. Wirtz, Health Sys- tems Research Centre, National Institute of Public design regional and local interventions research studies to extend surveillance Health, Av. Universidad 655, Cuernavaca 62100, directed at optimizing the use of these and other interventions to improve an- Mexico; e-mail: [email protected]. important medicines. tibiotic use (8). In many other parts of the 2 Division of General Internal Medicine, University of California, San Francisco, United States of In Europe, the European Surveillance world, particularly developing coun- America. on Antibiotic Consumption (ESAC), tries, measuring consumption of antibi- Rev Panam Salud Publica 27(3), 2010 219 Original research Wirtz et al. • Antibiotic utilization in eight Latin American countries otics presents a major challenge; it tradi- ies of antibiotic utilization patterns (16), based on the proportion of a given coun- tionally has received little attention and, among them the ESAC project (3). For try’s total medication market volume consequently, modest funding (9). Infor- analysis, we used the WHO ATC classi- that was distributed via retail sector ver- mation systems are scarce and unreli- fication and the defined daily dose sus government (15). These data were able; local studies are time and resource (DDD) system of WHO for 2008 (17). available for specific years for each coun- intensive, and extrapolating consump- The unit of analysis provided was try: 2008 data for Colombia and Uru- tion from the local to the national level kilogram of sales per year aggregated by guay; 2007 data for Argentina, Brazil, has major limitations (10). country, which we converted to defined and Peru; 2004 data for Mexico; 2001 data In Latin America, the Pan American daily dose per 1 000 inhabitants per day for Venezuela; and 2000 data for Chile. Conference on Antimicrobial Resistance (DID). We obtained population informa- The funding source of this study did held in 1998 concluded that among the tion from the Pan American Health not play a role in study design; in collec- main priorities for the region were mea- Organization database (18). For the tion, analysis, and interpretation of data; suring and reporting antibiotic consump- eight countries studied, we analyzed the in writing the report; and in the decision tion (11). Although notable advances trend of antibiotic consumption mea- to submit the paper for publication. have occurred in regional surveillance of sured as DID between 1997 and 2007 resistance (12), the patterns and severity and carried out a cross-sectional analy- RESULTS of antimicrobial consumption in Latin sis of the main therapeutic groups of an- American countries have been monitored tibiotics consumed in 2007. We also con- Figure 1 presents national antibiotic only sporadically (13, 14). The objective ducted focused analyses on the use of utilization rates in eight Latin American of this study was to describe the trends in two therapeutic classes of antibiotics: countries between 1997 and 2007. In antibiotic consumption in eight Latin macrolide, lincosamindes, and strep- 1997, Mexico (15.69 DID) had the highest American countries between 1997 and togramins (J01 F) and quinolone (J01 M). antibiotic utilization followed by Ar- 2007. They were selected because of recent gentina (14.37 DID) and Chile (14.07 observations that macrolide resistance DID). The three countries with the low- MATERIALS AND METHODS among Streptococcus pneumoniae and est utilization in 1997 were Peru (7.91 group A streptococcus is associated DID), Brazil (6.51 DID), and Uruguay We used routinely collected retail sales with azithromycin consumption (be- (5.43 DID). By 2007, Argentina (16.64 data on antibiotics (World Health Orga- cause of its long half-life) (19, 20) and DID) and Venezuela (15.99 DID) headed nization (WHO) Anatomic Therapeutic that new patterns of fluoroquinolone re- the list of countries in antibiotic use fol- Chemical (ATC) code J01) between 1997 sistance are emerging among S. pneumo- lowed by Peru (13.50 DID), Mexico and 2007 from eight Latin American coun- niae as well as among enteric and geni- (13.26 DID), and Chile (12.53). Signifi- tries: Argentina, Brazil, Chile, Colombia, tourinary pathogens (21). cantly lower was antibiotic use in Mexico, Peru, Uruguay, and Venezuela. In order to calculate national rates of Uruguay (8.90 DID), Colombia (8.09 Only antibiotic formulations with sys- antibiotic