Effect of Temperature on − / Quantum

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Temperature on − / Quantum Effect of temperature on 퐈퐧퐱퐆퐚ퟏ−퐱퐀퐬/푮풂푨풔 quantum dot lasing Mahdi Ahmadi Borji1 and Esfandiar Rajaei2 Department of Physics, The University of Guilan, Namjoo Street, Rasht, Iran ABSTRACT In this paper, the strain, band-edge, and energy levels of pyramidal 퐼푛푥퐺푎1−푥퐴푠/GaAs quantum dot lasers (QDLs) are investigated by 1-band effective mass approach. It is shown that while temperature has no remarkable effect on the strain tensor, the band gap lowers and the radiation wavelength elongates by rising temperature. Also, band-gap and laser energy do not linearly decrease by temperature rise. Our results appear to coincide with former researches. Keywords: quantum dot laser, strain tensor, band edge, nano-electronics, temperature effect I. INTRODUCTION Peter, 2012, Rossetti et al., 2009), size of the quantum dots (Baskoutas and Terzis, 2006, Semiconductor lasers are the most important Pryor, 1998), stoichiometric percentage of lasers that are used in cable television signals, constituent elements of the laser active region telephone and image communications, (Shi et al., 2011), substrate index computer networks and interconnections, (Povolotskyi et al., 2004), strain effect (Pryor CD-ROM drivers, reading barcodes, laser and Pistol, 2005, Shahraki and Esmaili, printers, optical integrated circuits, 2012), wetting layer (WL), and distribution telecommunications, signal processing, and a and density of quantum dots are shown to be large number of medical and military important in the energy levels and applications. Quantum dot semiconductor performance of QDLs. Therefore, finding the lasers due to the discrete density of states functionality of the impact of these factors have low threshold current and temperature can help in optimization of the performance dependence, high optical gain and quantum of quantum dot lasers. Temperature effects efficiency and high modulation speed are should be paid attention, since any adverse superior to other lasers. Effects of various effects that happen by change in the laser factors such as temperature (Chen and Xiao, usage conditions should be forecasted. 2007, Kumar et al., 2015, Narayanan and 1 Email: [email protected] 2 Corresponding author, E-mail: [email protected] 1 QD nanostructures have been the focus of In semiconductor (SC) hetero-structures many investigations due to their optical containing two or more semiconductors with properties arising from the quantum different lattice constants, band edge confinement of electrons and holes (Markéta diagrams show more complexity than usual ZÍKOVÁ, 2012, Ma et al., 2013, Danesh bulk semiconductors because of the Kaftroudi and Rajaei, 2010, Nedzinskas et important role of strain. Strain tensor depends al., 2012). By now, QD materials have found on the elastic properties of neighbor very promising applications in optical materials, lattice mismatch, and geometry of amplifiers and semiconductor lasers the quantum dot (Trellakis et al., 2006). (Bimberg et al., 2000, Gioannini, 2006, Danesh Kaftroudi and Rajaei, 2011, Asryan This research will study the band structure and Luryi, 2001). They are very important in and strain tensor of InxGa1−xAs quantum new laser devices and solar cells. Therefore, dots grown on GaAs substrate by quantum having a ubiquitous view of energy states, numerical methods to look for more efficient strain, and other physical features, and their QDs by changing the working temperature of change by varying some factors such as QD. temperature which affects the lasing