MACROLIDES (Veterinary—Systemic)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): a Cross-Sectional Study
Tropical Medicine and Infectious Disease Article National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): A Cross-Sectional Study Joseph Sam Kanu 1,2,* , Mohammed Khogali 3, Katrina Hann 4 , Wenjing Tao 5, Shuwary Barlatt 6,7, James Komeh 6, Joy Johnson 6, Mohamed Sesay 6, Mohamed Alex Vandi 8, Hannock Tweya 9, Collins Timire 10, Onome Thomas Abiri 6,11 , Fawzi Thomas 6, Ahmed Sankoh-Hughes 12, Bailah Molleh 4, Anna Maruta 13 and Anthony D. Harries 10,14 1 National Disease Surveillance Programme, Sierra Leone National Public Health Emergency Operations Centre, Ministry of Health and Sanitation, Cockerill, Wilkinson Road, Freetown, Sierra Leone 2 Department of Community Health, Faculty of Clinical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone 3 Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1211 Geneva, Switzerland; [email protected] 4 Sustainable Health Systems, Freetown, Sierra Leone; [email protected] (K.H.); [email protected] (B.M.) 5 Unit for Antibiotics and Infection Control, Public Health Agency of Sweden, Folkhalsomyndigheten, SE-171 82 Stockholm, Sweden; [email protected] 6 Pharmacy Board of Sierra Leone, Central Medical Stores, New England Ville, Freetown, Sierra Leone; [email protected] (S.B.); [email protected] (J.K.); [email protected] (J.J.); [email protected] (M.S.); [email protected] (O.T.A.); [email protected] (F.T.) Citation: Kanu, J.S.; Khogali, M.; 7 Department of Pharmaceutics and Clinical Pharmacy & Therapeutics, Faculty of Pharmaceutical Sciences, Hann, K.; Tao, W.; Barlatt, S.; Komeh, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 0000, Sierra Leone 8 J.; Johnson, J.; Sesay, M.; Vandi, M.A.; Directorate of Health Security & Emergencies, Ministry of Health and Sanitation, Sierra Leone National Tweya, H.; et al. -
First Case of Staphylococci Carrying Linezolid Resistance Genes from Laryngological Infections in Poland
pathogens Article First Case of Staphylococci Carrying Linezolid Resistance Genes from Laryngological Infections in Poland Michał Michalik 1, Maja Kosecka-Strojek 2,* , Mariola Wolska 2, Alfred Samet 1, Adrianna Podbielska-Kubera 1 and Jacek Mi˛edzobrodzki 2 1 MML Medical Centre, Bagno 2, 00-112 Warsaw, Poland; [email protected] (M.M.); [email protected] (A.S.); [email protected] (A.P.-K.) 2 Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; [email protected] (M.W.); [email protected] (J.M.) * Correspondence: [email protected] Abstract: Linezolid is currently used to treat infections caused by multidrug-resistant Gram-positive cocci. Both linezolid-resistant S. aureus (LRSA) and coagulase-negative staphylococci (CoNS) strains have been collected worldwide. Two isolates carrying linezolid resistance genes were recovered from laryngological patients and characterized by determining their antimicrobial resistance patterns and using molecular methods such as spa typing, MLST, SCCmec typing, detection of virulence genes and ica operon expression, and analysis of antimicrobial resistance determinants. Both isolates were multidrug resistant, including resistance to methicillin. The S. aureus strain was identified as ST- 398/t4474/SCCmec IVe, harboring adhesin, hemolysin genes, and the ica operon. The S. haemolyticus strain was identified as ST-42/mecA-positive and harbored hemolysin genes. Linezolid resistance Citation: Michalik, M.; S. aureus Kosecka-Strojek, M.; Wolska, M.; in strain was associated with the mutations in the ribosomal proteins L3 and L4, and in Samet, A.; Podbielska-Kubera, A.; S. -
Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks
processes Review Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks Manuel Conde-Cid 1, Avelino Núñez-Delgado 2 , María José Fernández-Sanjurjo 2 , Esperanza Álvarez-Rodríguez 2, David Fernández-Calviño 1,* and Manuel Arias-Estévez 1 1 Soil Science and Agricultural Chemistry, Faculty Sciences, University Vigo, 32004 Ourense, Spain; [email protected] (M.C.-C.); [email protected] (M.A.-E.) 2 Department Soil Science and Agricultural Chemistry, Engineering Polytechnic School, University Santiago de Compostela, 27002 Lugo, Spain; [email protected] (A.N.-D.); [email protected] (M.J.F.-S.); [email protected] (E.Á.-R.) * Correspondence: [email protected] Received: 30 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Veterinary antibiotics are widely used worldwide to treat and prevent infectious diseases, as well as (in countries where allowed) to promote growth and improve feeding efficiency of food-producing animals in livestock activities. Among the different antibiotic classes, tetracyclines and sulfonamides are two of the most used for veterinary proposals. Due to the fact that these compounds are poorly absorbed in the gut of animals, a significant proportion (up to ~90%) of them are excreted unchanged, thus reaching the environment mainly through the application of manures and slurries as fertilizers in agricultural fields. Once in the soil, antibiotics are subjected to a series of physicochemical and biological processes, which depend both on the antibiotic nature and soil characteristics. Adsorption/desorption to soil particles and degradation are the main processes that will affect the persistence, bioavailability, and environmental fate of these pollutants, thus determining their potential impacts and risks on human and ecological health. -
Erythromycin* Class
Erythromycin* Class: Macrolide Overview Erythromycin, a naturally occurring macrolide, is derived from Streptomyces erythrus. This macrolide is a member of the 14-membered lactone ring group. Erythromycin is predominantly erythromycin A, but B, C, D and E forms may be included in preparations. These forms are differentiated by characteristic chemical substitutions on structural carbon atoms and on sugars. Although macrolides are generally bacteriostatic, erythromycin can be bactericidal at high concentrations. Eighty percent of erythromycin is metabolically inactivated, therefore very little is excreted in active form. Erythromycin can be administered orally and intravenously. Intravenous use is associated with phlebitis. Toxicities are rare for most macrolides and hypersensitivity with rash, fever and eosinophilia is rarely observed, except with the estolate salt. Erythromycin is well absorbed when given orally. Erythromycin, however, exhibits poor bioavailability, due to its basic nature and destruction by gastric acids. Oral formulations are provided with acid-resistant coatings to facilitate bioavailability; however these coatings can delay therapeutic blood levels. Additional modifications produced better tolerated and more conveniently dosed newer macrolides, such as azithromycin and clarithromycin. Erythromycin can induce transient hearing loss and, most commonly, gastrointestinal effects evidenced by cramps, nausea, vomiting and diarrhea. The gastrointestinal effects are caused by stimulation of the gastric hormone, motilin, which -
Antibiotic Use Guidelines for Companion Animal Practice (2Nd Edition) Iii
ii Antibiotic Use Guidelines for Companion Animal Practice (2nd edition) iii Antibiotic Use Guidelines for Companion Animal Practice, 2nd edition Publisher: Companion Animal Group, Danish Veterinary Association, Peter Bangs Vej 30, 2000 Frederiksberg Authors of the guidelines: Lisbeth Rem Jessen (University of Copenhagen) Peter Damborg (University of Copenhagen) Anette Spohr (Evidensia Faxe Animal Hospital) Sandra Goericke-Pesch (University of Veterinary Medicine, Hannover) Rebecca Langhorn (University of Copenhagen) Geoffrey Houser (University of Copenhagen) Jakob Willesen (University of Copenhagen) Mette Schjærff (University of Copenhagen) Thomas Eriksen (University of Copenhagen) Tina Møller Sørensen (University of Copenhagen) Vibeke Frøkjær Jensen (DTU-VET) Flemming Obling (Greve) Luca Guardabassi (University of Copenhagen) Reproduction of extracts from these guidelines is only permitted in accordance with the agreement between the Ministry of Education and Copy-Dan. Danish copyright law restricts all other use without written permission of the publisher. Exception is granted for short excerpts for review purposes. iv Foreword The first edition of the Antibiotic Use Guidelines for Companion Animal Practice was published in autumn of 2012. The aim of the guidelines was to prevent increased antibiotic resistance. A questionnaire circulated to Danish veterinarians in 2015 (Jessen et al., DVT 10, 2016) indicated that the guidelines were well received, and particularly that active users had followed the recommendations. Despite a positive reception and the results of this survey, the actual quantity of antibiotics used is probably a better indicator of the effect of the first guidelines. Chapter two of these updated guidelines therefore details the pattern of developments in antibiotic use, as reported in DANMAP 2016 (www.danmap.org). -
