Phylogeny and Biogeography of Pacific Rubus Subgenus

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Biogeography of Pacific Rubus Subgenus Phylogeny and Biogeography ofPacific Rubus Subgenus ldaeobatus (Rosaceae) Species: Investigating the Origin ofthe Endemic Hawaiian Raspberry R. macraei1 Clifford W Morden,2,4 Donald E. Gardner, 3 and Dana A. Weniger2 Abstract: The endemic Hawaiian raspberries Rubus hawaiensis and R. macraei (both subgenus Idaeobatus) had been thought to be closely related species until recent molecular studies demonstrated otherwise. These studies suggest that they are the products of separate colonizations to the Hawaiian Islands. Affin­ ities of R. hawaiensis to R. speaabilis of western North America were clearly confirmed. However, no clear relation to R. macraei has been published. This study was initiated to examine species of subg. Idaeobatus from the surrounding Pacific region as well as species from other subgenera to better evaluate bio­ geographic and phylogenetic affinities of R. macraei by means of chromosome analysis and molecular data using the chloroplast gene ndhF. Results show that R. macraei clusters in a clade with species of blackberries, subg. Rubus, and of these it is most closely linked to R. ursinus. Chromosomally, R. macraei is 2n = 6x = 42, a number that would be a new report for subg. ldaeobatus. How­ ever, polyploidy is cornmon in subg. Rubus. Analyses indicate that R. macraei and R. hawaiensis are derived from separate colonizations from North America and that similarities between them are due to convergent evolution in the Hawaiian environment. THE GENUS Rubus (Rosaceae) is a large and species (Jennings 1988, Iwatsubo et al. 1995, taxonomically complex assemblage of species Thompson 1997, Wagner et al. 1999). The consisting of several hundred sexual species most recent global treatment of Rubus was by to perhaps thousands of apomictic micro- Focke (1910, 1911, 1914), where the genus was divided into 12 subgenera and numer­ ous sections and series. The two largest of Focke's subgenera included the raspberries 1 This work was funded by National Biological Ser­ (subgenus Idaeobatus) and the blackberries vice Research Funding and the Department of Botany, (subg. Rubus = Eubatus Focke). Focke origi­ University of Hawai'i at Manoa. Manuscript accepted 3 nally placed 117 species into subg. Idaeobatus, June 2002. a number that has since increased to 135 2 Department of Botany and Center for Conservation Research and Training, University of Hawai'i at Manoa, species (Thompson 1997). In subg. Rubus, the Honolulu, Hawai'i 96822. number has risen from Focke's original 132 J USGS-Biological Resources Division, Pacific Island species to approximately 400 sexual species Ecosystems Research Center, Department of Botany, and thousands of described apomictic spe­ University of Hawai'i at Manoa, Honolulu, Hawai'i cies (Jennings 1988, Iwatsubo et al. 1995). 96822. 4 Address for correspondence: 3190 Maile Way, Frequent hybridization and reproduction University of Hawai'i at Manoa, Honolulu, Hawai'i through apomixis has made the designation of 96822 (phone: 808-956-9636; fax: 808-956-3923; E-mail: distinct species difficult in this genus (Nybom [email protected]). and Schaal 1990, Nybom and Hall 1991, Kraft et al. 1996). This situation is further Pacific Science (2003), vol. 57, no. 2:181-197 complicated by a large amount of phenotypic © 2003 by University of Hawai'i Press plasticity (Nybom and Schaal 1990, Nybom All rights reserved and Hall 1991, Kraft et al. 1996). 181 182 PACIFIC SCIENCE· April 2003 Two species of Rubus are endemic to the DNA (RAPD) markers to examine genetic Hawaiian Islands, R. hawaiensis and R. macraei variation among some species in two Rubus (Wagner et a1. 1999). Both species were subgenera and found that R. macraei did not placed in subg. Idaeobatus, section Idaeanthi, group with other Idaeobatus species, but rather series spectabiles by Focke (1911) and share a grouped with species of subg. Rubus separate number of notable morphological features. from a cluster containing subg. Idaeobatus Both species are woody in habit, possess species. However, their analysis utilized few shredding bark, have reduced prickle con­ species of these subgenera and involved many centrations, possess compound leaves with individuals derived from artificial crosses re­ three leaflets, flowers that are pink to dusky sulting in inter- and intrasubgeneric hybrids. rose-colored, and drupelets that are dark red Further, R. hawaiensis was not included in this to purple (Wagner et a1. 