The Study of Coupling in Ingaas Quantum Rings Grown by Droplet Epitaxy

Total Page:16

File Type:pdf, Size:1020Kb

The Study of Coupling in Ingaas Quantum Rings Grown by Droplet Epitaxy The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy A thesis presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Master of Science Samar M. Alsolamy May 2013 © 2013 Samar M. Alsolamy. All Rights Reserved. 2 This thesis titled The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy by SAMAR M. ALSOLAMY has been approved for the Department of Physics and Astronomy and the College of Arts and Sciences by Eric A. Stinaff Associate Professor of Physics and Astronomy Robert Frank Dean, College of Arts and Sciences 3 ABSTRACT ALSOLAMY, SAMAR, M., M.S., May 2013, Physics and Astronomy The Study of Coupling in InGaAs Quantum Rings Grown by Droplet Epitaxy Director ofThesis: Eric A. Stinaff The use of metal droplet epitaxy may provide a novel method of growing laterally coupled nanostructures. We will present optical studies of InAs/GaAs nanostructures which result in twin quantum dots (QD) formed on a single quantum ring (QR). Previous studies have investigated the coupling between vertically grown quantum dot pairs. In this thesis, we have used photoluminescence (PL) and photoluminescence excitation (PLE) to examine the possibility of energy transfer and coupling between quantum dot pairs in a single InGaAs quantum ring grown by droplet epitaxy. Power dependent photoluminescence spectra reveal a few peaks at low power, which are identified with emission from the ground state of the individual dots. As the power is increased we observe multi-exciton and excited state emission. We then perform PLE, tuning the excitation laser energy continuously from the high energy ring emission down to the individual dot states. We have observed resonant PLE emission in the QD/QR structures both at high laser energy and when resonant with the identified states of one of the QDs which may indicate energy transfer and/or coupling between the dots. 4 ACKNOWLEDGMENTS First, I would like to give my thanks and acknowledge to my adviser, Professor Eric Stinaff, not only for his guidance and mentoring through my research from working in the lab to writing this thesis, but also for his patience and care during this year. I would like also to thank my lab partners, Ramana Thota, for showing me the basic equipments in the lab and being my second teacher in the lab. I thank the collaborators in University of Arkansas for preparing the samples and discussing the research experiments. I thank Dr. Candace Stewart for giving me feedback to revise my thesis. I would like to thank Saudi Arabian Cultural Mission in the USA and Umm al-Qura University for their financial support and giving me the opportunity to have this scholarship. Finally, I would to thank my beloved husband for his care, support, and patience during the three years of my study. 5 TABLE OF CONTENTS Page Abstract ............................................................................................................................... 3 Acknowledgments............................................................................................................... 4 List of Tables ...................................................................................................................... 7 List of Figures ..................................................................................................................... 8 Chapter 1: Introduction ..................................................................................................... 12 1.1. Outline: .................................................................................................................. 12 1.2. Semiconductor Physics .......................................................................................... 14 Chapter 2: physics and Growth of Heterostructures ......................................................... 18 2.1. Heterostructures ..................................................................................................... 18 2.1.1. Quantum Well ................................................................................................. 19 2.1.2. Quantum Wire ................................................................................................. 21 2.1.3. Quantum Dot ................................................................................................... 22 2.2. Growth Techniques ................................................................................................ 24 2.2.1. Molecular Beam Epitaxy (MBE) .................................................................... 26 2.2.2. Stranski-Krastanow Technique ....................................................................... 29 2.2.3. Droplet Epitaxy ............................................................................................... 30 Chapter 3: Quantum Rings................................................................................................ 32 3.1. Fabrication Approach of Quantum Rings .............................................................. 32 3.2. Energy Transfer in a Quantum Ring ...................................................................... 35 Chapter 4: Experimental Measurement and Setup ............................................................ 41 4.1. Experimental Measurement ................................................................................... 41 4.1.1. Photoluminescence Spectra............................................................................. 41 4.1.2 Photoluminescence Excitation Spectra ............................................................ 