process The rest of this paper is organized as follows: of a QD is instructive. Based on this fact, section II explains the model and method of many research groups attempt to develop and the numerical simulation. Our results and optimize QDs to fabricate optoelectronic discussions on the temperature effects are devices with better performance. presented in section III. Finally, we make a Finding a way to enhance the efficiency of a conclusion in section IV. QD with fixed size can be helpful. Among many materials, InGaAs/GaAs devices are faced by many scientists due to their II. MODELING AND NUMERICAL interesting and applicable features (Woolley SIMULATION et al., 1968, Nedzinskas et al., 2012, Hazdra et al., 2008, Fali et al., 2014, Yekta Kiya et Band structure of a zinc-blende crystal can be al., 2012, Azam Shafieenezhad, 2014). obtained through: However, lasers may be used in very low (Le- ′ Van et al., 2015, Rossetti et al., 2009, Tong et (퐻0 + 퐻푘 + 퐻푘.푝 + 퐻푠.표. + 퐻푠.표.)푢푛풌(풓) = al., 2007) or high (Ohse, 1988, Rouillard et 퐸푛(퐤)푢푛풌(풓) (1) al., 2000) temperature conditions which will affect their work. Alongside, it is proved that In which 푢푛풌(풓) is a periodic Bloch spinor 푖풌.풓 temperature affects the lasing process (i.e., 휓푛풌(풓) = 푒 푢푛풌(풓)) and through both change of the output 풑2 photoluminescence and the laser 퐻0 = + 푉0(풓, 휀푖푗) (2) 2푚0 characteristics (Rossetti et al., 2009) which are due to the dependence of carriers behavior ℏ2풌2 퐻푘 = (3) on temperature. 2푚0 2 ℏ 퐻푘.푝 = 풌. 풑 (4) 푚0 ℏ 퐻푠.표. = 2 2 (훔 × 훁푉0(풓, 휀푖푗)) . 풑 (5) 4푚0푐 ′ ℏ 퐻푠.표. = 2 2 (훔 × 훁푉0(풓, 휀푖푗)) . ℏ풌 (6) 4푚0푐 Here, 푉0(풓, 휀푖푗) is the periodic potential of the strained crystal, 흈 = (휎 , 휎 , 휎 ) is the 푥 푦 푧 Pauli spin matrix, 푐 is the light velocity, and 푚0 is the mass of electron. This equation can Fig. 1: Cross-section of a pyramidal InGaAs be solved by expansion of 푉0(풓, 휀푖푗) to first QD with square base of the area 17푛푚 × 17푛푚 and the height of 2/3 times the base order in strain tensor 휀푖푗 (Bahder, 1990). The resulting equation for a strained structure is width on 15푛푚 thick GaAs substrate and then 0.5푛푚 wetting layer. ℏ2풌2 ℏ (퐻0 + + 풌. 풑′) 푢푛풌(풓) = 2푚0 푚0 퐸푛(퐤)푢푛풌(풓) (7) In self-assembled InxGa1−xAs QDs, firstly WL with a few molecular layers is grown on where the substrate, and then, millions of QD islands grow on the wetting layer, each of ′ ℏ 풑 = 풑 + 2 (훔 × 훁푉0(풓, 휀푖푗)). (8) which having a random shape and size. The 4푚0푐 resulting system is finally covered by GaAs. This equation can be solved by the second Many shapes can be approximated for QDs order non-degenerate perturbation scheme in namely cylindrical, cubic, lens shape, which the latter terms are considered as the pyramidal (Qiu and Zhang, 2011), etc. QDs perturbation. Therefore, in the Cartesian are supposed to be far enough not to be space the solution is: influenced by other QDs. The one-band effective mass approach is used in solving the 2 ℏ 푘푖푘푗 1 Schrödinger equation. 퐸푛(퐤) = 퐸푛(ퟎ) + ( ∗ ) (9) 2 푚푛 푖,푗 Fig. 1 shows the profile of a pyramidal In which the tensor of the effective mas is In0.4Ga0.6As QD surrounded by a substrate defined as: and cap layer of GaAs (Pryor, 1998). This 1 1 ratio of indium is used in laser devices ( ∗ ) = ( ) 훿푖,푗 + (Kamath et al., 1997). The structure of both 푚푛 푖,푗 푚0 ′ ′ GaAs and InAs is zinc-blende. The pyramid 2 〈푛,0|푝푖 |푚,0〉〈푚,0|푝푗|푛,0〉 2 ∑푚≠푛 (10) has a square base of area 17푛푚 × 17푛푚 and 푚0 퐸푛(0)−퐸푚(0) the height of 2/3 times the base width on and 푖, 푗 ≡ 푥, 푦, 푧 (Galeriu and B. S., 2005). 