100 Years Ago Crisis Ol Conlidence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Wittelsbach-Graff and Hope Diamonds: Not Cut from the Same Rough
THE WITTELSBACH-GRAFF AND HOPE DIAMONDS: NOT CUT FROM THE SAME ROUGH Eloïse Gaillou, Wuyi Wang, Jeffrey E. Post, John M. King, James E. Butler, Alan T. Collins, and Thomas M. Moses Two historic blue diamonds, the Hope and the Wittelsbach-Graff, appeared together for the first time at the Smithsonian Institution in 2010. Both diamonds were apparently purchased in India in the 17th century and later belonged to European royalty. In addition to the parallels in their histo- ries, their comparable color and bright, long-lasting orange-red phosphorescence have led to speculation that these two diamonds might have come from the same piece of rough. Although the diamonds are similar spectroscopically, their dislocation patterns observed with the DiamondView differ in scale and texture, and they do not show the same internal strain features. The results indicate that the two diamonds did not originate from the same crystal, though they likely experienced similar geologic histories. he earliest records of the famous Hope and Adornment (Toison d’Or de la Parure de Couleur) in Wittelsbach-Graff diamonds (figure 1) show 1749, but was stolen in 1792 during the French T them in the possession of prominent Revolution. Twenty years later, a 45.52 ct blue dia- European royal families in the mid-17th century. mond appeared for sale in London and eventually They were undoubtedly mined in India, the world’s became part of the collection of Henry Philip Hope. only commercial source of diamonds at that time. Recent computer modeling studies have established The original ancestor of the Hope diamond was that the Hope diamond was cut from the French an approximately 115 ct stone (the Tavernier Blue) Blue, presumably to disguise its identity after the that Jean-Baptiste Tavernier sold to Louis XIV of theft (Attaway, 2005; Farges et al., 2009; Sucher et France in 1668. -
The Tubesat Launch Vehicle
TubeSat and NEPTUNE 30 Orbital Rocket Programs Personal Satellites Are GO! Interorbital Systems www.interorbital.com About Interorbital Corporation Founded in 1996 by Randa and Roderick Milliron, incorporated in 2001 Located at the Mojave Spaceport in Mojave, California 98.5% owned by R. and R. Milliron 1.5% owned by Eric Gullichsen Initial Starting Technology Pressure-fed liquid rocket engines Initial Mission Low-cost orbital and interplanetary launch vehicle development Facilities 6,000 square-foot research and development facility Two rocket engine test sites at the Mojave Spaceport Expert engineering and manufacturing team Interorbital Systems www.interorbital.com Core Technical Team Roderick Milliron: Chief Designer Lutz Kayser: Primary Technical Consultant Eric Gullichsen: Guidance and Control Gerard Auvray: Telecommunications Engineer Donald P. Bennett: Mechanical Engineer David Silsbee: Electronics Engineer Joel Kegel: Manufacturing/Engineering Tech Jacqueline Wein: Manufacturing/Engineering Tech Reinhold Ziegler: Space-Based Power Systems E. Mark Shusterman,M.D. Medical Life Support Randa Milliron: High-Temperature Composites Interorbital Systems www.interorbital.com Key Hardware Built In-House Propellant Tanks: Combining state-of-the-art composite technology with off-the-shelf aluminum liners Advanced Guidance Hardware and Software Ablative Rocket Engines and Components GPRE 0.5KNFA Rocket Engine Test Manned Space Flight Training Systems Rocket Injectors, Valves Systems, and Other Metal components Interorbital Systems www.interorbital.com Project History Pressure-Fed Rocket Engines GPRE 2.5KLMA Liquid Oxygen/Methanol Engine: Thrust = 2,500 lbs. GPRE 0.5KNFA WFNA/Furfuryl Alcohol (hypergolic): Thrust = 500 lbs. GPRE 0.5KNHXA WFNA/Turpentine (hypergolic): Thrust = 500 lbs. GPRE 3.0KNFA WFNA/Furfuryl Alcohol (hypergolic): Thrust = 3,000 lbs. -
Trade Studies Towards an Australian Indigenous Space Launch System
TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system. -
Programa De Pós-Graduação Em Ecologia Fluxo De
INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA - INPA PROGRAMA DE PÓS-GRADUAÇÃO EM ECOLOGIA FLUXO DE ENERGIA EM TEIAS ALIMENTARES DE ECOSSISTEMAS AQUÁTICOS TROPICAIS: DAS FONTES AUTOTRÓFICAS ATÉ OS GRANDES CONSUMIDORES ECTOTÉRMICOS FRANCISCO VILLAMARÍN Manaus, Amazonas i Agosto, 2016 Page i FRANCISCO VILLAMARÍN FLUXO DE ENERGIA EM TEIAS ALIMENTARES DE ECOSSISTEMAS AQUÁTICOS TROPICAIS: DAS FONTES AUTOTRÓFICAS ATÉ OS GRANDES CONSUMIDORES ECTOTÉRMICOS Orientador: WILLIAM E. MAGNUSSON Tese apresentada ao Instituto Nacional de Pesquisas da Amazônia como parte dos requisitos para obtenção do titulo de Doutor em BIOLOGIA-ECOLOGIA Manaus, Amazonas ii Agosto, 2016 Page ii V715 Villamarín, Francisco Fluxo de energia em teias alimentares de ecossistemas aquáticos tropicais: das fontes autotróficas até os grandes consumidores ectotérmicos / Francisco Villamarín. --- Manaus: [s.n.], 2016. 87 f.: il Tese (Doutorado) --- INPA, Manaus, 2016. Orientador: William E. Magnusson Área de concentração: Ecologia 1. Ecossistema aquático. 2. Teia alimentar. 3. Ecologia. I. Título. CDD 574.52632 iii Page iii Sinopse: Estudou-se o fluxo de energia em teias alimentares de ecossistemas aquáticos tropicais do Território Norte da Austrália e da Amazônia central. Aspectos como alocação de energia para reprodução em um peixe herbívoro-detritívoro e origens da energia e posição trófica de crocodilianos amazônicos foram avaliados. Palavras chave: isótopos estáveis, RNA:DNA, energia, consumidores ectotérmicos iv Page iv Dedicatória Mis abuelas Cecilia y Aída me enseñaron con cariño la importancia de la simplicidad y perseverancia en la vida. A ellas, dedico v Page v Agradecimentos O presente trabalho não seria possível sem o incentivo de todas as pessoas que acreditaram e que, de muitas maneiras, contribuiram sempre para que essa pesquisa seja realizada ao longo de todo esse tempo de Amazônia. -
Study of a 100Kwe Space Reactor for Exploration Missions
Preliminary study of a 100 kWe space reactor concept for exploration missions Elisa CLIQUET, Jean-Marc RUAULT 1), Jean-Pierre ROUX, Laurent LAMOINE, Thomas RAMEE 2), Christine POINOT-SALANON, Alexey LOKHOV, Serge PASCAL 3) 1) CNES Launchers Directorate,Evry, France 2) AREVA TA, Aix en Provence, France 3) CEA DEN/DM2S, F-91191 Gif-sur-Yvette, France NETS 2011 Overview ■ General context of the study ■ Requirements ■ Methodology of the study ■ Technologies selected for final trade-off ■ Reactor trade-off ■ Conversion trade-off ■ Critical technologies and development philosophy ■ Conclusion and perspectives CNES Directorate of Launchers Space transportation division of the French space agency ■ Responsible for the development of DIAMANT, ARIANE 1 to 4, ARIANE 5, launchers ■ System Architect for the Soyuz at CSG program ■ Development of VEGA launcher first stage (P80) ■ Future launchers preparation activities Multilateral and ESA budgets • To adapt the current launchers to the needs for 2015-2020 • To prepare launcher evolutions for 2025 - 2030, if needed • To prepare the new generation of expandable launchers (2025-2030) • To prepare the long future after 2030 with possible advanced launch vehicles ■ Future space transportation prospective activities, such as Exploration needs (including in particular OTV missions) Advanced propulsion technologies investigation General context ■ Background Last French studies on space reactors : • ERATO (NEP) in the 80’s, • MAPS (NTP) in the 90’s • OPUS (NEP) 2002-2004 ■ Since then Nuclear safe orbit -
The European Launchers Between Commerce and Geopolitics