1999). The high analysis to allow comparison with R. macraei. degree of morphological similarity supports Two recent studies based on sequence the hypothesis that these two species are analysis of chloroplast and nuclear DNA have closely related to one another and as a result provided insight into the phylogenetic frame­ were thought to be derived from R. spectabilis, work of this genus. Examination of the chlo­ the common salmonberry from western roplast ndhF region (Howarth et a1. 1997) has North America (Hillebrand 1888, Fosberg shown the region to possess levels ofvariation 1948, Wagner et al. 1999). The differences appropriate to address questions at the species between these two species are few compared and subgeneric levels. They examined nine with the similarities. Rubus macraei tends species from subg. Idaeobatus including both to grow in a prostrate decumbent manner Hawaiian species as well as R. spectabilis. Their while R. hawaiensis grows upward with erect results surprisingly showed that the two Ha­ branches that may become arching. Other waiian species were not closely related to each morphological differences include the thick­ other. As suspected, R. hawaiensis clustered ness of the leaves, length of the terminal closely with R. spectabilis, but R. macraei did leaflet, and the coloration of the abaxial sur­ not group closely with any other species in faces of the leaves (Wagner et a1. 1999; subg. Idaeobatus. These findings were further C.W.M., pers. obs.). Although these species corroborated by Alice and Campbell (1999) are occasionally found growing sympatrically, in their investigation of phylogenetic rela­ no hybrids between them are known, yet tionships within Rubus using the internal natural hybrids between R. hawaiensis and the transcribed spacer (ITS) region ofthe nuclear invasive R. rosifolius (both subg. Idaeobatus) ribosomal DNA cistron. Alice and Campbell have been documented (Randell 2000). (1999) also showed that the two Hawaiian Given the wide morphological variation species are distantly related although R. mac­ found in this genus, alternative approaches raei clustered closely to a number of other have been employed to gain insight into this species of subg. Idaeobatus. Aside from a close difficult group, including paper chromatogra­ affinity with R. spectabilis, R. hawaiensis did not phy fingerprinting (Haskell and Garrie 1966), cluster with any distinct group. They found a isozyme techniques (Cousineau and Donnelly high similarity in the sequences of R. macraei 1989), and characterization of anthocyanin and R. ursinus, a common blackberry hybrid pigments (Jennings and Carmichael 1980). species along the North American West Nybom et a1. (1990) and Waugh et a1. (1990) Coast from northern Mexico to British Co­ first employed molecular tools to study the lumbia. Recent investigations by Alice (2002) variability in Rubus species using Southern with ITS sequences likewise showed a close hybridization analysis and DNA fingerprint­ association between R. ursinus and R. macraei. ing, respectively. However, neither method Chromosome studies have shown that provided the resolution necessary to examine the base number in Rubus is x = 7 (Graham relationships among species and subgenera of and McNicol 1995, Iwatsubo et a1. 1995, this complex genus. Graham and McNicol Hummer 1996, Thompson 1997). Although (1995) used randomly amplified polymorphic polyploidy is common, there is little evi- Rubus Systematics and Origin of R. macraei . Morden et al. 183 dence of aneuploidy in the genus. Species of MATERIALS AND METHODS subg. Idaeobatus are largely diploid (2n = 14) DNA Extraction and Sequence Analysis with occasional reports of tetraploids (2n = 28) and rarely higher numbers (Thompson Following the classification scheme of Focke 1997). Chromosome counts performed on R. (1910, 1911, 1914), 30 species of Rubus, hawaiensis have confirmed its diploid config­ mostly from the Pacific region and repre­ uration (Thompson 1995), but to date there senting five subgenera, were sampled (Table have been no counts of R. maeraei available. 