CT of Pineal Region Tumors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Central Nervous System Tumors General ~1% of Tumors in Adults, but ~25% of Malignancies in Children (Only 2Nd to Leukemia)
Last updated: 3/4/2021 Prepared by Kurt Schaberg Central Nervous System Tumors General ~1% of tumors in adults, but ~25% of malignancies in children (only 2nd to leukemia). Significant increase in incidence in primary brain tumors in elderly. Metastases to the brain far outnumber primary CNS tumors→ multiple cerebral tumors. One can develop a very good DDX by just location, age, and imaging. Differential Diagnosis by clinical information: Location Pediatric/Young Adult Older Adult Cerebral/ Ganglioglioma, DNET, PXA, Glioblastoma Multiforme (GBM) Supratentorial Ependymoma, AT/RT Infiltrating Astrocytoma (grades II-III), CNS Embryonal Neoplasms Oligodendroglioma, Metastases, Lymphoma, Infection Cerebellar/ PA, Medulloblastoma, Ependymoma, Metastases, Hemangioblastoma, Infratentorial/ Choroid plexus papilloma, AT/RT Choroid plexus papilloma, Subependymoma Fourth ventricle Brainstem PA, DMG Astrocytoma, Glioblastoma, DMG, Metastases Spinal cord Ependymoma, PA, DMG, MPE, Drop Ependymoma, Astrocytoma, DMG, MPE (filum), (intramedullary) metastases Paraganglioma (filum), Spinal cord Meningioma, Schwannoma, Schwannoma, Meningioma, (extramedullary) Metastases, Melanocytoma/melanoma Melanocytoma/melanoma, MPNST Spinal cord Bone tumor, Meningioma, Abscess, Herniated disk, Lymphoma, Abscess, (extradural) Vascular malformation, Metastases, Extra-axial/Dural/ Leukemia/lymphoma, Ewing Sarcoma, Meningioma, SFT, Metastases, Lymphoma, Leptomeningeal Rhabdomyosarcoma, Disseminated medulloblastoma, DLGNT, Sellar/infundibular Pituitary adenoma, Pituitary adenoma, -
Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum
415 Pineal Region Tumors: Computed Tomographic-Pathologic Spectrum Nancy N. Futrell' While several computed tomographic (CT) studies of posterior third ventricular Anne G. Osborn' neoplasms have included descriptions of pineal tumors, few reports have concentrated Bruce D. Cheson 2 on these uncommon lesions. Some authors have asserted that the CT appearance of many pineal tumors is virtually pathognomonic. A series of nine biopsy-proved pineal gland and eight other presumed tumors is presented that illustrates their remarkable heterogeneity in both histopathologic and CT appearance. These tumors included germinomas, teratocarcinomas, hamartomas, and other varieties. They had variable margination, attenuation, calcification, and suprasellar extension. Germinomas have the best response to radiation therapy. Biopsy of pineal region tumors is now feasible and is recommended for treatment planning. Tumors of the pineal region account for less th an 2% of all intracrani al neoplasms [1]. While several reports of computed tomography (CT) of third ventricular neoplasms have in cluded an occasi onal pineal tumor [2 , 3], few have focused on the radiographic spectrum of th ese uncommon lesions [4]. Some authors have asserted that the CT appearance of many pineal tumors is virtuall y pathognomonic [5]. We studied a series of nine biopsy-proven pineal gland tumors that demonstrated remarkable heterogeneity in both histopath ologic and CT appearance. Materials and Methods A total of 17 pineal gland tumors were detected in 15,000 consecutive CT scans. Four patients were female and 13 were male. Mean age for the fe males was 27 years; for the males, 15 years. Initial symptoms ranged from headache, nausea, and vomiting, to Parinaud syndrome, vi sual field defects, diabetes insipidus, and hypopituitari sm (table 1). -
Clinical Radiation Oncology Review
