The Study of Coupling in Ingaas Quantum Rings Grown by Droplet Epitaxy
Total Page:16
File Type:pdf, Size:1020Kb
The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Samar M. Alsolamy May 2013 © 2013 Samar M. Alsolamy. All Rights Reserved. 2 This thesis titled The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy by SAMAR M. ALSOLAMY has been approved for the Department of Physics and Astronomy and the College of Arts and Sciences by Eric A. Stinaff Associate Professor of Physics and Astronomy Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT ALSOLAMY, SAMAR, M., M.S., May 2013, Physics and Astronomy The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy Director ofThesis: Eric A. Stinaff The use of metal droplet epitaxy may provide a novel method of growing laterally coupled nanostructures. We will present optical studies of InAs/GaAs nanostructures which result in twin quantum dots (QD) formed on a single quantum ring (QR). Previous studies have investigated the coupling between vertically grown quantum dot pairs. In this thesis, we have used photoluminescence (PL) and photoluminescence excitation (PLE) to examine the possibility of energy transfer and coupling between quantum dot pairs in a single InGaAs quantum ring grown by droplet epitaxy. Power dependent photoluminescence spectra reveal a few peaks at low power, which are identified with emission from the ground state of the individual dots. As the power is increased we observe multi-exciton and excited state emission. We then perform PLE, tuning the excitation laser energy continuously from the high energy ring emission down to the individual dot states. We have observed resonant PLE emission in the QD/QR structures both at high laser energy and when resonant with the identified states of one of the QDs which may indicate energy transfer and/or coupling between the dots. 4 ACKNOWLEDGMENTS First, I would like to give my thanks and acknowledge to my adviser, Professor Eric Stinaff, not only for his guidance and mentoring through my research from working in the lab to writing this thesis, but also for his patience and care during this year. I would like also to thank my lab partners, Ramana Thota, for showing me the basic equipments in the lab and being my second teacher in the lab. I thank the collaborators in University of Arkansas for preparing the samples and discussing the research experiments. I thank Dr. Candace Stewart for giving me feedback to revise my thesis. I would like to thank Saudi Arabian Cultural Mission in the USA and Umm al-Qura University for their financial support and giving me the opportunity to have this scholarship. Finally, I would to thank my beloved husband for his care, support, and patience during the three years of my study. 5 TABLE OF CONTENTS Page Abstract ............................................................................................................................... 3 Acknowledgments............................................................................................................... 4 List of Tables ...................................................................................................................... 7 List of Figures ..................................................................................................................... 8 Chapter 1: Introduction ..................................................................................................... 12 1.1. Outline: .................................................................................................................. 12 1.2. Semiconductor Physics .......................................................................................... 14 Chapter 2: physics and Growth of Heterostructures ......................................................... 18 2.1. Heterostructures ..................................................................................................... 18 2.1.1. Quantum Well ................................................................................................. 19 2.1.2. Quantum Wire ................................................................................................. 21 2.1.3. Quantum Dot ................................................................................................... 22 2.2. Growth Techniques ................................................................................................ 24 2.2.1. Molecular Beam Epitaxy (MBE) .................................................................... 26 2.2.2. Stranski-Krastanow Technique ....................................................................... 29 2.2.3. Droplet Epitaxy ............................................................................................... 30 Chapter 3: Quantum Rings................................................................................................ 32 3.1. Fabrication Approach of Quantum Rings .............................................................. 32 3.2. Energy Transfer in a Quantum Ring ...................................................................... 35 Chapter 4: Experimental Measurement and Setup ............................................................ 41 4.1. Experimental Measurement ................................................................................... 41 4.1.1. Photoluminescence Spectra............................................................................. 41 4.1.2 Photoluminescence Excitation Spectra ............................................................ 44 4.2. Experimental Setup ................................................................................................ 45 4.2.1. Sample ............................................................................................................. 45 4.2.2. Lab Description ............................................................................................... 46 4.2.3. Photoluminescence Setup ............................................................................... 48 4.2.3. Photoluminescence Excitation Setup .............................................................. 49 6 Chapter 5: Data and Result ............................................................................................... 51 5.1. Photoluminescence Data ........................................................................................ 51 5.1. 1. Result 1 .......................................................................................................... 51 5.1. 2. Result 2 .......................................................................................................... 55 5.1. 3. Result 3 .......................................................................................................... 58 5.1. 4. Result 4 .......................................................................................................... 61 5.2. Photoluminescence Excitation Data ...................................................................... 63 5.2.1. Result 5 ........................................................................................................... 63 5.2. 2. Result 6 .......................................................................................................... 68 Chapter 6: Discussion and Conclusions ............................................................................ 85 References ......................................................................................................................... 88 Appendix A: Subtractive Mode in TriVista System ......................................................... 92 7 LIST OF TABLES Page Table 2.1: The number of the confinement Dc and of degrees of freedom Df in electrons motions for the four basic systems ...................................................19 Table 5.1: Different QRs in ARK_QRings_SC695 sample with laser wavelength 780 nm at room lights off and monitors on.............................................................52 8 LIST OF FIGURES Page Figure 1.1: Crystal structure of diamond and zinc blende ..............................................15 Figure 1.2: a) Bonding and antibonding orbitals in a single atom and a crystal. b) Bands structure of metals, semiconductors and insulators .............................16 Figure 2.1: Densities of states of bulk, quantum well, quantum wire, and quantum dot .................................................................................................................19 Figure 2.2: InAs quantum well structure in GaAs substrate; the black circle represents an electron and the empty circle represents a hole ........................20 Figure 2.3: Two types of band alignments between two semiconductors a) Type I. b) Type II staggered. C) Type II misaligned ......................................................21 Figure 2.4: Different heteroepitaxial growth modes for strained layer growth ..............25 Figure 2.5: Schematic diagram of the growth chamber in molecular beam epitaxy process ............................................................................................................28 Figure 2.6: Diagram of Stranski-Krastanow growth mode .............................................30 Figure 2.7: Diagram of droplet epitaxy growth for GaAs quantum nanostructure .........31 Figure 3.1: a) 20 x 20 µm two- dimensional AFM image of QRs in the sample. b) Three-dimensional AFM image of a QR magnify. c) Details of