P147-Bioorgchem-Kanamycin Nucleotidyltransferase-1999.Pdf
Bioorganic Chemistry 27, 395±408 (1999) Article ID bioo.1999.1144, available online at http://www.idealibrary.com on Kinetic Mechanism of Kanamycin Nucleotidyltransferase from Staphylococcus aureus1 Misty Chen-Goodspeed,* Janeen L. Vanhooke,² Hazel M. Holden,² and Frank M. Raushel*,2 *Department of Chemistry, Texas A&M University, College Station, Texas 77843; and ²Department of Biochemistry, Institute for Enzyme Research, University of Wisconsin, Madison, Wisconsin 53705 Received December 16, 1998 Kanamycin nucleotidyltransferase (KNTase) catalyzes the transfer of the adenyl group from MgATP to either the 4Ј or 4Љ-hydroxyl group of aminoglycoside antibiotics. The steady state kinetic parameters of the enzymatic reaction have been measured by initial velocity, product, and dead-end inhibition techniques. The kinetic mechanism is ordered where the antibiotic binds prior to MgATP and the modified antibiotic is the last product to be released. The effects of altering the relative solvent viscosity are consistent with the release of the products as the rate-limiting step. The pH profiles for Vmax and V/KATP show that a single ionizable group with apK of ϳ8.9 must be protonated for catalysis. The V/K profile for kanamycin as a function of pH is bell-shaped and indicates that one group must be protonated with a pK value of 8.5, while another group must be unprotonated with a pK value of 6.6. An analysis of the kinetic constants for 10 different aminoglycoside antibiotics and 5 nucleotide triphosphates indicates very little difference in the rate of catalysis or substrate binding among these substrates. ᭧ 1999 Academic Press Key Words: kanamycin nucleotidyltransferase; antibiotic modification. -
Product Summary Resumen De Productos
sommaire du produit product summary resumen de productos www.dutchfarmint.com P R O D U C T S U M M A R Y VETERINARY PHARMACEUTICALS & NUTRACEUTICALS DETERGENTS & DISINFECTANTS PREMIXTURES & ADDITIVES COMPOUND & COMPLEMENTARY FEEDS Dutch Farm International B.V. Nieuw Walden 112 – 1394 PE Nederhorst den Berg - Holland P.O. Box 10 – 1394 ZG Nederhorst den Berg - Holland T: +31 294 25 75 25 - M : +31 6 53 86 88 53 E: [email protected] For the latest news about our company and our product range: visit our website! www.dutchfarmint.com – www.dufamix.com – www.dufafeed.com – www.dufasept.com "Dutch Farm" is a registered trademark Pharmaceutical manufacturer authorisation no. 2418-FIGL Feed business authorisation no. αNL207231 March 2019 Pour-ons Intramammary injectors Dufamec 0.5% Pour-On 39 Cloxa-Ben Dry Cow 92 Kanapen-P 93 Injectables Dufamec 1% 40 ANTI-INFLAMMATORIES VITAMINS & MINERALS Dufamec-N 5/250 41 Dufaquone 5% 42 Dexamethason 0.2% inj 94 Water soluble powders Dufaprofen 10% inj 95 Dufadigest Powder 4 Powders for injection Phenylbutazon 20% inj 96 Vitacon Extra 5 Dufanazen 43 ANAESTHETICS Tablets ANTIBIOTICS Vitamineral-Dog Tablets 6 Ketamin 10% inj 97 Water soluble powders Xylazin 2% inj 99 Oral liquids Colistine 4800 45 Dufa-Calcio Gel 7 Doxycycline 20% 46 ANTIPYRETICS Dufa-Start 8 Dufadox-G 100/100 wsp 47 Dufamin Oral 9 Dufamox 50% 49 Dufapirin C+K3 wsp 101 Dufaminovit Oral 10 Dufamox-C 200/2mln 51 Dufavit AD3E 100/20/20 11 Dufampicillin 50% 53 HORMONES Dufavit E 15% + Sel Oral 12 Dufaphos-T 54 Electrolysol Oral 13 Fenosvit-C -
A New Mutation in 16S Rrna Ofescherichia Coli