Clinical Radiation Oncology Review Daniel M. Trifiletti University of Virginia Disclaimer: The following is meant to serve as a brief review of information in preparation for board examinations in Radiation Oncology and allow for an open-access, printable, updatable resource for trainees. Recommendations are briefly summarized, vary by institution, and there may be errors. NCCN guidelines are taken from 2014 and may be out-dated. This should be taken into consideration when reading. 1 Table of Contents 1) Pediatrics 6) Gastrointestinal a) Rhabdomyosarcoma a) Esophageal Cancer b) Ewings Sarcoma b) Gastric Cancer c) Wilms Tumor c) Pancreatic Cancer d) Neuroblastoma d) Hepatocellular Carcinoma e) Retinoblastoma e) Colorectal cancer f) Medulloblastoma f) Anal Cancer g) Epndymoma h) Germ cell, Non-Germ cell tumors, Pineal tumors 7) Genitourinary i) Craniopharyngioma a) Prostate Cancer j) Brainstem Glioma i) Low Risk Prostate Cancer & Brachytherapy ii) Intermediate/High Risk Prostate Cancer 2) Central Nervous System iii) Adjuvant/Salvage & Metastatic Prostate Cancer a) Low Grade Glioma b) Bladder Cancer b) High Grade Glioma c) Renal Cell Cancer c) Primary CNS lymphoma d) Urethral Cancer d) Meningioma e) Testicular Cancer e) Pituitary Tumor f) Penile Cancer 3) Head and Neck 8) Gynecologic a) Ocular Melanoma a) Cervical Cancer b) Nasopharyngeal Cancer b) Endometrial Cancer c) Paranasal Sinus Cancer c) Uterine Sarcoma d) Oral Cavity Cancer d) Vulvar Cancer e) Oropharyngeal Cancer e) Vaginal Cancer f) Salivary Gland Cancer f) Ovarian Cancer & Fallopian -
Germinoma of the Pineal Its Identity with Gcrminoma ( Scminoma") of the Testis
Germinoma of the Pineal Its Identity with Gcrminoma ( Scminoma") of the Testis Major Nathan B. Friedman, MC, AUS (From the Army Institute ot Pathology, \X/ashillgto~L D. C.) (Received for publication December 10, 1946) In 1944 Dorothy Russell (15) published the re- gcrminonmtous elements. Only 2 tulnors in this suits of a study of pineal tumors. She presented a group of 8 appeared to bc of neural origin; one, rational explanation for the well known similarity which had the pattern of a classic pinealoma, was in histologic appearance of "pinealomas" and "semi- TABLE l: DATA IN T\VENTY-THREt CASES OF PlNEAL nomas." She suggested that in'any "pincalomas" NEOPI.ASM ucre in truth teratoid tumors. The present report Case Age, Type of proposes to confirln h er.~obscrvations and to extend No. Sex years npoplasm s features her interpretations in accord with the teratologic CRovP 1 concepts gained through study of nearly 1,000 tu- 1 M 29 Neural mors of the testis at the Army Institute of Patho- 2 XI 22 Germinoma Extrapineal. Pitui- logy (6). tary involved. Dia- The files of the Institute contain pathologic ma- betes insipidus. Hypogonadism. terial from 23 patients with tumors of the pineal or ectopic "pinealomas." Fifteen tumors were submit- 3 1~i 17 Neural ted by military installations ~ (Group 1), and 8 were 4 1~I 18 Germinoma Pituitary involved. obtained from civilian sources e (Group 2). The Diabetes insipidus. _~I 21 essential data in all 23 cases arc listed in Table I. Puhnonary metas- tases. Radiosensi- Seven of the 15 tumors in group 1 were identical tMty. -
Points of Consideration in Diagnosis of Brain Tumors
University of Nebraska Medical Center DigitalCommons@UNMC MD Theses Special Collections 5-1-1934 Points of consideration in diagnosis of brain tumors Robert J. Stein University of Nebraska Medical Center This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research. Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses Part of the Medical Education Commons Recommended Citation Stein, Robert J., "Points of consideration in diagnosis of brain tumors" (1934). MD Theses. 356. https://digitalcommons.unmc.edu/mdtheses/356 This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. POINTS OF CONSIDERATION IN DIAGNOSIS OF BRAIN TUMORS by Robert J. Stein University of Nebraska College of Medicine Omaha Page I. Introduction ••.••••••••••.••.••••••••••••••••••••••• 1. II. Histogenes is of the Brain ••••••••••••.•••••••••••••• I. III.Classification of Intracranial Tumors............ 11. IV. Outllne of Methods of Examination ••••••••••••••••••• 31. V. General Symutoms and Signs of Increased Intra- cran~al Pressure ••. ••• .••••••••••••••••••••• • • • :J •••• 36. VI. Focal Signs and Symptoms of Brain Tumor ••••••••••••• 45. Cerebral Tumors ••••••••••, •••••••••••••••••••••••••• 47. Tumors of Cerebellum, Pons and Medulla ••••••••••• •• 57. Tumors of the Pi tui tary Body ••••••••••••••••.•••• .'. 61. VI I. Summary. • • • • • • . • • • • • . • • • • • . • • • . • • • • • • • • . • . • • • • • • • •• 65. Bibliogranhy •••••••••••••••••••••••••• • • • • • • • • • • • • • 69. 1. I. INTRODUCTION The progress of the surgery of intracranial tumors has been asso ciated intimately wi th the advenae ment of asepsis and surgical technique in genera.l i methods of more accurate diagnosis and a correlation of the pathology of tumors encountered with the clini cal course of the patient. -