44 4.2. Experimental Setup ................................................................................................ 45 4.2.1. Sample ............................................................................................................. 45 4.2.2. Lab Description ............................................................................................... 46 4.2.3. Photoluminescence Setup ............................................................................... 48 4.2.3. Photoluminescence Excitation Setup .............................................................. 49 6 Chapter 5: Data and Result ............................................................................................... 51 5.1. Photoluminescence Data ........................................................................................ 51 5.1. 1. Result 1 .......................................................................................................... 51 5.1. 2. Result 2 .......................................................................................................... 55 5.1. 3. Result 3 .......................................................................................................... 58 5.1. 4. Result 4 .......................................................................................................... 61 5.2. Photoluminescence Excitation Data ...................................................................... 63 5.2.1. Result 5 ........................................................................................................... 63 5.2. 2. Result 6 .......................................................................................................... 68 Chapter 6: Discussion and Conclusions ............................................................................ 85 References ......................................................................................................................... 88 Appendix A: Subtractive Mode in TriVista System ......................................................... 92 7 LIST OF TABLES Page Table 2.1: The number of the confinement Dc and of degrees of freedom Df in electrons motions for the four basic systems ...................................................19 Table 5.1: Different QRs in ARK_QRings_SC695 sample with laser wavelength 780 nm at room lights off and monitors on.............................................................52 8 LIST OF FIGURES Page Figure 1.1: Crystal structure of diamond and zinc blende ..............................................15 Figure 1.2: a) Bonding and antibonding orbitals in a single atom and a crystal. b) Bands structure of metals, semiconductors and insulators .............................16 Figure 2.1: Densities of states of bulk, quantum well, quantum wire, and quantum dot .................................................................................................................19 Figure 2.2: InAs quantum well structure in GaAs substrate; the black circle represents an electron and the empty circle represents a hole ........................20 Figure 2.3: Two types of band alignments between two semiconductors a) Type I. b) Type II staggered. C) Type II misaligned ......................................................21 Figure 2.4: Different heteroepitaxial growth modes for strained layer growth ..............25 Figure 2.5: Schematic diagram of the growth chamber in molecular beam epitaxy process ............................................................................................................28 Figure 2.6: Diagram of Stranski-Krastanow growth mode .............................................30 Figure 2.7: Diagram of droplet epitaxy growth for GaAs quantum nanostructure .........31 Figure 3.1: a) 20 x 20 µm two- dimensional AFM image of QRs in the sample. b) Three-dimensional AFM image of a QR magnify. c) Details of
Recommended publications
  • Monday, 08:00–10:00 CLEO: QELS-Fundamental Science
    07:00–18:00 Registration, Concourse Level Executive Ballroom Executive Ballroom Executive Ballroom Executive Ballroom 210A 210B 210C 210D CLEO: QELS-Fundamental Science 08:00–10:00 08:00–10:00 08:00–10:00 08:00–10:00 FM1A • Quantum FM1B • Topological Photonics I FM1C • Novel Phenomena in FM1D • Coherent Phenomena Optomechanics & Transduction Presider: To Be Announced Classical Nano-Optics in Coupled Resonator Networks Monday, 08:00–10:00 Monday, Presider: Gabriel Molina Terriza; Presider: Mo Mojahedi; Univ. of Presider: To Be Announced Centro de Fisica de Materiales, Toronto, USA Spain FM1A.1 • 08:00 FM1B.1 • 08:00 FM1C.1 • 08:00 FM1D.1 • 08:00 Invited Ultralow Dissipation Mechanical Resona- Spin-Preserving Chiral Photonic Crystal Brightness Theorems for Nanophoton- Solving Hard Computational Problems with 1,2 1 1 tors for Quantum Optomechanics, Nils Mirror, Behrooz Semnani , Jeremy Flan- ics, Hanwen Zhang , Chia Wei Hsu , Owen Coupled Lasers, Nir Davidson1; 1Weizmann 1 1 2 2 2 1 1 Johan Engelsen , Sergey A. Fedorov , Amir nery , Zhenghao Ding , Rubayet Al Maruf , Miller ; Yale Univ., USA. We present nano- Inst. of Science, Israel. We present a new a 1 1 2,1 1 H. Ghadimi , Mohammad J. Bereyhi , Alberto Michal Bajcsy ; ECE, Univ. of Waterloo, photonic ‘’brightness theorems’’, a set of new system of coupled lasers in a modified 1 1 2 2 Beccari , Ryan Schilling , Dalziel J. Wilson , Canada; Inst. for Quantum Computing, power-concentration bounds that generalize degenerate cavity that is used to solve dif- 1 1 Tobias J. Kippenberg ; Ecole Polytechnique Canada. We report on experimental realiza- their ray-optical counterparts, and motivate ficult computational tasks.