1). An emphasis was placed on the subg. Subg. Rubus has a high frequency of poly­ Idaeobatus due to Focke's inclusion of both ploidy among the many species that have Hawaiian endemic species in this subgenus. been reported, and R. ursinus has counts Species were chosen for their proximity to ranging from hexaploid to dodecaploid migratory bird flight routes, chromosome (2n = 42 to 84) (Thompson 1997). number, and use in previous studies. Rubus The focus of the research reported here assamensis (subg. Malachobatus) and R. tricolor was to explore the biogeography of Rubus (subg. Dalibardastrum) were included because species in the northern Pacific region and to these species clustered close to R. maeraei in clarify relationships among these species by the ITS analysis of Alice and Campbell analyzing ndhF sequence variation. The ndhF (1999). Morgan et a1. (1994) have shown gene has recently become of interest for sys­ Fallugia to be closely related to Rubus, thus F. tematic analyses and was used here to exam­ paradoxa
Recommended publications
  • Analysis of Flavonoids in Rubus Erythrocladus and Morus Nigra Leaves Extracts by Liquid Chromatography and Capillary Electrophor
    Revista Brasileira de Farmacognosia 25 (2015) 219–227 www.sbfgnosia.org.br/revista Original Article Analysis of flavonoids in Rubus erythrocladus and Morus nigra leaves extracts by liquid chromatography and capillary electrophoresis a a b c Luciana R. Tallini , Graziele P.R. Pedrazza , Sérgio A. de L. Bordignon , Ana C.O. Costa , d e a,∗ Martin Steppe , Alexandre Fuentefria , José A.S. Zuanazzi a Departamento de Produc¸ ão de Matéria Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil b Centro Universitário La Salle, Canoas, RS, Brazil c Departamento de Ciência e Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil d Departamento de Produc¸ ão e Controle de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil e Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil a a b s t r a c t r t i c l e i n f o Article history: This study uses high performance liquid chromatography and capillary electrophoresis as analytical tools Received 15 January 2015 to evaluate flavonoids in hydrolyzed leaves extracts of Rubus erythrocladus Mart., Rosaceae, and Morus Accepted 30 April 2015 nigra L., Moraceae. For phytochemical analysis, the extracts were prepared by acid hydrolysis and ultra- Available online 17 June 2015 sonic bath and analyzed by high performance liquid chromatography using an ultraviolet detector and by capillary electrophoresis equipped with a diode-array detector. Quercetin and kaempferol were iden- Keywords: tified in these extracts. The analytical methods developed were validated and applied.
    [Show full text]
  • F a C T S H E E T Blackberries
    JEFFERSON COUNTY NOXIOUS WEED CONTROL BOARD F A C T S H E E T BLACKBERRIES Himalayan blackberry (Rubus armeniacus) and evergreen blackberry (Rubus laciniatus) Himalayan blackberry stems (canes) can grow to 9 feet in height but often trail along the ground, growing 20-40 feet long. Thorns grow along the stems as well as on the leaves and leaf stalks. Himalayan blackberries have five distinct leaflets; each leaflet has a toothed margin and is generally oval in shape. Canes start producing berries in their second year. Himalayan blackberry can be evergreen, depending on the site. Rose family. Himalayan blackberry Himalayan blackberry Evergreen blackberry The leaflets of evergreen blackberry are deeply lobed, making it easy to distinguish from WHY BE CONCERNED? Himalayan blackberry. Both Himalayan and evergreen DISTRIBUTION: blackberries form impenetrable Himalayan blackberry is extremely visible in thickets, consisting of both dead and most of Jefferson County, growing along live canes. These thickets out-compete roadsides, over fences and other vegetation, and native vegetation and are a good invading many open areas. Evergreen source of food and shelter for rats. blackberry is more common in the West end of the county, where it has been seen to invade Both Himalayan and evergreen riparian areas. blackberries are Class C Weeds 380 Jefferson Street, Port Townsend WA 98368 (360) 379-5610 Ext. 205 [email protected] http://www.co.jefferson.wa.us/WeedBoard ECOLOGY: . Seeds can be spread by birds, humans and other mammals. The canes often cascade outwards, forming mounds, and can root at the tip when they hit the ground, expanding the infestation .