A Glioma in a Dog and a Pinealoma in a Silver Fox (Vulpes Fulvus)
A GLIOMA IN A DOG AND A PINEALOMA IN A SILVER FOX (VULPES FULVUS) CARL F. SCHLOTTHAUER, D.V.M., Division of E.aperinienta1 Medicine, The Mauo Foundation JAMES W. KERNOHAN, M.D., Section on Pathologic Anatomy, The Mayo Clinic, Rochester, Minnesota Only a small number of primary intracranial neoplasms have been observed in mammals and birds. Either they do not occur as fre- quently in lower animals as they do in man or they are overlooked. The latter is a probable explanation, as only a small number of animals that die of natural causes come to necropsy and because of the dif- ficulty of opening the cranium with inadequate equipment this part of the examination generally is omitted. Slye, Holmes and Wells, in 1931, reviewed the literature 011 intrn- cranial and cord tumors of lower animals and found only 36 cases re- ported. Twenty-six of these were intracraiiial tumors, 11 of which were in the hypophysis. They at that time reported 4 new cases of primary intracranial neoplasms, 3 occurring in mice of the Slye stock and one in a green parrakeet (Agatomis puEZuriu). The neoplasms found in tlie mice were : an endothelioma of a cerebral peduncle, a papil- lomatous growth in the ependyma of the lateral ventricle, and an in- filtrating adenoma of the hypophysis. The tumor observed in the parrakeet was an adeiioma in tlie hypophysis. Iii their summary thew writers mention that it is especially noteworthy that only one seemingly conclusive report of a cerebral glioma in an animal could be found. Dawes, in 1930, reported two intracrunial neoplasms in dogs. -
PINEAL REGION TUMORS Onc28 (1)
PINEAL REGION TUMORS Onc28 (1) Pineal Region Tumors, Pineal Parenchymal Tumors Last updated: December 22, 2020 TERMINOLOGY......................................................................................................................................... 1 EPIDEMIOLOGY ........................................................................................................................................ 1 ETIOLOGY ................................................................................................................................................ 1 CLASSIFICATION, PATHOLOGY ............................................................................................................... 1 PINEAL PARENCHYMAL TUMORS ........................................................................................................... 1 Pineocytoma ..................................................................................................................................... 1 Pineoblastoma .................................................................................................................................. 3 Pineal parenchymal tumour of intermediate differentiation ............................................................ 5 Papillary tumour of pineal region ..................................................................................................... 6 GLIOMAS................................................................................................................................................ 7 MISCELLANEOUS -
New Jersey State Cancer Registry List of Reportable Diseases and Conditions Effective Date March 10, 2011; Revised March 2019