    [Show full text]
  • UC Santa Barbara Dissertation Template
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Quantum Dot Lasers for Silicon Photonics Permalink https://escholarship.org/uc/item/8p01r83d Author Norman, Justin Publication Date 2018 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara Quantum Dot Lasers for Silicon Photonics A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Materials by Justin Colby Norman Committee in charge: Professor John Bowers, Co-Chair Professor Arthur Gossard, Co-Chair Professor Chris Palmstrøm Professor Dirk Bouwmeester December 2018 The dissertation of Justin Colby Norman is approved. ____________________________________________ Professor Dirk Bouwmeester ____________________________________________ Professor Chris Palmstrøm Professor Arthur Gossard, Committee Co-Chair ____________________________________________ Professor John Bowers, Committee Co-Chair December 2018 Quantum Dot Lasers for Silicon Photonics Copyright © 2018 by Justin Colby Norman iii Dedicated to April Norman iv ACKNOWLEDGEMENTS If a thesis were like a journal article and all contributors given credit in the author list, then my title page would exceed entire length of this body of work. Pursuing a Ph.D. is not a simple endeavor, and its pursuit begins long before a student begins their journey in graduate school. To do proper justice to everyone in my life who contributed to my efforts would not be possible in the limited scope of this document, but I will attempt to acknowledge the key individuals who got me here, helped along the way in my scientific endeavors, and who helped me maintain the tenuous grip on sanity inherent to graduate studies.
    [Show full text]
  • Symposium on Undergraduate Research
    SYMPOSIUM ON UNDERGRADUATE RESEARCH Division of Laser Science of A.P.S - LS XXXIV - 17 September 2018.- Washington DC PARTICIPANTS’ LUNCHEON - Ballroom East - 12:00 The participants' luncheon will bring together the Symposium students and distinguished laser scientists. Sandwich lunches will be provided for participants and invited guests only. REMINDER: Group Photo Break 3:55 PM - PLEASE assemble at the designated place!!! POSTER SESSION - International Ballroom East - 1:00 Session LM4G (poster) 1:00 - 3:55 PM, Ballroom East – Dr. Keith Stein, Bethel Univ., Presider LM4G - 1 Using the Instantaneous Velocity of a Brownian Particle in an Optical Tweezer to Measure Changes in Mass. Gabriel H. Alvarez1, Julia E. Orenstein2, Lichung Ha2, Diney S. Ether Jr.2, and Mark G. Raizen2. 1) Stanford Univ., Stanford, CA 94305, 2) Univ. of Texas, Austin, TX 78712. Using a fast detector to observe the light deflected by silica mi- crospheres trapped in an optical tweezer, we obtain positional information from which instantaneous velocities are calcu- lated and fit to the Maxwell-Boltzmann distribution to extract mass. We plan to use this technology to characterize the onset of heterogeneous ice nucleation. LM4G - 2 Optical Tweezing Experiments with Dielectric Microbeads Willa Dworschack1,2, Chiu Yin Lee1, Perri Zilberman1, Martin Cohen1, Harold Metcalf 11) Stony Brook Univ., Stony Brook, NY 11794, 2) Lawrence Univ., Appleton, WI 54911 Optical tweezing utilizes the momentum carried by light to manipulate micro-scale objects. We designed and constructed an optical tweezing apparatus that enabled precision control of dielectric microbeads using a He-Ne laser and an inverted microscope. Its piconewton force capabilities were demonstrated.