464-466 Nucleic Acids Research, 1995, Vol. 23, No. 3 Q-D/ 1995 Oxford University Press A new mutation in 16S rRNA of Escherichia coli conferring spectinomycin resistance Urban Johanson and Diarmaid Hughes* Department of Molecular Biology, Uppsala University, Biomedical Center, S-751 24 Uppsala, Sweden Received September 24, 1994; Revised and Accepted December 30, 1994 ABSTRACT 1067 1089 A -U We report a novel mutation, Cl 066U in 16S rRNA which was selected for resistance to spectinomycin, an U @- G4C antibiotic which inhibits ribosomal translocation. The U,A,C e- G,U,A minimal inhibitory concentration (MIC) of spectinomy- A cin determined for this mutant (15 pg/ml) is greater U U than with the wild-type plasmid (5 ig/ml) but lower than 1062 1194 with the well known C1192U mutation (>80 pg/ml). The Cl 066U mutation also increases the cells sensitivity to Figure 1. Secondary structure of the upper part of helix 34 of 16S rRNA in fusidic acid, another antibiotic which inhibits transla- Ecoli (24) with the novel C1066U mutation indicated by an open U. In tion at the translocation stage, whereas C1192U is addition, all other known SpcR mutations are shown. The mutations are A1191G,C, Gi 193A in C.reinhardtii chloroplast (25); G1064A (20), A1191C, unchanged relative to the wild type. We discuss why Cl 192U (26) inN.tabacum chloroplast; GI 193A (20) inN.undulata chloroplast the acquisition of resistance to one of these drugs is and C1192U (1), C1192U,G,A (19), G1064U,C,A, G1064U-C1192A, often associated with hypersensitivity to the other. -
Identification of Macrolide Antibiotic-Binding Human P8 Protein
J. Antibiot. 61(5): 291–296, 2008 THE JOURNAL OF ORIGINAL ARTICLE ANTIBIOTICS Identification of Macrolide Antibiotic-binding Human_p8 Protein Tetsuro Morimura, Mio Hashiba, Hiroshi Kameda, Mihoko Takami, Hirokazu Takahama, Masahiko Ohshige, Fumio Sugawara Received: December 10, 2007 / Accepted: May 1, 2008 © Japan Antibiotics Research Association Abstract Clarithromycin is a macrolide antibiotic that is widely used in clinical medicine. Macrolide antibiotics Introduction such as clarithromycin specifically bind to the 50S subunit of the bacterial ribosome thereby interfering with protein Launched in 1990 by Abbott Laboratories, clarithromycin biosynthesis. A selected peptide sequence from our former A (CLA: synonym of 6-O-methylerythromycin, 1) [1] is a study, composed of 19 amino acids, which was isolated macrolide antibiotic that is commonly used to treat a from a phage display library because of its ability to bind variety of human bacterial infections. Macrolide clarithromycin, displayed significant similarity to a portion antibiotics, represented by erythromycin A (ERY, 2) and its of the human_p8 protein. The recombinant p8 protein structural homologues, specifically bind to the bacterial binds to biotinylated-clarithromycin immobilized on a 50S ribosomal subunit resulting in the inhibition of streptavidin-coated sensor chip and the dissociation bacterial protein biosynthesis [2]. CLA (1) is also constant was determined. The binding of recombinant p8 commonly used to target gastric Helicobacter pylori, which protein to double-stranded DNA was inhibited by is implicated in both gastric ulcers and cancer [3]. biotinylated-clarithromycin, clarithromycin, erythromycin Numerous studies to develop novel pharmaceutical and azithromycin in gel mobility shift assay. applications for macrolide antibiotics, including CLA (1), Dechlorogriseofulvin, obtained from a natural product ERY (2) and azithromycin (AZM, 3), have been published screening, also inhibited human p8 protein binding to [4]. -
Swedres-Svarm 2019
2019 SWEDRES|SVARM Sales of antibiotics and occurrence of antibiotic resistance in Sweden 2 SWEDRES |SVARM 2019 A report on Swedish Antibiotic Sales and Resistance in Human Medicine (Swedres) and Swedish Veterinary Antibiotic Resistance Monitoring (Svarm) Published by: Public Health Agency of Sweden and National Veterinary Institute Editors: Olov Aspevall and Vendela Wiener, Public Health Agency of Sweden Oskar Nilsson and Märit Pringle, National Veterinary Institute Addresses: The Public Health Agency of Sweden Solna. SE-171 82 Solna, Sweden Östersund. Box 505, SE-831 26 Östersund, Sweden Phone: +46 (0) 10 205 20 00 Fax: +46 (0) 8 32 83 30 E-mail: [email protected] www.folkhalsomyndigheten.se