15푛푚 thick GaAs substrate and 0.5푛푚 3 wetting layer. This structure is grown on Also, for 퐼푛푥퐺푎1−푥퐴푠 the parameters are (001) substrate index. As it can be observed calculated as follows: from the picture, WL is much thinner than QD height. The growth direction of the Lattice constant at T=300K (Adachi, 1983): structure is z. 푎 = (6.0583 − 0.405(1 − 푥)) Å (11) The parameters related to the bulk materials used in this paper are given in Table 1, in Effective electron mass at 300K (T.P.Pearsall, 1982): which it is benefitted from references (Jang et al., 2003, Singh, 1993, Yu, 2010). 푚푒 = (0.023 + 0.037(1 − 푥) + 0.003(1 − 푥)2)푚 (12) 표 Parameters used GaAs InAs Effective hole mass at 300K (N.M., 1999): Band gap (0K) 1.424eV 0.417eV 푚ℎ = (0.41 + 0.1(1 − 푥))푚표 (13) lattice constant 0.565325 0.60583 nm nm Effective light-hole masses at 300K: Expansion 0.0000388 0.0000274 푚푙푝 = (0.026 + 0.056(1 − 푥))푚표 (14) coefficient of lattice constant Effective split-off band hole-masses at 300K Effective electron 0.067mo 0.026mo is ~ 0.15 푚표 mass (Γ) Effective heavy 0.5mo 0.41mo hole mass III. RESULTS AND DISCUSSION Effective light hole 0.068mo 0.026m0 mass Strain is generally defined as the value of length increase relative to initial length (휀퐿 = Effective split-off 0.172mo 0.014 mass Δ퐿/퐿) which in a better definition it can be the summation of all infinitesimal length Nearest neighbor 0.2448 nm 0.262 nm increases relative to the instantaneous lengths distance (300K) (휀퐿 = ∑Δ퐿푡/퐿푡). Therefore, taking into Elastic constants C11 = 122.1 C11 = 83.29 account length change in all directions, one achieves the tensor as: C12 = 56.6 C12 = 45.26 1 푑푢푖 푑푢푗 C44 = 60 C44 = 39.59 휀푖푗 = ( + ) , 푖, 푗 ≡ 푥, 푦, 푧 (15) 2 푑푟푗 푑푟푖 Table 1. Parameters used in the model. where 푑푢푖 is the length change in i-th direction, and 푟푗 is the length in direction 푗 (Povolotskyi et al., 2004). The diagonal 4 elements are related to expansions along an working temperature. This shows that change axis (stretch), but the off-diagonal elements of temperature has no effect on the strain represent rotations. This tensor is symmetric tensor. (i.e., 휀푖푗 = 휀푗푖) although the distortion matrix 풖 may be non-semmetric.
Recommended publications
  • Monday, 08:00–10:00 CLEO: QELS-Fundamental Science
    07:00–18:00 Registration, Concourse Level Executive Ballroom Executive Ballroom Executive Ballroom Executive Ballroom 210A 210B 210C 210D CLEO: QELS-Fundamental Science 08:00–10:00 08:00–10:00 08:00–10:00 08:00–10:00 FM1A • Quantum FM1B • Topological Photonics I FM1C • Novel Phenomena in FM1D • Coherent Phenomena Optomechanics & Transduction Presider: To Be Announced Classical Nano-Optics in Coupled Resonator Networks Monday, 08:00–10:00 Monday, Presider: Gabriel Molina Terriza; Presider: Mo Mojahedi; Univ. of Presider: To Be Announced Centro de Fisica de Materiales, Toronto, USA Spain FM1A.1 • 08:00 FM1B.1 • 08:00 FM1C.1 • 08:00 FM1D.1 • 08:00 Invited Ultralow Dissipation Mechanical Resona- Spin-Preserving Chiral Photonic Crystal Brightness Theorems for Nanophoton- Solving Hard Computational Problems with 1,2 1 1 tors for Quantum Optomechanics, Nils Mirror, Behrooz Semnani , Jeremy Flan- ics, Hanwen Zhang , Chia Wei Hsu , Owen Coupled Lasers, Nir Davidson1; 1Weizmann 1 1 2 2 2 1 1 Johan Engelsen , Sergey A. Fedorov , Amir nery , Zhenghao Ding , Rubayet Al Maruf , Miller ; Yale Univ., USA. We present nano- Inst. of Science, Israel. We present a new a 1 1 2,1 1 H. Ghadimi , Mohammad J. Bereyhi , Alberto Michal Bajcsy ; ECE, Univ. of Waterloo, photonic ‘’brightness theorems’’, a set of new system of coupled lasers in a modified 1 1 2 2 Beccari , Ryan Schilling , Dalziel J. Wilson , Canada; Inst. for Quantum Computing, power-concentration bounds that generalize degenerate cavity that is used to solve dif- 1 1 Tobias J. Kippenberg ; Ecole Polytechnique Canada. We report on experimental realiza- their ray-optical counterparts, and motivate ficult computational tasks.