utilization based on national DID), and Brazil (7.01 DID), with the temic absorption or delivery (oral or par- population estimates, we adjusted the lowest utilization rates of the eight coun- enteral) were taken into account; excluded numerator for antibiotic sales volume tries studied. were products with topical and vaginal or rectal application. We chose countries with the largest pharmaceutical markets FIGURE 1. Trends of national antibiotic utilization in eight Latin American countries, 1997–2007 in Latin America. The data were derived from a health 18.00 care consultancy organization, which re- 16.00 lies on reports of a sample of retail wholesalers and, in addition, on infor- 14.00 mation provided by a sample of pharma- cies in some countries (15). All data pro- 12.00 vided by the health care consultancy organization were national antibiotic 10.00 sales to retail sectors (direct sales in pri- 8.00 vate pharmacies and indirect sales in pri- vate clinics and hospitals) and do not in- 6.00 clude antibiotics purchased by the public sector (government providers). Given 4.00 the Latin American context in which re- 2.00 strictions to sell antibiotics only with a Defined daily dose per 1 000 inhabitants day medical prescription are not enforced, 0.00 the data include sales both with and 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 without prescriptions. These data repre- Year sent the industry standard for estimating Argentina Colombia Uruguay Brazil Mexico Venezuela national retail sales volume of medica- tions and have been widely used in stud- Chile Peru 220 Rev Panam Salud Publica 27(3), 2010 Wirtz et al. • Antibiotic utilization in eight Latin American countries Original research In terms of relative change using 1997 its baseline rate (–1.53 DID, –10.9%). With macrolides, lincosamindes, and strep- as a baseline, antibiotic utilization has in- respect to the average change (1.07 DID) togramins and the group of quinolones. creased in Peru (5.58 DID, +70.6%), in all eight countries between 1997 and Examining 10-year trends for macro- Uruguay (3.48 DID, 64.0%), and Vene- 2007, Colombia showed the largest per- lide, lincosaminde, and streptogramin zuela (4.81 DID, +43.0%), whereas in centage decrease (–483.2%) and Peru antibiotics showed large increases in Mexico (–2.43 DID, –15.5%) and Colom- showed the largest percentage increase Peru (0.76 DID, +82.1%), Brazil (+0.41 bia (–4.10 DID, –33.7%) it has declined (+421.5%) (Table 1). DID, +61.5%), and Argentina (0.74 DID, (Table 1).
Recommended publications
  • National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): a Cross-Sectional Study
    Tropical Medicine and Infectious Disease Article National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): A Cross-Sectional Study Joseph Sam Kanu 1,2,* , Mohammed Khogali 3, Katrina Hann 4 , Wenjing Tao 5, Shuwary Barlatt 6,7, James Komeh 6, Joy Johnson 6, Mohamed Sesay 6, Mohamed Alex Vandi 8, Hannock Tweya 9, Collins Timire 10, Onome Thomas Abiri 6,11 , Fawzi Thomas 6, Ahmed Sankoh-Hughes 12, Bailah Molleh 4, Anna Maruta 13 and Anthony D. Harries 10,14 1 National Disease Surveillance Programme, Sierra Leone National Public Health Emergency Operations Centre, Ministry of Health and Sanitation, Cockerill, Wilkinson Road, Freetown, Sierra Leone 2 Department of Community Health, Faculty of Clinical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone 3 Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1211 Geneva, Switzerland; [email protected] 4 Sustainable Health Systems, Freetown, Sierra Leone; [email protected] (K.H.); [email protected] (B.M.) 5 Unit for Antibiotics and Infection Control, Public Health Agency of Sweden, Folkhalsomyndigheten, SE-171 82 Stockholm, Sweden; [email protected] 6 Pharmacy Board of Sierra Leone, Central Medical Stores, New England Ville, Freetown, Sierra Leone; [email protected] (S.B.); [email protected] (J.K.); [email protected] (J.J.); [email protected] (M.S.); [email protected] (O.T.A.); [email protected] (F.T.) Citation: Kanu, J.S.; Khogali, M.; 7 Department of Pharmaceutics and Clinical Pharmacy & Therapeutics, Faculty of Pharmaceutical Sciences, Hann, K.; Tao, W.; Barlatt, S.; Komeh, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 0000, Sierra Leone 8 J.; Johnson, J.; Sesay, M.; Vandi, M.A.; Directorate of Health Security & Emergencies, Ministry of Health and Sanitation, Sierra Leone National Tweya, H.; et al.