    [Show full text]
  • III-NITRIDE SELF-ASSEMBLED QUANTUM DOT LIGHT EMITTING DIODES and LASERS by Animesh Banerjee a Dissertation Submitted in Partial
    III-NITRIDE SELF-ASSEMBLED QUANTUM DOT LIGHT EMITTING DIODES AND LASERS by Animesh Banerjee A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2014 Doctoral Committee: Professor Pallab K. Bhattacharya, Chair Associate Professor Pei-Cheng Ku Professor Joanna Mirecki-Millunchick Professor Jamie D. Phillips Animesh Banerjee © 2014 All Rights Reserved To my parents who have always stood by me, and have showered their blessings, unconditional love and unwavering support ii ACKNOWLEDGMENT I would like to express my sincere gratitude to my advisor Prof. Pallab Bhattacharya for his continuous support and motivation, his immense knowledge, enthusiasm and patience powering me along the way during my PhD years. He is a great motivator and educator. He was always available to discuss my research and any technical problem that I encountered. His sheer persistence and determination in solving any problem is something I really admire and aspire to pursue for the rest of my life. It has been truly an honor to work with Prof. Bhattacharya. I am also grateful to my committee memebers, Prof. Pei-Cheng Ku, Prof. Jamie Phillips, and Prof. Joanna Mirecki-Millunchick, for their time, insightful comments, and valuable suggestions. I would like to specially thank Prof. Millunchick for her valuable discussions and inputs during our collaborative endeavor. I am thankful to Dr. Meng Zhang and Dr. Wei Guo, my mentors in this group for getting me aquainted with epitaxial growth, fabrication and characterization. I would like to thank Dr. Junseok Heo for guiding me in my first research project here.
    [Show full text]
  • Solid State Laser
    SOLID STATE LASER Edited by Amin H. Al-Khursan Solid State Laser Edited by Amin H. Al-Khursan Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Iva Simcic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Solid State Laser, Edited by Amin H.
    [Show full text]
  • Admission to AIM
    Admission to AIM THIS DOCUMENT IS IMPORTANT AND REQUIRES YOUR IMMEDIATE ATTENTION. If you are in doubt about the contents of this document, or as to the action you should take you are recommended immediately to seek your own personal financial advice from your stockbroker, accountant or other independent financial adviser authorised under the Financial Services and Markets Act 2000 who specialises in advising on the acquisition of shares and other securities. This document comprises an admission document prepared in accordance with the AIM Rules. This document does not constitute an offer to the public requiring an approved prospectus for the purposes of section 85 of FSMA; has not been prepared in accordance with the Prospectus Rules published by the Financial Services Authority; and has not been approved by or filed with the Financial Services Authority or by any other authority which could be a competent authority for the purposes of the Prospectus Directive. Copies of this document will be available free of charge to the public during normal business hours on any day (Saturdays, Sundays and public holidays excepted) at the offices of Evolutec Group plc at 7 Devonshire Square, London EC2M 4YH from the date of this document until one month from the date of Admission in accordance with Rule 3 of the AIM Rules. The Company, the Directors and Proposed Directors whose names appear on page 7 of this document, accept responsibility both individually and collectively for the information contained in this document. To the best of the knowledge and belief of the Company, the Directors and Proposed Directors (who have taken all reasonable care to ensure that such is the case), the information contained in this document is in accordance with the facts and does not omit anything likely to affect the import of such information.
    [Show full text]
  • Zhang Gsas.Harvard 0084L 10989.Pdf (11.58Mb)
    Manipulating Light on Wavelength Scale The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Zhang, Yinan. 2012. Manipulating Light on Wavelength Scale. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11051175 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Manipulating Light on Wavelength Scale Y Z T S E A S D P E E H U C, M D © - Y Z A . esis advisor: Marko Loncar Yinan Zhang Manipulating Light on Wavelength Scale A Light, at the length-scale on the order of its wavelength, does not simply behave as “light ray”, but instead diffracts, scaers, and interferes with itself, as governed by Maxwell’s equations. A profound understanding of the underlying physics has inspired the emergence of a new frontier of materials and devices in the past few decades. is thesis explores the concepts and approaches for manipulating light at the wavelength-scale in a variety of topics, including anti-reective coatings, on- chip silicon photonics, optical microcavities and nanolasers, microwave particle accelerators, and optical nonlinearities. In Chapter , an optimal tapered prole that maximizes light transmission be- tween two media with different refractive indices is derived from analytical theory and numerical modeling. A broadband wide-angle anti-reective coating at the air/silicon interface is designed for the application of photovoltaics.