    [Show full text]
  • Rubus Idaeus (Raspberry ) Size/Shape
    Rubus idaeus (raspberry ) Raspberry is an upright deciduous shrub.The shrub has thorns be careful. It ha pinatelly compound leaves with a toothed edge. The plant has two different types of shoots ( canes) One which produces fruits in the given year and one which grows leaves only but will be the next year productive shoot. The fruits are small but very juicy. It grows best in full fun and moderately fertile soil. The best to grow raspberry in a raised bed or in area where any frame or trellis can be put around the plants , otherwise it will fall on the ground. Landscape Information French Name: Framboisier, ﻋﻠﻴﻖ ﺃﺣﻤﺮ :Arabic Name Plant Type: Shrub Origin: North America, Europe, Asia Heat Zones: 4, 5, 6, 7, 8 Hardiness Zones: 4, 5, 6, 7, 8 Uses: Screen, Border Plant, Mass Planting, Edible, Wildlife Size/Shape Growth Rate: Fast Tree Shape: Upright Canopy Symmetry: Symmetrical Plant Image Canopy Density: Medium Canopy Texture: Medium Height at Maturity: 1 to 1.5 m Spread at Maturity: 1 to 1.5 meters Time to Ultimate Height: 2 to 5 Years Rubus idaeus (raspberry ) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Deciduous Leaf Type: Odd Pinnately compund Leaf Blade: 5 - 10 cm Leaf Shape: Ovate Leaf Margins: Double Serrate Leaf Textures: Rough Leaf Scent: No Fragance Color(growing season): Green Flower Image Color(changing season): Brown Flower Flower Showiness: True Flower Size Range: 1.5 - 3 Flower Type: Raceme Flower Sexuality: Monoecious (Bisexual) Flower Scent: No Fragance Flower Color:
    [Show full text]
  • Plant Collecting Expedition for Berry Crop Species Through Southeastern
    Plant Collecting Expedition for Berry Crop Species through Southeastern and Midwestern United States June and July 2007 Glassy Mountain, South Carolina Participants: Kim E. Hummer, Research Leader, Curator, USDA ARS NCGR 33447 Peoria Road, Corvallis, Oregon 97333-2521 phone 541.738.4201 [email protected] Chad E. Finn, Research Geneticist, USDA ARS HCRL, 3420 NW Orchard Ave., Corvallis, Oregon 97330 phone 541.738.4037 [email protected] Michael Dossett Graduate Student, Oregon State University, Department of Horticulture, Corvallis, OR 97330 phone 541.738.4038 [email protected] Plant Collecting Expedition for Berry Crops through the Southeastern and Midwestern United States, June and July 2007 Table of Contents Table of Contents.................................................................................................................... 2 Acknowledgements:................................................................................................................ 3 Executive Summary................................................................................................................ 4 Part I – Southeastern United States ...................................................................................... 5 Summary.............................................................................................................................. 5 Travelog May-June 2007.................................................................................................... 6 Conclusions for part 1 .....................................................................................................
    [Show full text]
  • Growing Cane Berries in the Sacramento Region
    Cooperative Extension-Sacramento County 4145 Branch Center Road, Sacramento, CA 95827-3823 (916) 875-6913 Office • (916) 875-6233 Fax Website: sacmg.ucanr.edu Environmental Horticulture Notes EHN 86 GROWING CANE BERRIES IN THE SACRAMENTO REGION With good preparation and proper care, most cane berries (blackberries and raspberries) can be grown in the Sacramento area. Cane berries are very manageable if they are trellised and pruned correctly, and if their roots are contained when necessary, such as with red raspberries. This paper focuses on cane berries in the garden, but most of the topics are relevant to commercial production as well. See EHN 88 for information on blueberries. SPECIES AND VARIETIES BLACKBERRIES, BOYSENBERRIES AND RELATED BERRIES Several berry types, both thorny and thornless, are often classified as blackberries and are sometimes called dewberries. The main types are western trailing types (Rubus ursinus), which are discussed below, and erect and semi-erect cultivars (no trellis required), which are being developed mainly for cold climates. Most trailing varieties root at the tips of shoots if they come in contact with the soil. BLACKBERRIES: One of the oldest and most popular varieties is ‘Ollalie’, which is actually a cross between blackberry, loganberry, and youngberry. It is large and glossy black at maturity and is slightly longer and more slender than the boysenberry. ‘Thornless Black Satin’ has a heavy crop of large, elongated dark berries that are good for fresh eating or cooking. Another good variety is ‘Black Butte’. ‘Marion’ berry is widely grown in the Pacific Northwest; the plant is very spiny and the berry is used mostly for canning, freezing, pies, and jam.