    [Show full text]
  • 1057-1064, 1984 the Effect of Pipemidic Acid on The
    Microbiol. Immunol. Vol. 28 (9), 1057-1064, 1984 The Effect of Pipemidic Acid on the Growth of a Stable L-Form of •ôNH•ôStaphylococcus aureus•ôNS•ô Kunihiko YABU,*,1 Hiromi ToMizu,1 and Yayoi KANDA2 1 Department of Biology, Hokuriku University School of Pharmacy, Kanazawa-machi, Kanazawa, Ishikawa ,920-11, and 2Department of Microbiology, Teikyo University School of Medicine, Kaga 2-chome, Ilabashi-ku, Tokyo 173 (Accepted for publication, June 12, 1984) Bacterial L-forms usually display spherical forms in an osmotically protective medium and seem to lack the typical binary fission process of cellular division ob servedin most bacteria (7). Although various modes of replication, such as budding binary fission, and release of elementary bodies from large bodies have been observed by light and electron microscopy (2, 5, 16), little is known about the processes involved in replication of L-forms. In the course of an experiment designed to test the effect of DNA synthesis inhibitors on the growth of a stable L-form of •ôNH•ôStaphylococcus•ôNS•ôaureus which grows in liquid medium, it was found that pipemidic acid, a synthetic antibacterial agent structurally related to nalidixic acid (13), induced a marked morphological altera tionat growth inhibitory concentrations. This study was initiated in an attempt to clarify the mechanism of replication of stable L-forms by analyzing the mor phologicalalteration caused by pipemidic acid. The stable L-form used was isolated as follows. S. •ôNH•ôaureus•ôNS•ôFDA 209P was grown in 10ml of Brain Heart Infusion broth (Difco) at 37C. The culture grown at 5•~105 colony-forming units (CFU) per ml was washed with saline by filtration and suspended in saline containing 100ƒÊg of N-methyl-N'-nitro-N-nitrosoguanidine per nil.
    [Show full text]
  • Clinically Isolated Chlamydia Trachomatis Strains
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, JUIY 1988, p. 1080-1081 Vol. 32, No. 7 0066-4804/88/071080-02$02.00/0 Copyright © 1988, American Society for Microbiology In Vitro Activities of T-3262, NY-198, Fleroxacin (AM-833; RO 23-6240), and Other New Quinolone Agents against Clinically Isolated Chlamydia trachomatis Strains HIROSHI MAEDA,* AKIRA FUJII, KATSUHISA NAKATA, SOICHI ARAKAWA, AND SADAO KAMIDONO Department of Urology, School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe-city, Japan Received 9 December 1987/Accepted 29 March 1988 The in vitro activities of three newly developed quinolone drugs (T-3262, NY-198, and fleroxacin [AM-833; RO 23-6240]) against 10 strains of clinically isolated Chiamydia trachomatis were assessed and compared with those of other quinolones and minocycline. T-3262 (MIC for 90% of isolates tested, 0.1 ,ug/ml) was the most active of the quinolones. The NY-198 and fleroxacin MICs for 90% of isolates were 3.13 and 62.5 ,ug/ml, respectively. Recently, it has become well known that Chlamydia 1-ml sample of suspension was seeded into flat-bottomed trachomatis is an important human pathogen. It is respon- tubes with glass cover slips and incubated at 37°C in 5% CO2 sible not only for trachoma but also for sexually transmitted for 24 h. The monolayer was inoculated with 103 inclusion- infections, including lymphogranuloma venereum. In forming units of C. trachomatis. The tubes were centrifuged women, it causes cervicitis, endometritis, and salpingitis at 2,000 x g at 25°C for 45 min and left undisturbed at room asymptomatically (19), while in men it causes nongono- temperature for 2 h.