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Quantum Dot Lasers for Silicon Photonics Permalink https://escholarship.org/uc/item/8p01r83d Author Norman, Justin Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Quantum Dot Lasers for Silicon Photonics A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Materials by Justin Colby Norman Committee in charge: Professor John Bowers, Co-Chair Professor Arthur Gossard, Co-Chair Professor Chris Palmstrøm Professor Dirk Bouwmeester December 2018 The dissertation of Justin Colby Norman is approved. ____________________________________________ Professor Dirk Bouwmeester ____________________________________________ Professor Chris Palmstrøm Professor Arthur Gossard, Committee Co-Chair ____________________________________________ Professor John Bowers, Committee Co-Chair December 2018 Quantum Dot Lasers for Silicon Photonics Copyright © 2018 by Justin Colby Norman iii Dedicated to April Norman iv ACKNOWLEDGEMENTS If a thesis were like a journal article and all contributors given credit in the author list, then my title page would exceed entire length of this body of work. Pursuing a Ph.D. is not a simple endeavor, and its pursuit begins long before a student begins their journey in graduate school. To do proper justice to everyone in my life who contributed to my efforts would not be possible in the limited scope of this document, but I will attempt to acknowledge the key individuals who got me here, helped along the way in my scientific endeavors, and who helped me maintain the tenuous grip on sanity inherent to graduate studies.
    [Show full text]
  • Symposium on Undergraduate Research
    SYMPOSIUM ON UNDERGRADUATE RESEARCH Division of Laser Science of A.P.S - LS XXXIV - 17 September 2018.- Washington DC PARTICIPANTS’ LUNCHEON - Ballroom East - 12:00 The participants' luncheon will bring together the Symposium students and distinguished laser scientists. Sandwich lunches will be provided for participants and invited guests only. REMINDER: Group Photo Break 3:55 PM - PLEASE assemble at the designated place!!! POSTER SESSION - International Ballroom East - 1:00 Session LM4G (poster) 1:00 - 3:55 PM, Ballroom East – Dr. Keith Stein, Bethel Univ., Presider LM4G - 1 Using the Instantaneous Velocity of a Brownian Particle in an Optical Tweezer to Measure Changes in Mass. Gabriel H. Alvarez1, Julia E. Orenstein2, Lichung Ha2, Diney S. Ether Jr.2, and Mark G. Raizen2. 1) Stanford Univ., Stanford, CA 94305, 2) Univ. of Texas, Austin, TX 78712. Using a fast detector to observe the light deflected by silica mi- crospheres trapped in an optical tweezer, we obtain positional information from which instantaneous velocities are calcu- lated and fit to the Maxwell-Boltzmann distribution to extract mass. We plan to use this technology to characterize the onset of heterogeneous ice nucleation. LM4G - 2 Optical Tweezing Experiments with Dielectric Microbeads Willa Dworschack1,2, Chiu Yin Lee1, Perri Zilberman1, Martin Cohen1, Harold Metcalf 11) Stony Brook Univ., Stony Brook, NY 11794, 2) Lawrence Univ., Appleton, WI 54911 Optical tweezing utilizes the momentum carried by light to manipulate micro-scale objects. We designed and constructed an optical tweezing apparatus that enabled precision control of dielectric microbeads using a He-Ne laser and an inverted microscope. Its piconewton force capabilities were demonstrated.
    [Show full text]
  • III-NITRIDE SELF-ASSEMBLED QUANTUM DOT LIGHT EMITTING DIODES and LASERS by Animesh Banerjee a Dissertation Submitted in Partial
    III-NITRIDE SELF-ASSEMBLED QUANTUM DOT LIGHT EMITTING DIODES AND LASERS by Animesh Banerjee A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2014 Doctoral Committee: Professor Pallab K. Bhattacharya, Chair Associate Professor Pei-Cheng Ku Professor Joanna Mirecki-Millunchick Professor Jamie D. Phillips Animesh Banerjee © 2014 All Rights Reserved To my parents who have always stood by me, and have showered their blessings, unconditional love and unwavering support ii ACKNOWLEDGMENT I would like to express my sincere gratitude to my advisor Prof. Pallab Bhattacharya for his continuous support and motivation, his immense knowledge, enthusiasm and patience powering me along the way during my PhD years. He is a great motivator and educator. He was always available to discuss my research and any technical problem that I encountered. His sheer persistence and determination in solving any problem is something I really admire and aspire to pursue for the rest of my life. It has been truly an honor to work with Prof. Bhattacharya. I am also grateful to my committee memebers, Prof. Pei-Cheng Ku, Prof. Jamie Phillips, and Prof. Joanna Mirecki-Millunchick, for their time, insightful comments, and valuable suggestions. I would like to specially thank Prof. Millunchick for her valuable discussions and inputs during our collaborative endeavor. I am thankful to Dr. Meng Zhang and Dr. Wei Guo, my mentors in this group for getting me aquainted with epitaxial growth, fabrication and characterization. I would like to thank Dr. Junseok Heo for guiding me in my first research project here.
    [Show full text]
  • Solid State Laser
    SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H.
    [Show full text]
  • Zhang Gsas.Harvard 0084L 10989.Pdf (11.58Mb)
    Manipulating Light on Wavelength Scale The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Zhang, Yinan. 2012. Manipulating Light on Wavelength Scale. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11051175 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Manipulating Light on Wavelength Scale Y Z T S E A S D P E E H U C, M D © - Y Z A . esis advisor: Marko Loncar Yinan Zhang Manipulating Light on Wavelength Scale A Light, at the length-scale on the order of its wavelength, does not simply behave as “light ray”, but instead diffracts, scaers, and interferes with itself, as governed by Maxwell’s equations. A profound understanding of the underlying physics has inspired the emergence of a new frontier of materials and devices in the past few decades. is thesis explores the concepts and approaches for manipulating light at the wavelength-scale in a variety of topics, including anti-reective coatings, on- chip silicon photonics, optical microcavities and nanolasers, microwave particle accelerators, and optical nonlinearities. In Chapter , an optimal tapered prole that maximizes light transmission be- tween two media with different refractive indices is derived from analytical theory and numerical modeling. A broadband wide-angle anti-reective coating at the air/silicon interface is designed for the application of photovoltaics.
    [Show full text]
  • Front Cover CS V6mg.Indd 1 31/08/2017 16:10 Untitled-1 1 26/07/2017 09:21 Viewpoint by Dr Richard Stevenson, Editor
    Volume 23 Issue 6 August / September 2017 @compoundsemi www.compoundsemiconductor.net Lighting up silicon with InAs quantum dots MACOM Enabling breakthroughs in optical bandwidth density Novel cooling aid high-power laser diodes Easing the use of GaN power electronics An abundance of key elements for chipmakers Ultraviolet LEDs take aim at disinfection News Review, News Analysis, Features, Research Review, and much more... inside Free Weekly E News round up go to: www.compoundsemiconductor.net Front Cover CS v6MG.indd 1 31/08/2017 16:10 Untitled-1 1 26/07/2017 09:21 Viewpoint By Dr Richard Stevenson, Editor Telling our story POPULAR SCIENCES BOOKS aim to educate the layman. By better is to tell the story the way Johnstone does. It begins with eradicating equations, offering analogies and telling a story with a meeting of visionaries that plot out the rate of improvement a human touch, Joe Public can be entertained while learning in these devices, see where they are destined to go, and put the basics of a subject. plans in place to make this happen. Instrumental in the success is the backing by government, which uses its money very But that’s not the only benefi t of these books. They can be read effectively, alongside the introduction of standards that quash by experts, so that when they are at social gatherings and are the availability of inferior bulbs. asked what they do for a living, they can draw on what’s been written to give an answer that’s engaging and understandable. Read this book and you will also be able to wax lyrical about the benefi ts of LEDs in It is for that reason that I recommend Bob Johnstone’s new agriculture, and how the tuning of the book L.E.D.