The European Launchers between Commerce and Geopolitics Report 56 March 2016 Marco Aliberti Matteo Tugnoli Short title: ESPI Report 56 ISSN: 2218-0931 (print), 2076-6688 (online) Published in March 2016 Editor and publisher: European Space Policy Institute, ESPI Schwarzenbergplatz 6 • 1030 Vienna • Austria http://www.espi.or.at Tel. +43 1 7181118-0; Fax -99 Rights reserved – No part of this report may be reproduced or transmitted in any form or for any purpose with- out permission from ESPI. Citations and extracts to be published by other means are subject to mentioning “Source: ESPI Report 56; March 2016. All rights reserved” and sample transmission to ESPI before publishing. ESPI is not responsible for any losses, injury or damage caused to any person or property (including under contract, by negligence, product liability or otherwise) whether they may be direct or indirect, special, inciden- tal or consequential, resulting from the information contained in this publication. Design: Panthera.cc ESPI Report 56 2 March 2016 The European Launchers between Commerce and Geopolitics Table of Contents Executive Summary 5 1. Introduction 10 1.1 Access to Space at the Nexus of Commerce and Geopolitics 10 1.2 Objectives of the Report 12 1.3 Methodology and Structure 12 2. Access to Space in Europe 14 2.1 European Launchers: from Political Autonomy to Market Dominance 14 2.1.1 The Quest for European Independent Access to Space 14 2.1.3 European Launchers: the Current Family 16 2.1.3 The Working System: Launcher Strategy, Development and Exploitation 19 2.2 Preparing for the Future: the 2014 ESA Ministerial Council 22 2.2.1 The Path to the Ministerial 22 2.2.2 A Look at Europe’s Future Launchers and Infrastructure 26 2.2.3 A Revolution in Governance 30 3. -
The Annual Compendium of Commercial Space Transportation: 2017
Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY . -
View from the Build Line
T OTAL I MPULSE V OLUME 2 0 , N O . 6 November - December 2020 MARQUARDT MA177XAA LASRM Inside This Issue: Article: Page My Year of Construction 3 Marquardt MA177XAA LASRM 5 View From The Flight Line 9 Club News 10 Current Events in Space Exploration 11 Competition Corner 14 THOY Knighthawk Plan 15 This Month in Aerospace History 15 NASA Paper Models 21 Launch Windows 22 Vendor News 23 Vintage Ad 24 SPACEX NEWS View From The Build Line T OTAL I MPULSE V OLUME 2 0 , N O . 6 P a g e 2 CLUB OFFICERS We can’t say for certain what 2021 is going President: Scott Miller to bring us. I hope you’re able to spend Vice President: Roger Sadowsky some time pursuing model rocketry as best Treasurer: Tony Haga Secretary: Bob Dickinson you can. What is most important though is Editor / NAR Advisor: Buzz Nau to take care of yourself, check on your Communications: Dan Harrison friends and family and make sure they are Board of Director: Dale Hodgson doing as well as they possibly can under Board of Director: Mark Chrumka the circumstances. I’m looking forward to Board of Director: Dave Glover seeing you all again as soon as possible. It’s now 30 December and I am just barely MEMBERSHIP getting this edition of the newsletter out To become a member of the Jackson Model before the new year. Motivation for model Rocketry Club and Huron Valley Rocket Society means becoming a part of our family. We have rocketry has been hard to come by this monthly launches and participate in many edu- year. -
Abstract Volume
T I I II I II I I I rl I Abstract Volume LPI LPI Contribution No. 1097 II I II III I • • WORKSHOP ON MERCURY: SPACE ENVIRONMENT, SURFACE, AND INTERIOR The Field Museum Chicago, Illinois October 4-5, 2001 Conveners Mark Robinbson, Northwestern University G. Jeffrey Taylor, University of Hawai'i Sponsored by Lunar and Planetary Institute The Field Museum National Aeronautics and Space Administration Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1097 Compiled in 2001 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication .... This volume may be cited as Author A. B. (2001)Title of abstract. In Workshop on Mercury: Space Environment, Surface, and Interior, p. xx. LPI Contribution No. 1097, Lunar and Planetary Institute, Houston. This report is distributed by ORDER DEPARTMENT Lunar and Planetary institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: order@lpi:usra.edu Please contact the Order Department for ordering information, i,-J_,.,,,-_r ,_,,,,.r pA<.><--.,// ,: Mercury Workshop 2001 iii / jaO/ Preface This volume contains abstracts that have been accepted for presentation at the Workshop on Mercury: Space Environment, Surface, and Interior, October 4-5, 2001. -