    [Show full text]
  • A TWO-YEAR RETROSPECTIVE ANALYSIS of ADVERSE DRUG REACTIONS with 5PSQ-031 FLUOROQUINOLONE and QUINOLONE ANTIBIOTICS 24Th Congress Of
    A TWO-YEAR RETROSPECTIVE ANALYSIS OF ADVERSE DRUG REACTIONS WITH 5PSQ-031 FLUOROQUINOLONE AND QUINOLONE ANTIBIOTICS 24th Congress of V. Borsi1, M. Del Lungo2, L. Giovannetti1, M.G. Lai1, M. Parrilli1 1 Azienda USL Toscana Centro, Pharmacovigilance Centre, Florence, Italy 2 Dept. of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), 27-29 March 2019 Section of Pharmacology and Toxicology , University of Florence, Italy BACKGROUND PURPOSE On 9 February 2017, the Pharmacovigilance Risk Assessment Committee (PRAC) initiated a review1 of disabling To review the adverse drugs and potentially long-lasting side effects reported with systemic and inhaled quinolone and fluoroquinolone reactions (ADRs) of antibiotics at the request of the German medicines authority (BfArM) following reports of long-lasting side effects systemic and inhaled in the national safety database and the published literature. fluoroquinolone and quinolone antibiotics that MATERIAL AND METHODS involved peripheral and central nervous system, Retrospective analysis of ADRs reported in our APVD involving ciprofloxacin, flumequine, levofloxacin, tendons, muscles and joints lomefloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin, prulifloxacin, rufloxacin, cinoxacin, nalidixic acid, reported from our pipemidic given systemically (by mouth or injection). The period considered is September 2016 to September Pharmacovigilance 2018. Department (PVD). RESULTS 22 ADRs were reported in our PVD involving fluoroquinolone and quinolone antibiotics in the period considered and that affected peripheral or central nervous system, tendons, muscles and joints. The mean patient age was 67,3 years (range: 17-92 years). 63,7% of the ADRs reported were serious, of which 22,7% caused hospitalization and 4,5% caused persistent/severe disability. 81,8% of the ADRs were reported by a healthcare professional (physician, pharmacist or other) and 18,2% by patient or a non-healthcare professional.
    [Show full text]
  • Data on Before and After the Traceability System of Veterinary Antimicrobial Prescriptions in Small Animals at the University Veterinary Teaching Hospital of Naples
    animals Article Data on before and after the Traceability System of Veterinary Antimicrobial Prescriptions in Small Animals at the University Veterinary Teaching Hospital of Naples Claudia Chirollo , Francesca Paola Nocera , Diego Piantedosi, Gerardo Fatone , Giovanni Della Valle, Luisa De Martino * and Laura Cortese Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Via Delpino 1, 80137 Naples, Italy; [email protected] (C.C.); [email protected] (F.P.N.); [email protected] (D.P.); [email protected] (G.F.); [email protected] (G.D.V.); [email protected] (L.C.) * Correspondence: [email protected]; Tel.: +39-081-253-6180 Simple Summary: Veterinary electronic prescription (VEP) is mandatory by law, dated 20 November 2017, No. 167 (European Law 2017) Article 3, and has been implemented in Italy since April 2019. In this study, the consumption of antimicrobials before and after the mandatory use of VEP was analyzed at the Italian University Veterinary Teaching Hospital of Naples in order to understand how the traceability of antimicrobials influences veterinary prescriptions. The applicability and utility of VEP may present an effective surveillance strategy able to limit both the improper use of Citation: Chirollo, C.; Nocera, F.P.; antimicrobials and the spread of multidrug-resistant pathogens, which have become a worrying Piantedosi, D.; Fatone, G.; Della Valle, threat both in veterinary and human medicine. G.; De Martino, L.; Cortese, L. Data on before and after the Traceability Abstract: Over recent decades, antimicrobial resistance has been considered one of the most relevant System of Veterinary Antimicrobial issues of public health.