    [Show full text]
  • Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription
    Hindawi BioMed Research International Volume 2018, Article ID 7627191, 10 pages https://doi.org/10.1155/2018/7627191 Research Article Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription Jiahui Sun ,1,2 Shuo Shi ,1,2,3 Jinlu Li,1,4 Jing Yu,1 Ling Wang,4 Xueying Yang,5 Ling Guo ,6 and Shiliang Zhou 1,2 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2University of the Chinese Academy of Sciences, Beijing 100043, China 3College of Life Science, Hebei Normal University, Shijiazhuang 050024, China 4Te Department of Landscape Architecture, Northeast Forestry University, Harbin 150040, China 5Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China 6Beijing Botanical Garden, Beijing 100093, China Correspondence should be addressed to Ling Guo; [email protected] and Shiliang Zhou; [email protected] Received 21 September 2017; Revised 11 December 2017; Accepted 2 January 2018; Published 19 March 2018 Academic Editor: Fengjie Sun Copyright © 2018 Jiahui Sun et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Maleae consists of economically and ecologically important plants. However, there are considerable disputes on generic circumscription due to the lack of a reliable phylogeny at generic level. In this study, molecular phylogeny of 35 generally accepted genera in Maleae is established using 15 chloroplast regions. Gillenia isthemostbasalcladeofMaleae,followedbyKageneckia + Lindleya, Vauquelinia, and a typical radiation clade, the core Maleae, suggesting that the proposal of four subtribes is reasonable.
    [Show full text]
  • Are Our Raspberries Derived from American Or European Species ? Geo
    ARE OUR RASPBERRIES DERIVED FROM AMERICAN OR EUROPEAN SPECIES ? GEO. M. DARROW Bureau of Plant Industry, U. S. Department of Agriculture T HAS been the common supposition Foche* makes but one species of both, of pomologists that most of our classing R. strigosius as a variety of I cultivated red raspberries are de- R. idaeus. His distinctions between the rived from American species. Va- two, however, are similar to those of rieties from the European species have Rydberg, but he emphasizes the fact been considered very susceptible to win- that while the upper part of the ma- ter injury while those from the Amer- ture plants of R. strigosus is densely, ican species have been considered very rarely sparsely bristly, the upper part hardy. Because varieties of red rasp- of R. idaeus is without bristles, berries commonly grown in this conn- An examination of Rubus idaeus try have been moderately hardy they grown in this country under garden were, therefore, thought to be derived conditions show that these distinctions from the American species. are apparently correct. As Rydberg A brief review of the points of dif- states, the plants are not glandular- ference between the two species of red hispid, the stems, peduncles, and raspberries which are the parents of our sepals are tomentose, the fruit is dark cultivated varieties will show how er- red • and thimble shaped. As Card roneous this view is. states, the canes are stouter, and less Rydberg1 gives the following distinc- free in habit of growth. The'prickles tions between the European and Amer- are firm, recurved, and less numerous ican species : than the bristles of R- strigosus.