    [Show full text]
  • Half Year Results Presentation
    HALF YEAR RESULTS PRESENTATION For the six months ended 31 January 2018 DISCLAIMER The following presentation is being made only to, and is only directed at, persons to whom such presentation may lawfully be communicated (“relevant persons”). Any person who is not a relevant person should not act or rely on this presentation or any of its contents. This presentation does not constitute an offering of securities or otherwise constitute an invitation or inducement to any person to underwrite, subscribe for or otherwise acquire securities in Nanoco Group PLC or any of its subsidiaries (“Nanoco”). It should be noted that past performance cannot be relied on as a guide to future performance. This presentation contains forward- looking statements with respect to Nanoco’s plans and objectives regarding its financial conditions, results of operations and businesses. The financial information referenced in this presentation does not contain sufficient detail to allow a full understanding of Nanoco’s results. For more detailed information, the entire text of the interim results announcement for the half year ending 31 January 2018, can be found on the Investor Relations section of the Nanoco website (www.nanocogroup.com). 1 HIGHLIGHTS – ENCOURAGING PROGRESS IN COMMERCIALISATION Momentum in current trading • Game changing Material Development and Supply Agreement with a large US-listed Corporation for advanced electronic devices • Increasing number of Nanoco equipped displays products moving through to commercial production with o First display products
    [Show full text]
  • Front Cover CS V6mg.Indd 1 31/08/2017 16:10 Untitled-1 1 26/07/2017 09:21 Viewpoint by Dr Richard Stevenson, Editor
    Volume 23 Issue 6 August / September 2017 @compoundsemi www.compoundsemiconductor.net Lighting up silicon with InAs quantum dots MACOM Enabling breakthroughs in optical bandwidth density Novel cooling aid high-power laser diodes Easing the use of GaN power electronics An abundance of key elements for chipmakers Ultraviolet LEDs take aim at disinfection News Review, News Analysis, Features, Research Review, and much more... inside Free Weekly E News round up go to: www.compoundsemiconductor.net Front Cover CS v6MG.indd 1 31/08/2017 16:10 Untitled-1 1 26/07/2017 09:21 Viewpoint By Dr Richard Stevenson, Editor Telling our story POPULAR SCIENCES BOOKS aim to educate the layman. By better is to tell the story the way Johnstone does. It begins with eradicating equations, offering analogies and telling a story with a meeting of visionaries that plot out the rate of improvement a human touch, Joe Public can be entertained while learning in these devices, see where they are destined to go, and put the basics of a subject. plans in place to make this happen. Instrumental in the success is the backing by government, which uses its money very But that’s not the only benefi t of these books. They can be read effectively, alongside the introduction of standards that quash by experts, so that when they are at social gatherings and are the availability of inferior bulbs. asked what they do for a living, they can draw on what’s been written to give an answer that’s engaging and understandable. Read this book and you will also be able to wax lyrical about the benefi ts of LEDs in It is for that reason that I recommend Bob Johnstone’s new agriculture, and how the tuning of the book L.E.D.