    [Show full text]
  • Maxaquin® Lomefloxacin Hydrochloride Tablets to Reduce The
    Maxaquin® lomefloxacin hydrochloride tablets To reduce the development of drug-resistant bacteria and maintain the effectiveness of Maxaquin and other antibacterial drugs, Maxaquin should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION Maxaquin (lomefloxacin HCl) is a synthetic broad-spectrum antimicrobial agent for oral administration. Lomefloxacin HCl, a difluoroquinolone, is the monohydrochloride salt of (±)-1-ethyl-6, 8-difluoro-1, 4-dihydro-7-(3-methyl-1-piperazinyl)-4-oxo-3- quinolinecarboxylic acid. Its empirical formula is C17H19F2N3O3·HCl, and its structural formula is: Lomefloxacin HCl is a white to pale yellow powder with a molecular weight of 387.8. It is slightly soluble in water and practically insoluble in alcohol. Lomefloxacin HCl is stable to heat and moisture but is sensitive to light in dilute aqueous solution. Maxaquin is available as a film-coated tablet formulation containing 400 mg of lomefloxacin base, present as the hydrochloride salt. The base content of the hydrochloride salt is 90.6%. The inactive ingredients are carboxymethylcellulose calcium, hydroxypropyl cellulose, hypromellose, lactose, magnesium stearate, polyethylene glycol, polyoxyl 40 stearate, and titanium dioxide. CLINICAL PHARMACOLOGY Pharmacokinetics in healthy volunteers: In 6 fasting healthy male volunteers, approximately 95% to 98% of a single oral dose of lomefloxacin was absorbed. Absorption was rapid following single doses of 200 and 400 mg (Tmax 0.8 to 1.4 hours). Mean
    [Show full text]
  • Early-Life Antibiotic Use and Risk of Asthma and Eczema: Results of a Discordant Twin Study
    Early View Original article Early-life antibiotic use and risk of asthma and eczema: results of a discordant twin study Elise M.A. Slob, Bronwyn K. Brew, Susanne J.H. Vijverberg, Chantal J.A.R. Kats, Cristina Longo, Mariëlle W. Pijnenburg, Toos C.E.M. van Beijsterveldt, Conor V. Dolan, Meike Bartels, Patrick Magnusson, Paul Lichtenstein, Tong Gong, Gerard H. Koppelman, Catarina Almqvist, Dorret I. Boomsma, Anke H. Maitland-van der Zee Please cite this article as: Slob EMA, Brew BK, Vijverberg SJH, et al. Early-life antibiotic use and risk of asthma and eczema: results of a discordant twin study. Eur Respir J 2020; in press (https://doi.org/10.1183/13993003.02021-2019). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2020 Early-life antibiotic use and risk of asthma and eczema: results of a discordant twin study Elise M.A. Slob1,2 Bronwyn K. Brew3,4 Susanne J.H. Vijverberg1,2 Chantal J.A.R. Kats1 Cristina Longo1 Mariëlle W. Pijnenburg5 Toos C.E.M. van Beijsterveldt6 Conor V. Dolan6 Meike Bartels6 Patrick Magnusson3 Paul Lichtenstein3 Tong Gong3 Gerard H. Koppelman7,8 Catarina Almqvist3,9 Dorret I. Boomsma6 Anke H. Maitland-van der Zee1,2* 1. Department of Respiratory Medicine, Amsterdam University Medical Centers, University of Amsterdam, P.O.