    [Show full text]
  • Rosa Canina Linnaeus Common Names: Dog Rose, Dog Brier, Wild Rose (5,6,13)
    Rosa canina Linnaeus Common Names: Dog rose, dog brier, wild rose (5,6,13). Etymology: ‘Rosa’ is the Latin word for ‘rose’, and ‘canina’ in Latin means ‘of a dog’ or ‘mean’ (1,3). Botanical synonyms: Rosa corymbifera Borkh., R. dumetorum Thuill., and R. ciliatosepala Blocki (2,6). FAMILY: Rosaceae, the rose family (1) Quick Notable Features: ¬ Alternate, odd-pinnately compound, serrate leaves ¬ Conspicuous stipules, fused to petiole ¬ Showy white/pink flowers with many stamens and pistils in a hypanthium ¬ Bright red hips with no sepals Plant Height: R. canina grows up to 3m tall (10). Subspecies/varieties recognized (6,7): Rosa canina var. dumetorum (Thuill.) Poir., Rosa canina var. canina L., Rosa canina var. corymbifera Rouy, Rosa canina var. andegavensis Arechav., Rosa canina var. evanida (Christ) P.V.Heath, Rosa canina var. frutetorum (Besser) P.V.Heath, Rosa canina var. libertiae (Dumort.) P.V.Heath, Rosa canina var. Montana (Vill.) P.V.Heath, Rosa canina var. sepium Arechav., Rosa canina var. subcanina (Christ) P.V.Heath, Rosa canina subsp. andegavensis (Bastard) Vigo, Rosa canina subsp. virens (Wahlenb.) Šmite. Most Likely Confused with: Rosa eglanteria, R. micrantha, R. setigera, R multiflora, and Rubus ssp. (1,9). Habitat Preference: The species is found in open, disturbed habitats such as roadsides, old pastures, fields, dry banks, and thickets. R. canina requires at least partial sun, and high levels of soil moisture (1,5,9,10). Geographic Distribution in Michigan: The species grows in six counties of the lower peninsula: Benzie, Hillsdale, Kent, Leelanau, Lenawee, and Wayne (2,19). Known Elevational Distribution: In Turkey, R.
    [Show full text]
  • Phylogenetic Inferences in Prunus (Rosaceae) Using Chloroplast Ndhf and Nuclear Ribosomal ITS Sequences 1Jun WEN* 2Scott T
    Journal of Systematics and Evolution 46 (3): 322–332 (2008) doi: 10.3724/SP.J.1002.2008.08050 (formerly Acta Phytotaxonomica Sinica) http://www.plantsystematics.com Phylogenetic inferences in Prunus (Rosaceae) using chloroplast ndhF and nuclear ribosomal ITS sequences 1Jun WEN* 2Scott T. BERGGREN 3Chung-Hee LEE 4Stefanie ICKERT-BOND 5Ting-Shuang YI 6Ki-Oug YOO 7Lei XIE 8Joey SHAW 9Dan POTTER 1(Department of Botany, National Museum of Natural History, MRC 166, Smithsonian Institution, Washington, DC 20013-7012, USA) 2(Department of Biology, Colorado State University, Fort Collins, CO 80523, USA) 3(Korean National Arboretum, 51-7 Jikdongni Soheur-eup Pocheon-si Gyeonggi-do, 487-821, Korea) 4(UA Museum of the North and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775-6960, USA) 5(Key Laboratory of Plant Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China) 6(Division of Life Sciences, Kangwon National University, Chuncheon 200-701, Korea) 7(State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China) 8(Department of Biological and Environmental Sciences, University of Tennessee, Chattanooga, TN 37403-2598, USA) 9(Department of Plant Sciences, MS 2, University of California, Davis, CA 95616, USA) Abstract Sequences of the chloroplast ndhF gene and the nuclear ribosomal ITS regions are employed to recon- struct the phylogeny of Prunus (Rosaceae), and evaluate the classification schemes of this genus. The two data sets are congruent in that the genera Prunus s.l. and Maddenia form a monophyletic group, with Maddenia nested within Prunus.
    [Show full text]
  • Influence of Silvicultural Treatment, Site Characteristics, and Land Use
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 8-2009 Influence of Silvicultural Treatment, Site Characteristics, and Land Use History on Native and Nonnative Forest Understory Plant Composition on the Penobscot Experimental Forest in Maine Elizabeth Bryce Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Forest Biology Commons, Forest Management Commons, Plant Sciences Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Bryce, Elizabeth, "Influence of Silvicultural Treatment, Site Characteristics, and Land Use History on Native and Nonnative Forest Understory Plant Composition on the Penobscot Experimental Forest in Maine" (2009). Electronic Theses and Dissertations. 362. http://digitalcommons.library.umaine.edu/etd/362 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. INFLUENCE OF SILVICULTURAL TREATMENT, SITE CHARACTERISTICS, AND LAND USE HISTORY ON NATIVE AND NONNATIVE FOREST UNDERSTORY PLANT COMPOSITION ON THE PENOBSCOT EXPERIMENTAL FOREST IN MAINE By Elizabeth Bryce B.S. Temple University, 2003 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Ecology and Environmental Science) The Graduate School The University of Maine August, 2009 Advisory Committee: Laura S. Kenefic, Research Forester, U.S. Forest Service, Northern Research Station, and Faculty Associate, School of Forest Resources, Advisor Alison C. Dibble, Adjunct Faculty, Department of Biology and Ecology John C. Brissette, Research Forester and Project Leader, U.S. Forest Service, Northern Research Station William H.