    [Show full text]
  • Environmentally Friendly Quantum Dots for Display Applications
    Environmentally Friendly Quantum Dots for Display Applications E. Jang SAIT, Samsung Electronics, Suwon, Korea, email: [email protected] Abstract— Ever since the physics of quantum dot (QD) was Color IQ technology, which was the glass tube optic using Cd- discovered, much research effort has been carried out for based QD. After that, TCL, Philips, BOE, Hisense and Konka more than 30 years, and lots of applications adopting QDs applied the same technology for their TV and monitor have been proposed. Especially, wide color gamut displays products. Nanosys has been very active in commercializing using QDs as active light emitting materials have drawn QD-film through the joint development with film-fabricating much attention. And, the QD-based consumer displays such companies such as 3M, LMS, Hitachi, and Nitto Denko. as LED TVs, tablets, and special monitors are now on the Starting from Amazon’s Kindle fire tablet, QD color market. They provide best color gamut, reasonable power converting film, which is called as QDEF, was adopted in the ASUS’s laptop and monitor, and TVs of Hisense, TCL, Vizio, efficiency, and affordable price showing superior competitive AUO. In China, Najing technology started to provide QDs to edge to OLED technology. However, still there are issues film makers such as Sangbo and Poly-OE, and work with TCL and argues using Cadmium containing materials in practical and Hisense to produce TVs. Nanoco is one of the pioneer consumer devices. In spite of the European RoHS companies to have developed the Cd-free QDs from the Exemptions, we need to be aware the environmental risk of beginning, and they have collaborated with Dow chemical and producing large quantity of Cd-containing materials and Merck for the mass-production.
    [Show full text]
  • Nanoco Group Plc
    NANOCO GROUP PLC NEEDHAM GROWTH CONFERENCE JANUARY 2019 DISCLAIMER The following presentation is being made only to, and is only directed at, persons to whom such presentation may lawfully be communicated (“relevant persons”). Any person who is not a relevant person should not act or rely on this presentation or any of its contents. This presentation does not constitute an offering of securities or otherwise constitute an invitation or inducement to any person to underwrite, subscribe for or otherwise acquire securities in Nanoco Group PLC or any of its subsidiaries (“Nanoco”). It should be noted that past performance cannot be relied on as a guide to future performance. This presentation contains forward-looking statements with respect to Nanoco’s plans and objectives regarding its financial conditions, results of operations and businesses. The financial information referenced in this presentation does not contain sufficient detail to allow a full understanding of Nanoco’s results. For more detailed information, the entire text of the preliminary results announcement for the full year ended 31 July 2018, can be found on the Investor Relations section of the Nanoco website (www.nanocogroup.com). COPYRIGHT NANOCO 1 PRESENTERS Dr Michael Edelman - Chief Executive Officer Nanoco has been led by Dr Michael Edelman since September 2004. Michael led the initial fundraising, spun Nanoco out of the University of Manchester, floated the Group on the London Stock Exchange in 2009 and grew Nanoco into the world-leading quantum dot player it is today. Prior to Nanoco, Michael held a number of executive roles, including having responsibility for licensing the technology developed by GE/Bayer joint venture Exatec LLP, Vice President and Managing Director at yet2.com, Commercial Director at Colloids Ltd and Business Manager at Brunner Mond & Co Ltd.
    [Show full text]
  • Techniques for High-Speed Direct Modulation of Quantum Dot Lasers Yan Li
    University of New Mexico UNM Digital Repository Optical Science and Engineering ETDs Engineering ETDs 7-21-2008 Techniques for high-speed direct modulation of quantum dot lasers Yan Li Follow this and additional works at: https://digitalrepository.unm.edu/ose_etds Recommended Citation Li, Yan. "Techniques for high-speed direct modulation of quantum dot lasers." (2008). https://digitalrepository.unm.edu/ose_etds/ 17 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Optical Science and Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Yan Li Candidate Department of Electrical and Computer Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication on microfilm: Approved by the Dissertation Committee: , Chairperson Accepted: Dean, Graduate School Date TECHNIQUES FOR HIGH-SPEED DIRECT MODULATION OF QUANTUM DOT LASERS BY YAN LI M.S. Optics, Sichuan University, 2000 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Optical Science and Engineering The University of New Mexico Albuquerque, New Mexico May, 2008 ACKNOWLEDGEMENTS My deepest gratitude is to my advisor, Prof. Luke F. Lester. I was fortunate to have his support to continue my research in the semiconductor laser area. His guidance, perspective and encouragement are always a major driving force for me to fulfill my dissertation and will benefit my future career. I really appreciate his infinite understanding and patience during the last four years. I also would like to thank Prof.
    [Show full text]