    [Show full text]
  • We Have Reported That the Antibiotics Chloramphenicol, Lincomycin
    THE BIOGENESIS OF MITOCHONDRIA, V. CYTOPLASMIC INHERITANCE OF ERYTHROMYCIN RESISTANCE IN SACCHAROMYCES CEREVISIAE* BY ANTHONY W. LINNANE, G. W. SAUNDERS, ELLIOT B. GINGOLD, AND H. B. LUKINS BIOCHEMISTRY DEPARTMENT, MONASH UNIVERSITY, CLAYTON, VICTORIA, AUSTRALIA Communicated by David E. Green, December 26, 1967 The recognition and study of respiratory-deficient mutants of yeast has been of fundamental importance in contributing to our knowledge of the genetic control of the formation of mitochondria. From these studies it has been recognized that cytoplasmic genetic determinants as well as chromosomal genes are involved in the biogenesis of yeast mitochondria.1' 2 Following the recog- nition of the occurrence of mitochondrial DNA,3 4 attention has recently been focused on the relationship between mitochondrial DNA and the cytoplasmic determinant.' However, the information on this latter subject is limited and is derived from the study of a single class of mutant of this determinant, the re- spiratory-deficient cytoplasmic petite. This irreversible mutation is pheno- typically characterized by the inability of the cell to form a number of compo- nents of the respiratory system, including cytochromes a, a3, b, and c1.6 A clearer understanding of the role of cytoplasmic determinants in mitochondrial bio- genesis, could result from the characterization of new types of cytoplasmic mutations which do not result in such extensive biochemical changes. This would thus simplify the biochemical analyses as well as providing additional cytoplasmic markers to assist further genetic studies. We have reported that the antibiotics chloramphenicol, lincomycin, and the macrolides erythromycin, carbomycin, spiramycin, and oleandomycin selec- tively inhibit in vitro amino acid incorporation by yeast mitochondria, while not affecting the yeast cytoplasmic ribosomal system.7' 8 Further, these antibiotics do not affect the growth of S.
    [Show full text]
  • Erythromycin* Class
    Erythromycin* Class: Macrolide Overview Erythromycin, a naturally occurring macrolide, is derived from Streptomyces erythrus. This macrolide is a member of the 14-membered lactone ring group. Erythromycin is predominantly erythromycin A, but B, C, D and E forms may be included in preparations. These forms are differentiated by characteristic chemical substitutions on structural carbon atoms and on sugars. Although macrolides are generally bacteriostatic, erythromycin can be bactericidal at high concentrations. Eighty percent of erythromycin is metabolically inactivated, therefore very little is excreted in active form. Erythromycin can be administered orally and intravenously. Intravenous use is associated with phlebitis. Toxicities are rare for most macrolides and hypersensitivity with rash, fever and eosinophilia is rarely observed, except with the estolate salt. Erythromycin is well absorbed when given orally. Erythromycin, however, exhibits poor bioavailability, due to its basic nature and destruction by gastric acids. Oral formulations are provided with acid-resistant coatings to facilitate bioavailability; however these coatings can delay therapeutic blood levels. Additional modifications produced better tolerated and more conveniently dosed newer macrolides, such as azithromycin and clarithromycin. Erythromycin can induce transient hearing loss and, most commonly, gastrointestinal effects evidenced by cramps, nausea, vomiting and diarrhea. The gastrointestinal effects are caused by stimulation of the gastric hormone, motilin, which
    [Show full text]
  • Swedres-Svarm 2010
    SVARM|2010 Swedish Veterinary Antimicrobial Resistance Monitoring Content Swedish Veterinary Antimicrobial Resistance Monitoring 2010 Preface .............................................................................................3 Guidance for readers ........................................................................4 Editors Summary ..........................................................................................5 Björn Bengtsson, Helle Ericsson Unnerstad, Sammanfattning...............................................................................7 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Use of antimicrobials .......................................................................9 Department of Animal Health and Zoonotic bacteria ...........................................................................14 Antimicrobial Strategies, National Veterinary Salmonella ...................................................................................14 Institute (SVA) SE-751 89 Uppsala, Sweden Campylobacter .............................................................................18 Methicillin resistant Staphylococcus aureus (MRSA) ....................19 Authors Highlight: Escherichia coli with ESBL - or transferrable Björn Bengtsson, Helle Ericsson Unnerstad, AmpC-type resistance in broilers .............................................22 Christina Greko, Ulrika Grönlund Andersson and Annica Landén Indicator bacteria ...........................................................................24