    [Show full text]
  • Techniques for High-Speed Direct Modulation of Quantum Dot Lasers Yan Li
    University of New Mexico UNM Digital Repository Optical Science and Engineering ETDs Engineering ETDs 7-21-2008 Techniques for high-speed direct modulation of quantum dot lasers Yan Li Follow this and additional works at: https://digitalrepository.unm.edu/ose_etds Recommended Citation Li, Yan. "Techniques for high-speed direct modulation of quantum dot lasers." (2008). https://digitalrepository.unm.edu/ose_etds/ 17 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Optical Science and Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Yan Li Candidate Department of Electrical and Computer Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication on microfilm: Approved by the Dissertation Committee: , Chairperson Accepted: Dean, Graduate School Date TECHNIQUES FOR HIGH-SPEED DIRECT MODULATION OF QUANTUM DOT LASERS BY YAN LI M.S. Optics, Sichuan University, 2000 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Optical Science and Engineering The University of New Mexico Albuquerque, New Mexico May, 2008 ACKNOWLEDGEMENTS My deepest gratitude is to my advisor, Prof. Luke F. Lester. I was fortunate to have his support to continue my research in the semiconductor laser area. His guidance, perspective and encouragement are always a major driving force for me to fulfill my dissertation and will benefit my future career. I really appreciate his infinite understanding and patience during the last four years. I also would like to thank Prof.
    [Show full text]
  • The Study of Coupling in Ingaas Quantum Rings Grown by Droplet Epitaxy
    The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Samar M. Alsolamy May 2013 © 2013 Samar M. Alsolamy. All Rights Reserved. 2 This thesis titled The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy by SAMAR M. ALSOLAMY has been approved for the Department of Physics and Astronomy and the College of Arts and Sciences by Eric A. Stinaff Associate Professor of Physics and Astronomy Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT ALSOLAMY, SAMAR, M., M.S., May 2013, Physics and Astronomy The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy Director ofThesis: Eric A. Stinaff The use of metal droplet epitaxy may provide a novel method of growing laterally coupled nanostructures. We will present optical studies of InAs/GaAs nanostructures which result in twin quantum dots (QD) formed on a single quantum ring (QR). Previous studies have investigated the coupling between vertically grown quantum dot pairs. In this thesis, we have used photoluminescence (PL) and photoluminescence excitation (PLE) to examine the possibility of energy transfer and coupling between quantum dot pairs in a single InGaAs quantum ring grown by droplet epitaxy. Power dependent photoluminescence spectra reveal a few peaks at low power, which are identified with emission from the ground state of the individual dots. As the power is increased we observe multi-exciton and excited state emission. We then perform PLE, tuning the excitation laser energy continuously from the high energy ring emission down to the individual dot states.
    [Show full text]
  • A Solution-Processed 1.53 Μm Quantum Dot Laser with Temperature
    A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, E. H. Sargent The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Toronto, ON, Canada, M5S 3G4 [email protected]; [email protected] Abstract: Sources of coherent, monochromatic short-wavelength infrared (1-2 μm) light are essential in telecommunications, biomedical diagnosis, and optical sensing. Today’s semiconductor lasers are made by epitaxial growth on a lattice-matched single-crystal substrate. This strategy is incompatible with direct growth on silicon. Colloidal quantum dots synthesized in solution can, in contrast, be coated onto any surface. Here we show a 1.53 μm laser fabricated using a remarkably simple process: dipping a glass capillary into a colloidal suspension of semiconductor quantum dots. We developed the procedures to produce a smooth, low-scattering-loss film inside the capillary, resulting in a whispering gallery mode laser with a well-defined threshold. While there exist three prior reports of optical gain in infrared-emitting colloidal quantum dots [1, 2, 3], this work represents the first report of an infrared laser made using solution processing. We also report dλmax/dT, the temperature-sensitivity of lasing wavelength, of 0.03 nm/K, the lowest ever reported in a colloidal quantum dot system and 10 times lower than in traditional semiconductor quantum wells. ©2006 Optical Society of America OCIS codes: (140.5960) Semiconductor lasers; (160.3380) Laser materials; (999.999) Nanocrystal quantum dots. References and links 1. R.