New Jersey State Cancer Registry List of reportable diseases and conditions Effective date March 10, 2011; Revised March 2019 General Rules for Reportability (a) If a diagnosis includes any of the following words, every New Jersey health care facility, physician, dentist, other health care provider or independent clinical laboratory shall report the case to the Department in accordance with the provisions of N.J.A.C. 8:57A. Cancer; Carcinoma; Adenocarcinoma; Carcinoid tumor; Leukemia; Lymphoma; Malignant; and/or Sarcoma (b) Every New Jersey health care facility, physician, dentist, other health care provider or independent clinical laboratory shall report any case having a diagnosis listed at (g) below and which contains any of the following terms in the final diagnosis to the Department in accordance with the provisions of N.J.A.C. 8:57A. Apparent(ly); Appears; Compatible/Compatible with; Consistent with; Favors; Malignant appearing; Most likely; Presumed; Probable; Suspect(ed); Suspicious (for); and/or Typical (of) (c) Basal cell carcinomas and squamous cell carcinomas of the skin are NOT reportable, except when they are diagnosed in the labia, clitoris, vulva, prepuce, penis or scrotum. (d) Carcinoma in situ of the cervix and/or cervical squamous intraepithelial neoplasia III (CIN III) are NOT reportable. (e) Insofar as soft tissue tumors can arise in almost any body site, the primary site of the soft tissue tumor shall also be examined for any questionable neoplasm. NJSCR REPORTABILITY LIST – 2019 1 (f) If any uncertainty regarding the reporting of a particular case exists, the health care facility, physician, dentist, other health care provider or independent clinical laboratory shall contact the Department for guidance at (609) 633‐0500 or view information on the following website http://www.nj.gov/health/ces/njscr.shtml. -
Rosettes and Pseudorosettes and Their Significance
Journal of Enam Medical College Vol 7 No 2 May 2017 Review Article Rosettes and Pseudorosettes and Their Significance Mahtab Uddin Ahmed1 Received: April 15, 2016 Accepted: April 30, 2017 doi: http://dx.doi.org/10.3329/jemc.v7i2.32656 Abstract Rosettes are round assemblage of cells found in tumors. They usually consist of cells in a spoke circle, a halo collection surrounding a central or a cellular lumen. Rosettes are so named for their similarity to the rose casement found in gothic cathedrals. There are clusters of different kinds of rosettes in pathology, each with different kind of cells and dissimilar names. Most of them are found in tumors of the nervous system. The detection of rosettes help in diagnosis of different tumors. Key words: Rosettes; Tumors; Pathology J Enam Med Col 2017; 7(2): 101−106 What are rosettes? Rosettes may be considered primary or secondary Rosettes consist of a halo or spoken-wheel manifestations of tumor architecture. Primary rosettes arrangement of cells surrounding a central core or hub. form as a characteristic growth pattern of a given The central hub may consist of an empty-appearing tumor type whereas secondary rosettes result from lumen or a space filled with cytoplasmic processes. the influence of external factors on tumor growth. The cytoplasm of each of the cells in the rosette is For example, in the latter instance, regressive cell often wedge-shaped with the apex directed toward swelling may centripetally displace the cytoplasm as the central core: the nuclei of the cells participating the nucleus is squeezed to the periphery. -
What Can the Neuroradiologist Really Say?
The New World Health Organization Classification of Central Nervous System Tumors: REVIEW ARTICLE What Can the Neuroradiologist Really Say? A.G. Osborn SUMMARY: The WHO Classification of Tumors of the Central Nervous System has become the K.L. Salzman worldwide standard for classifying and grading brain neoplasms. The most recent edition (WHO 2007) introduced a number of significant changes that include both additions and redefinitions or clarifica- M.M. Thurnher tions of existing entities. Eight new neoplasms and 4 new variants were introduced. This article J.H. Rees reviews these entities, summarizing both their histology and imaging appearance. Now with more than M. Castillo 3 years of clinical experience following publication of the newest revision, we also ask, “What can the neuroradiologist really say?” Are there imaging findings that could suggest the preoperative diagnosis of a new tumor entity or variant? ABBREVIATIONS: aCPP ϭ atypical choriod plexus papilloma; CNS ϭ central nervous system; CPP ϭ choriod plexus papilloma; CPCa ϭ choriod plexus carcinoma; DNET ϭ dysembryoplastic neuroep- ithelial tumor; EVNCT ϭ extraventricular neurocytoma; MB ϭ medulloblastoma; MBEN ϭ medul- loblastoma with extensive nodularity; PA ϭ pilocytic astrocytoma; PGNT ϭ papillary glioneuronal tumor; PMA ϭ pilomyxoid astrocytoma; PPTID ϭ pineal parenchymal tumor of intermediate differentiation; PTPRϭ papillary tumor of the pineal region; RGNT ϭ rosette-forming glioneuronal tumor; SCO ϭ spindle cell oncocytoma; T1Cϩϭpost-contrast T1-weighted; T1WI ϭ T1-weighted imaging; T2WI ϭ T2-weighted imaging; WHO ϭ World Health Organization he WHO Classification of Tumors of the Central Nervous mors”) as chordoid glioma and astroblastoma.4 Angiocentric TSystem, now in its fourth edition, is the universal standard gliomas are slowly growing solid hemispheric tumors of chil- 1,2 for classifying and grading brain neoplasms. -
Presenting Psychiatric and Neurological Symptoms and Signs of Brain Tumors Before Diagnosis: a Systematic Review
Review Presenting Psychiatric and Neurological Symptoms and Signs of Brain Tumors before Diagnosis: A Systematic Review Fatima Ghandour 1,2, Alessio Squassina 1, Racha Karaky 3, Mona Diab-Assaf 2, Paola Fadda 1,4,5,6,* and Claudia Pisanu 1 1 Department of Biomedical Sciences, Division of Neuroscience and Clinical pharmacology, University of Ca- gliari, 09042 Monserrato, Italy; [email protected] (F.G.); [email protected] (A.S.); [email protected] (C.P.) 2 EDST, Pharmacology and Cancerology Laboratory, Faculty of Sciences, Lebanese University, Beirut 1500, Lebanon; [email protected] 3 Drug-Related Sciences department, Faculty of Pharmacy, Lebanese University, Hadath 1500, Lebanon; [email protected] 4 Centre of Excellence "Neurobiology of Addiction", University of Cagliari, 09042 Monserrato, Italy 5 CNR Institute of Neuroscience - Cagliari, National Research Council, 09042 Monserrato, Italy 6 National Institute of Neuroscience (INN), 10126 Turin, Italy * Correspondence: [email protected] Table S1. Characteristics of “pediatric group” case reports (age < 18 years) with initial psychiatric symptoms with or without generalized and/or neurological signs and symptoms. Ref. Age Gender Tumor type Tumor location Psychiatric symptoms (P.S) Neurological symptoms Time from P.S after symptoms to tumor treat- diagnosis ment [1] 5 F Diffuse intrinsic Pontine Personality changes Motor deficits 3 weeks N.S. pontine glioma [2] 3 M Pilocytic Astrocyto- Rostral medulla Paroxysmal crying, anxiety Nausea, vomiting, seizure 8 months ✓ -
A Typical Neurofibromatosis Type 1 in Adult with Intracranial T2 Hyperintensities and Pinealoma: a Case Report
vv ISSN: 2455-5282 DOI: https://dx.doi.org/10.17352/gjmccr CLINICAL GROUP Received: 16 April, 2020 Case Report Accepted: 25 April, 2020 Published: 27 April, 2020 *Corresponding author: Yongan Sun, Associate A typical neurofi bromatosis Professor, Department of Neurology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District 100034, Beijing, China, Tel: +86 133 91705678; type 1 in adult with E-mail: ORCID: https://orcid.org/0000-0001-9119-5322 intracranial T2 Keywords: Neurofi bromatosis; T2 hyperintensities; Pinealoma; High-grade glioma; Clinical manifestation hyperintensities and https://www.peertechz.com pinealoma: A Case Report Siwei Chen, Haiqiang Jin, Jing Bai, Wei Zhang, Jingjing Luo, Yining Huang and Yongan Sun* Associate Professor, Department of Neurology, Peking University First Hospital, China Abstract Neurofi bromatosis type 1 (NF-1) is a common autosomal dominant inherited disorder. Aside from typical symptoms like pigmentary manifestation, patients with NF-1 can also have unspecifi ed T2 hyperintensities (T2Hs) on the brain and may develop benign or malignant tumours in central nervous system or other parts of the body. In this article, we reported a 54-year-old female diagnosed as NF-1 combined with T2Hs and pinealoma that was proved to be a high-grade glioma in later follow-up. We noticed some clinical manifestations such as pigmented teeth and dentition defects that had not been described before. There were some refl ections from the poor prognosis of this patient. Even though the course of the disease is relatively indolent most of the time, long-term surveillance is in need and treatment may be required in those with symptoms or unstable imaging fi ndings.