    [Show full text]
  • Comparable Bioavailability and Disposition of Pefloxacin in Patients
    pharmaceutics Article Comparable Bioavailability and Disposition of Pefloxacin in Patients with Cystic Fibrosis and Healthy Volunteers Assessed via Population Pharmacokinetics Jürgen B. Bulitta 1,* , Yuanyuan Jiao 1, Cornelia B. Landersdorfer 2 , Dhruvitkumar S. Sutaria 1, 1 1 3 4 5,6, Xun Tao , Eunjeong Shin , Rainer Höhl , Ulrike Holzgrabe , Ulrich Stephan y and Fritz Sörgel 5,6,* 1 Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, FL 32827, USA 2 Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville VIC 3052, Australia 3 Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, 90419 Nürnberg, Germany 4 Institute for Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany 5 IBMP—Institute for Biomedical and Pharmaceutical Research, 90562 Nürnberg-Heroldsberg, Germany 6 Department of Pharmacology, University of Duisburg, 47057 Essen, Germany * Correspondence: [email protected]fl.edu (J.B.B.); [email protected] (F.S.); Tel.: +1-407-313-7010 (J.B.B.); +49-911-518-290 (F.S.) Deceased. y Received: 17 May 2019; Accepted: 4 July 2019; Published: 10 July 2019 Abstract: Quinolone antibiotics present an attractive oral treatment option in patients with cystic fibrosis (CF). Prior studies have reported comparable clearances and volumes of distribution in patients with CF and healthy volunteers for primarily renally cleared quinolones. We aimed to provide the first pharmacokinetic comparison for pefloxacin as a predominantly nonrenally cleared quinolone and its two metabolites between both subject groups. Eight patients with CF (fat-free mass [FFM]: 36.3 6.9 kg, average SD) and ten healthy volunteers (FFM: 51.7 9.9 kg) received 400 mg ± ± ± pefloxacin as a 30 min intravenous infusion and orally in a randomized, two-way crossover study.
    [Show full text]
  • 600Mg/2Ml (As Hydrochloride Monohydrate) Injection Vial
    AUSTRALIAN PRODUCT INFORMATION - LINCOCIN lincomycin 600mg/2mL (as hydrochloride monohydrate) injection vial 1. NAME OF THE MEDICINE Lincomycin hydrochloride monohydrate 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each mL contains lincomycin hydrochloride monohydrate equivalent to lincomycin base 300 mg; Excipients with known effect • benzyl alcohol, 9.45 mg For the full list of excipients, see section 6.1, List of Excipients. 3. PHARMACEUTICAL FORM LINCOCIN Injection is a clear, colourless or almost colourless solution, practically free from particles. 4. CLINICAL PARTICULARS 4.1 THERAPEUTIC INDICATIONS LINCOCIN is indicated in the treatment of serious infections due to susceptible strains of gram-positive aerobes such as streptococci, pneumococci and staphylococci. Its use should be reserved for penicillin-allergic patients or other patients for whom, in the judgement of the physician, a penicillin is inappropriate. Because of the risk of colitis (see section 4.4, Special Warnings and Precautions for Use), before selecting lincomycin the physician should consider the nature of infection and the suitability of less toxic alternatives (e.g. erythromycin). LINCOCIN has been demonstrated to be effective in the treatment of staphylococcal infections resistant to other antibiotics and susceptible to lincomycin. Staphylococcal strains resistant to LINCOCIN have been recovered; culture and susceptibility studies should be done in conjunction with LINCOCIN therapy. In the case of macrolides, partial but not complete cross resistance may occur. The drug may be administered concomitantly with other antimicrobial agents with which it is compatible when indicated (see section 4.4, Special Warnings and Precautions for Use). The specific infections for which LINCOCIN is indicated are as follows: * Upper respiratory infections including tonsillitis, pharyngitis, otitis media, sinusitis, scarlet fever and as adjuvant therapy for diphtheria.
    [Show full text]