    [Show full text]
  • Foucher-Etal-IEEE-PJ-2018-Flexible-Glass-Hybridized-Colloidal
    IEEE Photonics Journal Flexible Glass Hybridized Colloidal Quantum Dots Flexible Glass Hybridized Colloidal Quantum Dots for Gb/s Visible Light Communications Caroline Foucher,1 Mohamed Islim Sufyan ,2 Student Member, IEEE, Benoit Jack Eloi Guilhabert ,1 Stefan Videv,2 Sujan Rajbhandari ,3∗ Member, IEEE,ArielGomezDiaz ,3 Hyunchae Chun ,3 Dimali A. Vithanage,4 Graham A. Turnbull ,4 Senior Member, IEEE,IforD.W.Samuel,4 Grahame Faulkner,3 Dominic C. O’Brien,3 Harald Haas ,2 Nicolas Laurand ,1 Member, IEEE, and Martin D. Dawson ,1 Fellow, IEEE 1Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, Glasgow G1 1RD, U.K. 2LiFi Research and Development Centre, Institute for Digital Communications, University of Edinburgh, Edinburgh EH9 3JL, U.K. 3Oxford Communications Research Group, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, U.K. 4Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, U.K. DOI:10.1109/JPHOT.2018.2792700 This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ Manuscript received December 20, 2017; revised January 8, 2018; accepted January 9, 2018. Date of publication January 12, 2018; date of current version February 21, 2018. This work was sup- ported by the EPSRC through the Program grant ‘Ultra-parallel visible light communications (UP-VLC)’ (EP/K00042X/1). Corresponding author: Nicolas Laurand (email: [email protected]). *S. Rajbhandari is now with the Centre for Mobility & Transport, School of Computing, Engineering and Mathematics, Coventry University, Coventry CV1 5FB, U.K.
    [Show full text]
  • Reflection Insensitive Quantum Dot Lasers Grown on Silicon Substrates
    Reflection Insensitive Quantum Dot Lasers Grown on Silicon Substrates John Bowers Art Gossard, Songtao Liu, Justin Norman, Yating Wan, Chen Zhang, Robert Zheng Bob Herrick (Intel) Weng Chao (Sandia) Frederic Grillot (U. Paris) November 1, 2019 Team Project Team ‣ Silicon Photonics Research Group at UCSB – State of the art equipment for the characterization and packaging of a wide range of semiconductor devices and optical communication systems ‣ UCSB Nanofab – >10,000 ft2 of Class 100 and 1000 cleanroom space – Optical lithographic capability to 200 nm ‣ UCSB Growth Facilities – 30 years of pioneering MBE research – 9 MBE systems with two dedicated to III-Vs ‣ California Nanosystems Institute – Advanced material characterization tools – ECCI, TEM, AFM, XRD, SIMS, atom probe 1 Team Collaborators ‣ Frederic Grillot, ParisTech – Laser dynamics, feedback stability ‣ Robert Herrick, Intel Corp. – Laser reliability and aging ‣ Matteo Meneghini, Univ. of Padova – Laser reliability and aging ‣ Weng Chow, Sandia – Laser theory for linewidth enhancement factor and mode- locking 2 Project Objectives Achieve High Performance Epitaxial Lasers on Silicon ‣ Leverage silicon manufacturing infrastructure – Photonics in CMOS foundries – Economical, high integration density photonic circuits ‣ Indirect bandgap necessitates III-Vs for lasers – Heterogeneous integration: high cost, limited scalability – Epitaxial growth: low cost, scalable with Si wafer size 50 mm InP wafer 3 Why Quantum dot lasers? Lower threshold Higher temperature operation (220C) Lower
    [Show full text]