National Veterinary Institute SE-751 89 Uppsala, Sweden Phone: +46 (0) 18 67 40 00 Fax: +46 (0) 18 30 91 62 E-mail: [email protected] www.sva.se Text, tables and figures may be cited and reprinted only with reference to this report. Images, photographs and illustrations are protected by copyright. Suggested citation: Swedres-Svarm 2019. Sales of antibiotics and occurrence of resistance in Sweden. Solna/Uppsala ISSN1650-6332 ISSN 1650-6332 Article no. 19088 This title and previous Swedres and Svarm reports are available for downloading at www.folkhalsomyndigheten.se/ Scan the QR code to open Swedres-Svarm 2019 as a pdf in publicerat-material/ or at www.sva.se/swedres-svarm/ your mobile device, for reading and sharing. Use the camera in you’re mobile device or download a free Layout: Dsign Grafisk Form, Helen Eriksson AB QR code reader such as i-nigma in the App Store for Apple Print: Taberg Media Group, Taberg 2020 devices or in Google Play. -
What, How, Where, When, and Why Antibiotics 101
Antibiotics - What, How, Where, When, and Why Antibiotics 101 Paul Dorr NCSU College of Veterinary Medicine Population Health and Pathobiology North Carolina State University Introduction: Antibiotics and antimicrobials are very important in the treatment of bacterial infections in both humans and animals. Of equal importance is the judicious use of these substances. In today’s swine industry, producers must be very aware as to what exactly they are treating their animals with, and what they are treating their animals for. One cannot judiciously use antimicrobials without a basic understanding of what they are, how they work, where and when one uses them, and why they are used. Furthermore, the recognition of certain antimicrobials and other therapeutic agents that should never be found on any swine farm is essential knowledge that producers must have. So, what is an antibiotic, and what is the difference between an antibiotic and an antimicrobial? According to the FDA an antibiotic is defined as, “A chemical substance produced by a microorganism. It has the capacity, in dilute solutions, to inhibit the growth of or to kill other microorganisms.” (1) So, essentially antibiotics are produced by various types of bacteria and fungi. The following is an example of some common antibiotics and their bacterial/fungal origins. –Tetracycline - Streptomyces aureofaciens –Neomycin - Streptomyces fradiae –Lincomycin - Streptomyces lincolnensis –Ceftiofur - Cephalosporium acremonium –Gentamicin - Micromonaspora purpurea (2) An antimicrobial may be defined as a compound that inhibits the growth or kills microorganisms. This includes antibiotics in addition to various compounds that are not of microorganism origin.(1) This definition would include synthetic products such as sulfas, quinolones, and nitrofurans. -
(ESVAC) Web-Based Sales and Animal Population
16 July 2019 EMA/210691/2015-Rev.2 Veterinary Medicines Division European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) Sales Data and Animal Population Data Collection Protocol (version 3) Superseded by a new version Superseded Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2021. Reproduction is authorised provided the source is acknowledged. Table of content 1. Introduction ....................................................................................................................... 3 1.1. Terms of reference ........................................................................................................... 3 1.2. Approach ........................................................................................................................ 3 1.3. Target groups of the protocol and templates ......................................................................... 4 1.4. Organization of the ESVAC project ...................................................................................... 4 1.5. Web based delivery of data ................................................................................................ 5 2. ESVAC sales data ............................................................................................................... 5 2.1.