SOYUZ THROUGH the AGES the R-7 Rocket That Led to the Family of Soyuz Vehicles Launching Today Lifted Off for the First Time Onfeb
RUSSIAN SPACE SOYUZ THROUGH THE AGES The R-7 rocket that led to the family of Soyuz vehicles launching today lifted off for the first time onFeb. 17, 1959. The last launch, on Dec. 27, 2018, was number 1,898. Irene Klotz and Maxim Pyadushkin Vostochny Cosmodrome anufactured by the Progress Rocket Space Center in Sama- Evolution of Soyuz-Family Launch Vehicles ra, Russia, the medium-lift expendable booster originally was used for Soviet-era human space missions and later became the R-7 Soyuz Soyuz-L workhorse for the country’s civilian and military space programs. M 1957 First launch of the ICBM (SS-6 1966-76 (32 launches, 1970-71 (three launches, Sapwood) that served as a basis for including 30 successful, all successful, The first rocket officially named Soyuz was launched in Soviet/Russian launch vehicles from Baikonur) from Baikonur) 1966 and has since flown 1,050 times, of which 1,023 were including the Soyuz family successful. Production of Soyuz rockets peaked in the early Soyuz 1980s at about 60 vehicles per year. Medium-Class Launch Vehicle Russia began offering Soyuz launch services internationally in the mid-1980s through Glavkosmos, a commercial entity set up to sell Soviet rocket and space technologies. Manufacturer: Progress Rocket Space Soyuz-U/-U2 Soyuz-M Center, Samara, Russia In 1996, Russia created Starsem, a joint venture (35% ArianeGroup, 25% Roscosmos, 25% RKTs Progress, 15% 1991 Breakup of the 1973-2017 1971-76 (eight launches, Soviet Union, (859 launches, including all successful, from Plesetsk) Dimensions Arianespace) that had exclusive rights to provide commercial launch services on Soyuz launch vehicles. -
View Relevant for Our Research
DEVELOPMENT AND EVALUATION OF CLICKER METHODOLOGY FOR INTRODUCTORY PHYSICS COURSES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Albert H. Lee, B.S. ***** The Ohio State University 2009 Dissertation Committee: Approved by Professor Lei Bao, Adviser Professor Neville W. Reay, Co-Adviser _______________________ Professor Andrew F. Heckler Adviser Physics Graduate Program Professor Bruce R. Patton Professor Evan R. Sugarbaker Copyright by Albert H. Lee 2009 ABSTRACT Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or “clickers”, are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. -
Space Security Index 2013
SPACE SECURITY INDEX 2013 www.spacesecurity.org 10th Edition SPACE SECURITY INDEX 2013 SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security Index 2013 ISBN: 978-1-927802-05-2 FOR PDF version use this © 2013 SPACESECURITY.ORG ISBN: 978-1-927802-05-2 Edited by Cesar Jaramillo Design and layout by Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Soyuz TMA-07M Spacecraft ISS034-E-010181 (21 Dec. 2012) As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. Credit: NASA. Printed in Canada Printer: Pandora Print Shop, Kitchener, Ontario First published October 2013 Please direct enquiries to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 7708 Fax: 519-888-0018 Email: [email protected] Governance Group Julie Crôteau Foreign Aairs and International Trade Canada Peter Hays Eisenhower Center for Space and Defense Studies Ram Jakhu Institute of Air and Space Law, McGill University Ajey Lele Institute for Defence Studies and Analyses Paul Meyer The Simons Foundation John Siebert Project Ploughshares Ray Williamson Secure World Foundation Advisory Board Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research John Logsdon The George Washington University Lucy Stojak HEC Montréal Project Manager Cesar Jaramillo Project Ploughshares Table of Contents TABLE OF CONTENTS TABLE PAGE 1 Acronyms and Abbreviations PAGE 5 Introduction PAGE 9 Acknowledgements PAGE 10 Executive Summary PAGE 23 Theme 1: Condition of the space environment: This theme examines the security and sustainability of the space environment, with an emphasis on space debris; the potential threats posed by near-Earth objects; the allocation of scarce space resources; and the ability to detect, track, identify, and catalog objects in outer space.