    [Show full text]
  • Tmcm1de1.Pdf
    Departament de Biologia Facultat de Ciències Hybridization patterns in Balearic endemic plants assessed by molecular and morphological markers — Ph. D. Thesis — Miquel Àngel Conesa Muñoz Supervisors: Dr. Maurici Mus Amézquita (Universitat de les Illes Balears) Dr. Josep Antoni Rosselló Picornell (Universitat de València) May 2010 Palma de Mallorca El doctor Maurici Mus Amézquita, professor titular de la Universitat de les Illes Balears, i el doctor Josep Antoni Rosselló Picornell, professor titular de la Universitat de València, CERTIFIQUEN: Que D. Miquel Àngel Conesa Muñoz ha realitzat, baix la seva direcció en el Laboratori de Botànica de la Universitat de les Illes Balears i en el Departament de Botànica del Jardí Botànic de la Universitat de València, el treball per optar al grau de Doctor en Biologia de les Plantes en Condicions Mediterrànies, amb el títol: “HYBRIDIZATION PATTERNS IN BALEARIC ENDEMIC PLANTS ASSESSED BY MOLECULAR AND MORPHOLOGICAL MARKERS” Considerant finalitzada la present memòria, autoritzem la seva presentació amb la finalitat de ser jutjada pel tribunal corresponent. I per tal que així consti, signem el present certificat a Palma de Mallorca, a 27 de maig de 2010. Dr. Maurici Mus Dr. Josep A. Rosselló 1 2 A la meva família, als meus pares. 3 4 Agraïments - Acknowledgements En la vida tot arriba. A moments semblava que no seria així, però aquesta tesi també s’ha acabat. Per arribar avui a escriure aquestes línies, moltes persones han patit amb mi, per mi, o m’han aportat el seu coneixement i part del seu temps. Així doncs, merescut és que els recordi aquí. Segurament deixaré algú, que recordaré quan ja sigui massa tard per incloure’l.
    [Show full text]
  • Raspberry Breeding and Protection Against Disease and Pests I
    391 Bulgarian Journal of Agricultural Science, 20 (No 2) 2014, 391-404 Agricultural Academy RASPBERRY BREEDING AND PROTECTION AGAINST DISEASE AND PESTS I. TOTIC State University of Novi Pazar, Novi Pazar, Republic of Serbia Abstract TOTIC, I., 2014. Raspberry breeding and protection against disease and pests. Bulg. J. Agric. Sci., 20: 391-404 The raspberry (Rubus idaeus) is a very important type of small perennial berry. Based on the extent of its production, it comes second only to the strawberry and currant, and based on its economic importance, it is second only to the strawberry. Considering that the first raspberry cultivars in the true sense of the word originated from the beginning of the 17th century, polmology has managed to this day to register and systematize over one thousand raspberry cultivars. The raspberry belongs to the group of products, which have the greatest degree of marketability, and in some countries (the Republic of Serbia) over 99 % of the overall production is meant to be sold on the market. In suitable agro-ecological and technical conditions (a profes- sional staff, processing and freezing capacities, organized purchase locations, high quality roads and means of transportation, a sufficient workforce needed to harvest the crop), it is possible to achieve a yield of up to 35 tons per acre. Raspberry canes meant for planting need to be formed in suitable soil and must be healthy. Raspberries are traditionally cultivated in open ar- eas, and lately also in high tunnels. The canes are susceptible to disease caused by different types of pests and weeds. In order to protect them, it is necessary to regularly resort to pomotechnic and agrotechnic measures in order to prevent cane decay and a poor harvest.
    [Show full text]